]>
Commit | Line | Data |
---|---|---|
b7cd4ba7 | 1 | // Created on: 2013-12-25 |
2 | // Created by: Varvara POSKONINA | |
3 | // Copyright (c) 1999-2014 OPEN CASCADE SAS | |
4 | // | |
5 | // This file is part of Open CASCADE Technology software library. | |
6 | // | |
7 | // This library is free software; you can redistribute it and/or modify it under | |
8 | // the terms of the GNU Lesser General Public License version 2.1 as published | |
9 | // by the Free Software Foundation, with special exception defined in the file | |
10 | // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT | |
11 | // distribution for complete text of the license and disclaimer of any warranty. | |
12 | // | |
13 | // Alternatively, this file may be used under the terms of Open CASCADE | |
14 | // commercial license or contractual agreement. | |
15 | ||
16 | #include <OpenGl_BVHTreeSelector.hxx> | |
17 | #include <OpenGl_BVHClipPrimitiveSet.hxx> | |
18 | ||
19 | #include <vector> | |
20 | #include <algorithm> | |
21 | ||
22 | // ======================================================================= | |
23 | // function : DotProduct | |
24 | // purpose : Calculates a dot product of 4-dimensional vectors in homogeneous coordinates | |
25 | // ======================================================================= | |
26 | static Standard_ShortReal DotProduct (const OpenGl_Vec4& theA, | |
27 | const OpenGl_Vec4& theB) | |
28 | { | |
29 | return theA.x() * theB.x() + theA.y() * theB.y() + theA.z() * theB.z(); | |
30 | } | |
31 | ||
32 | // ======================================================================= | |
33 | // function : BinarySign | |
34 | // purpose : | |
35 | // ======================================================================= | |
36 | static OpenGl_Vec4 BinarySign (const OpenGl_Vec4& theVec) | |
37 | { | |
38 | return OpenGl_Vec4 (theVec.x() > 0.0f ? 1.0f : 0.0f, | |
39 | theVec.y() > 0.0f ? 1.0f : 0.0f, | |
40 | theVec.z() > 0.0f ? 1.0f : 0.0f, | |
41 | theVec.w() > 0.0f ? 1.0f : 0.0f); | |
42 | } | |
43 | ||
44 | // ======================================================================= | |
45 | // function : InversedBinarySign | |
46 | // purpose : | |
47 | // ======================================================================= | |
48 | static OpenGl_Vec4 InversedBinarySign (const OpenGl_Vec4& theVec) | |
49 | { | |
50 | return OpenGl_Vec4 (theVec.x() > 0.0f ? 0.0f : 1.0f, | |
51 | theVec.y() > 0.0f ? 0.0f : 1.0f, | |
52 | theVec.z() > 0.0f ? 0.0f : 1.0f, | |
53 | theVec.w() > 0.0f ? 0.0f : 1.0f); | |
54 | } | |
55 | ||
56 | // ======================================================================= | |
57 | // function : OpenGl_BVHTreeSelector | |
58 | // purpose : | |
59 | // ======================================================================= | |
60 | OpenGl_BVHTreeSelector::OpenGl_BVHTreeSelector() | |
61 | : myIsProjectionParallel (Standard_True), | |
62 | myProjectionState (0), | |
63 | myModelViewState (0) | |
64 | { | |
65 | // | |
66 | } | |
67 | ||
68 | // ======================================================================= | |
69 | // function : SetClipVolume | |
70 | // purpose : Retrieves view volume's planes equations and its vertices from projection and modelview matrices. | |
71 | // ======================================================================= | |
72 | void OpenGl_BVHTreeSelector::SetViewVolume (const Handle(Graphic3d_Camera)& theCamera) | |
73 | { | |
74 | myIsProjectionParallel = theCamera->IsOrthographic(); | |
75 | const OpenGl_Mat4& aProjMat = theCamera->ProjectionMatrixF(); | |
76 | const OpenGl_Mat4& aModelMat = theCamera->OrientationMatrixF(); | |
77 | ||
78 | Standard_ShortReal nLeft = 0.0f, nRight = 0.0f, nTop = 0.0f, nBottom = 0.0f; | |
79 | Standard_ShortReal fLeft = 0.0f, fRight = 0.0f, fTop = 0.0f, fBottom = 0.0f; | |
80 | Standard_ShortReal aNear = 0.0f, aFar = 0.0f; | |
81 | if (!myIsProjectionParallel) | |
82 | { | |
83 | // handle perspective projection | |
84 | aNear = aProjMat.GetValue (2, 3) / (- 1.0f + aProjMat.GetValue (2, 2)); | |
85 | aFar = aProjMat.GetValue (2, 3) / ( 1.0f + aProjMat.GetValue (2, 2)); | |
86 | // Near plane | |
87 | nLeft = aNear * (aProjMat.GetValue (0, 2) - 1.0f) / aProjMat.GetValue (0, 0); | |
88 | nRight = aNear * (aProjMat.GetValue (0, 2) + 1.0f) / aProjMat.GetValue (0, 0); | |
89 | nTop = aNear * (aProjMat.GetValue (1, 2) + 1.0f) / aProjMat.GetValue (1, 1); | |
90 | nBottom = aNear * (aProjMat.GetValue (1, 2) - 1.0f) / aProjMat.GetValue (1, 1); | |
91 | // Far plane | |
92 | fLeft = aFar * (aProjMat.GetValue (0, 2) - 1.0f) / aProjMat.GetValue (0, 0); | |
93 | fRight = aFar * (aProjMat.GetValue (0, 2) + 1.0f) / aProjMat.GetValue (0, 0); | |
94 | fTop = aFar * (aProjMat.GetValue (1, 2) + 1.0f) / aProjMat.GetValue (1, 1); | |
95 | fBottom = aFar * (aProjMat.GetValue (1, 2) - 1.0f) / aProjMat.GetValue (1, 1); | |
96 | } | |
97 | else | |
98 | { | |
99 | // handle orthographic projection | |
100 | aNear = (1.0f / aProjMat.GetValue (2, 2)) * (aProjMat.GetValue (2, 3) + 1.0f); | |
101 | aFar = (1.0f / aProjMat.GetValue (2, 2)) * (aProjMat.GetValue (2, 3) - 1.0f); | |
102 | // Near plane | |
103 | nLeft = ( 1.0f + aProjMat.GetValue (0, 3)) / (-aProjMat.GetValue (0, 0)); | |
104 | fLeft = nLeft; | |
105 | nRight = ( 1.0f - aProjMat.GetValue (0, 3)) / aProjMat.GetValue (0, 0); | |
106 | fRight = nRight; | |
107 | nTop = ( 1.0f - aProjMat.GetValue (1, 3)) / aProjMat.GetValue (1, 1); | |
108 | fTop = nTop; | |
109 | nBottom = (-1.0f - aProjMat.GetValue (1, 3)) / aProjMat.GetValue (1, 1); | |
110 | fBottom = nBottom; | |
111 | } | |
112 | ||
113 | OpenGl_Vec4 aLeftTopNear (nLeft, nTop, -aNear, 1.0f), aRightBottomFar (fRight, fBottom, -aFar, 1.0f); | |
114 | OpenGl_Vec4 aLeftBottomNear (nLeft, nBottom, -aNear, 1.0f), aRightTopFar (fRight, fTop, -aFar, 1.0f); | |
115 | OpenGl_Vec4 aRightBottomNear (nRight, nBottom, -aNear, 1.0f), aLeftTopFar (fLeft, fTop, -aFar, 1.0f); | |
116 | OpenGl_Vec4 aRightTopNear (nRight, nTop, -aNear, 1.0f), aLeftBottomFar (fLeft, fBottom, -aFar, 1.0f); | |
117 | ||
118 | const OpenGl_Mat4 aViewProj = aModelMat * aProjMat; | |
119 | OpenGl_Mat4 anInvModelView; | |
120 | aModelMat.Inverted(anInvModelView); | |
121 | ||
122 | myClipVerts[ClipVert_LeftTopNear] = anInvModelView * aLeftTopNear; | |
123 | myClipVerts[ClipVert_RightBottomFar] = anInvModelView * aRightBottomFar; | |
124 | myClipVerts[ClipVert_LeftBottomNear] = anInvModelView * aLeftBottomNear; | |
125 | myClipVerts[ClipVert_RightTopFar] = anInvModelView * aRightTopFar; | |
126 | myClipVerts[ClipVert_RightBottomNear] = anInvModelView * aRightBottomNear; | |
127 | myClipVerts[ClipVert_LeftTopFar] = anInvModelView * aLeftTopFar; | |
128 | myClipVerts[ClipVert_RightTopNear] = anInvModelView * aRightTopNear; | |
129 | myClipVerts[ClipVert_LeftBottomFar] = anInvModelView * aLeftBottomFar; | |
130 | ||
131 | // UNNORMALIZED! | |
132 | myClipPlanes[Plane_Left] = aViewProj.GetRow (3) + aViewProj.GetRow (0); | |
133 | myClipPlanes[Plane_Right] = aViewProj.GetRow (3) - aViewProj.GetRow (0); | |
134 | myClipPlanes[Plane_Top] = aViewProj.GetRow (3) - aViewProj.GetRow (1); | |
135 | myClipPlanes[Plane_Bottom] = aViewProj.GetRow (3) + aViewProj.GetRow (1); | |
136 | myClipPlanes[Plane_Near] = aViewProj.GetRow (3) + aViewProj.GetRow (2); | |
137 | myClipPlanes[Plane_Far] = aViewProj.GetRow (3) - aViewProj.GetRow (2); | |
138 | ||
139 | gp_Pnt aPtCenter = theCamera->Center(); | |
140 | OpenGl_Vec4 aCenter (static_cast<Standard_ShortReal> (aPtCenter.X()), | |
141 | static_cast<Standard_ShortReal> (aPtCenter.Y()), | |
142 | static_cast<Standard_ShortReal> (aPtCenter.Z()), | |
143 | 1.0f); | |
144 | ||
145 | for (Standard_Integer aPlaneIter = 0; aPlaneIter < PlanesNB; ++aPlaneIter) | |
146 | { | |
147 | OpenGl_Vec4 anEq = myClipPlanes[aPlaneIter]; | |
148 | if (SignedPlanePointDistance (anEq, aCenter) > 0) | |
149 | { | |
150 | anEq *= -1.0f; | |
151 | myClipPlanes[aPlaneIter] = anEq; | |
152 | } | |
153 | } | |
154 | } | |
155 | ||
156 | // ======================================================================= | |
157 | // function : SignedPlanePointDistance | |
158 | // purpose : | |
159 | // ======================================================================= | |
160 | Standard_ShortReal OpenGl_BVHTreeSelector::SignedPlanePointDistance (const OpenGl_Vec4& theNormal, | |
161 | const OpenGl_Vec4& thePnt) | |
162 | { | |
163 | const Standard_ShortReal aNormLength = std::sqrt (theNormal.x() * theNormal.x() | |
164 | + theNormal.y() * theNormal.y() | |
165 | + theNormal.z() * theNormal.z()); | |
166 | const Standard_ShortReal anInvNormLength = 1.0f / aNormLength; | |
167 | const Standard_ShortReal aD = theNormal.w() * anInvNormLength; | |
168 | const Standard_ShortReal anA = theNormal.x() * anInvNormLength; | |
169 | const Standard_ShortReal aB = theNormal.y() * anInvNormLength; | |
170 | const Standard_ShortReal aC = theNormal.z() * anInvNormLength; | |
171 | return aD + (anA * thePnt.x() + aB * thePnt.y() + aC * thePnt.z()); | |
172 | } | |
173 | ||
174 | // ======================================================================= | |
175 | // function : CacheClipPtsProjections | |
176 | // purpose : Caches view volume's vertices projections along its normals and AABBs dimensions | |
177 | // Must be called at the beginning of each BVH tree traverse loop | |
178 | // ======================================================================= | |
179 | void OpenGl_BVHTreeSelector::CacheClipPtsProjections() | |
180 | { | |
181 | Standard_ShortReal aProjectedVerts[ClipVerticesNB]; | |
182 | for (Standard_Integer aPlaneIter = 0; aPlaneIter < PlanesNB; ++aPlaneIter) | |
183 | { | |
184 | const OpenGl_Vec4 aPlane = myClipPlanes[aPlaneIter]; | |
185 | for (Standard_Integer aCornerIter = 0; aCornerIter < ClipVerticesNB; ++aCornerIter) | |
186 | { | |
187 | Standard_ShortReal aProjection = DotProduct (aPlane, myClipVerts[aCornerIter]); | |
188 | aProjectedVerts[aCornerIter] = aProjection; | |
189 | } | |
190 | myMaxClipProjectionPts[aPlaneIter] = *std::max_element (aProjectedVerts, aProjectedVerts + ClipVerticesNB); | |
191 | myMinClipProjectionPts[aPlaneIter] = *std::min_element (aProjectedVerts, aProjectedVerts + ClipVerticesNB); | |
192 | } | |
193 | ||
194 | OpenGl_Vec4 aDimensions[3] = | |
195 | { | |
196 | OpenGl_Vec4 (1.0f, 0.0f, 0.0f, 1.0f), | |
197 | OpenGl_Vec4 (0.0f, 1.0f, 0.0f, 1.0f), | |
198 | OpenGl_Vec4 (0.0f, 0.0f, 1.0f, 1.0f) | |
199 | }; | |
200 | ||
201 | for (Standard_Integer aDim = 0; aDim < 3; ++aDim) | |
202 | { | |
203 | for (Standard_Integer aCornerIter = 0; aCornerIter < ClipVerticesNB; ++aCornerIter) | |
204 | { | |
205 | Standard_ShortReal aProjection = DotProduct (aDimensions[aDim], myClipVerts[aCornerIter]); | |
206 | aProjectedVerts[aCornerIter] = aProjection; | |
207 | } | |
208 | myMaxOrthoProjectionPts[aDim] = *std::max_element (aProjectedVerts, aProjectedVerts + ClipVerticesNB); | |
209 | myMinOrthoProjectionPts[aDim] = *std::min_element (aProjectedVerts, aProjectedVerts + ClipVerticesNB); | |
210 | } | |
211 | } | |
212 | ||
213 | // ======================================================================= | |
214 | // function : Intersect | |
215 | // purpose : Detects if AABB overlaps view volume using separating axis theorem (SAT) | |
216 | // ======================================================================= | |
217 | Standard_Boolean OpenGl_BVHTreeSelector::Intersect (const OpenGl_Vec4& theMinPt, | |
218 | const OpenGl_Vec4& theMaxPt) const | |
219 | { | |
220 | // E1 | |
221 | // |_ E0 | |
222 | // / | |
223 | // E2 | |
224 | const OpenGl_Vec4 aShiftedBoxMax = theMaxPt - theMinPt; | |
225 | Standard_ShortReal aBoxProjMax = 0.0f, aBoxProjMin = 0.0f; | |
226 | Standard_ShortReal aFrustumProjMax = 0.0f, aFrustumProjMin = 0.0f; | |
227 | ||
228 | // E0 test | |
229 | aBoxProjMax = aShiftedBoxMax.x(); | |
230 | aFrustumProjMax = myMaxOrthoProjectionPts[0] - DotProduct (OpenGl_Vec4 (1.0f, 0.0f, 0.0f, 1.0f), theMinPt); | |
231 | aFrustumProjMin = myMinOrthoProjectionPts[0] - DotProduct (OpenGl_Vec4 (1.0f, 0.0f, 0.0f, 1.0f), theMinPt); | |
232 | if (aBoxProjMin > aFrustumProjMax | |
233 | || aBoxProjMax < aFrustumProjMin) | |
234 | { | |
235 | return Standard_False; | |
236 | } | |
237 | ||
238 | // E1 test | |
239 | aBoxProjMax = aShiftedBoxMax.y(); | |
240 | aFrustumProjMax = myMaxOrthoProjectionPts[1] - DotProduct (OpenGl_Vec4 (0.0f, 1.0f, 0.0f, 1.0f), theMinPt); | |
241 | aFrustumProjMin = myMinOrthoProjectionPts[1] - DotProduct (OpenGl_Vec4 (0.0f, 1.0f, 0.0f, 1.0f), theMinPt); | |
242 | if (aBoxProjMin > aFrustumProjMax | |
243 | || aBoxProjMax < aFrustumProjMin) | |
244 | { | |
245 | return Standard_False; | |
246 | } | |
247 | ||
248 | // E2 test | |
249 | aBoxProjMax = aShiftedBoxMax.z(); | |
250 | aFrustumProjMax = myMaxOrthoProjectionPts[2] - DotProduct (OpenGl_Vec4 (0.0f, 0.0f, 1.0f, 1.0f), theMinPt); | |
251 | aFrustumProjMin = myMinOrthoProjectionPts[2] - DotProduct (OpenGl_Vec4 (0.0f, 0.0f, 1.0f, 1.0f), theMinPt); | |
252 | if (aBoxProjMin > aFrustumProjMax | |
253 | || aBoxProjMax < aFrustumProjMin) | |
254 | { | |
255 | return Standard_False; | |
256 | } | |
257 | ||
258 | const Standard_Integer anIncFactor = myIsProjectionParallel ? 2 : 1; | |
259 | for (Standard_Integer aPlaneIter = 0; aPlaneIter < 5; aPlaneIter += anIncFactor) | |
260 | { | |
261 | OpenGl_Vec4 aPlane = myClipPlanes[aPlaneIter]; | |
262 | OpenGl_Vec4 aPt1 (0.0f), aPt2 (0.0f); | |
263 | aPt1 = BinarySign (aPlane) * aShiftedBoxMax; | |
264 | aBoxProjMax = DotProduct (aPlane, aPt1); | |
265 | aFrustumProjMax = myMaxClipProjectionPts[aPlaneIter] - DotProduct (aPlane, theMinPt); | |
266 | aFrustumProjMin = myMinClipProjectionPts[aPlaneIter] - DotProduct (aPlane, theMinPt); | |
267 | if (aFrustumProjMin < aBoxProjMax | |
268 | && aBoxProjMax < aFrustumProjMax) | |
269 | { | |
270 | continue; | |
271 | } | |
272 | ||
273 | aPt2 = InversedBinarySign (aPlane) * aShiftedBoxMax; | |
274 | aBoxProjMin = DotProduct (aPlane, aPt2); | |
275 | if (aBoxProjMin > aFrustumProjMax | |
276 | || aBoxProjMax < aFrustumProjMin) | |
277 | { | |
278 | return Standard_False; | |
279 | } | |
280 | } | |
281 | ||
282 | return Standard_True; | |
283 | } |