
Previous Article
Bounding the bias of treelike sampling in IP topologies
 NHM Home
 This Issue

Next Article
Augmenting $k$core generation with preferential attachment
Graph theory and qualitative analysis of reaction networks
1.  Zeeman Building, Mathematics Institute, University of Warwick, CV4 7AL Coventry, United Kingdom, United Kingdom 
[1] 
M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201219. doi: 10.3934/nhm.2008.3.201 
[2] 
Maya Mincheva, Gheorghe Craciun. Graphtheoretic conditions for zeroeigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 12071226. doi: 10.3934/mbe.2013.10.1207 
[3] 
Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks. Networks & Heterogeneous Media, 2014, 9 (2) : 197216. doi: 10.3934/nhm.2014.9.197 
[4] 
Anirban Banerjee, Jürgen Jost. Spectral plot properties: Towards a qualitative classification of networks. Networks & Heterogeneous Media, 2008, 3 (2) : 395411. doi: 10.3934/nhm.2008.3.395 
[5] 
Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 17191744. doi: 10.3934/dcds.2018071 
[6] 
Anne Shiu, Timo de Wolff. Nondegenerate multistationarity in small reaction networks. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 26832700. doi: 10.3934/dcdsb.2018270 
[7] 
Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245268. doi: 10.3934/cpaa.2015.14.245 
[8] 
Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steadystates for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 47854813. doi: 10.3934/dcds.2017206 
[9] 
Erik Kropat, Silja MeyerNieberg, GerhardWilhelm Weber. Singularly perturbed diffusionadvectionreaction processes on extremely large threedimensional curvilinear networks with a periodic microstructure  efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183219. doi: 10.3934/naco.2016008 
[10] 
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257277. doi: 10.3934/nhm.2011.6.257 
[11] 
Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reactiondiffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427444. doi: 10.3934/krm.2010.3.427 
[12] 
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 205217. doi: 10.3934/dcdss.2020346 
[13] 
A. C. Eberhard, JP. Crouzeix. Existence of closed graph, maximal, cyclic pseudomonotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233255. doi: 10.3934/jimo.2007.3.233 
[14] 
Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reactiondiffusion equations in an infinite star graph. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 40134039. doi: 10.3934/dcds.2021026 
[15] 
Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reactiondiffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 8198. doi: 10.3934/dcdsb.2019173 
[16] 
Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, GerhardWilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2020, 16 (4) : 19271941. doi: 10.3934/jimo.2019036 
[17] 
Ivanka Stamova, Gani Stamov. On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete & Continuous Dynamical Systems  S, 2021, 14 (4) : 14291446. doi: 10.3934/dcdss.2020370 
[18] 
Murat Arcak, Eduardo D. Sontag. A passivitybased stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 119. doi: 10.3934/mbe.2008.5.1 
[19] 
Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021030 
[20] 
Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reactiondiffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 10551087. doi: 10.3934/krm.2017042 
2020 Impact Factor: 1.213
Tools
Metrics
Other articles
by authors
[Back to Top]