// Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Cone_HeaderFile #define _gp_Cone_HeaderFile #include #include #include //! Defines an infinite conical surface. //! A cone is defined by its half-angle (can be negative) at the apex and //! positioned in space with a coordinate system (a gp_Ax3 //! object) and a "reference radius" where: //! - the "main Axis" of the coordinate system is the axis of revolution of the cone, //! - the plane defined by the origin, the "X Direction" and //! the "Y Direction" of the coordinate system is the //! reference plane of the cone; the intersection of the //! cone with this reference plane is a circle of radius //! equal to the reference radius, //! if the half-angle is positive, the apex of the cone is on //! the negative side of the "main Axis" of the coordinate //! system. If the half-angle is negative, the apex is on the positive side. //! This coordinate system is the "local coordinate system" of the cone. //! Note: when a gp_Cone cone is converted into a //! Geom_ConicalSurface cone, some implicit properties of //! its local coordinate system are used explicitly: //! - its origin, "X Direction", "Y Direction" and "main //! Direction" are used directly to define the parametric //! directions on the cone and the origin of the parameters, //! - its implicit orientation (right-handed or left-handed) //! gives the orientation (direct or indirect) of the //! Geom_ConicalSurface cone. //! See Also //! gce_MakeCone which provides functions for more //! complex cone constructions //! Geom_ConicalSurface which provides additional //! functions for constructing cones and works, in particular, //! with the parametric equations of cones gp_Ax3 class gp_Cone { public: DEFINE_STANDARD_ALLOC //! Creates an indefinite Cone. gp_Cone() : radius (RealLast()), semiAngle (M_PI * 0.25) {} //! Creates an infinite conical surface. theA3 locates the cone //! in the space and defines the reference plane of the surface. //! Ang is the conical surface semi-angle. Its absolute value is in range //! ]0, PI/2[. //! theRadius is the radius of the circle in the reference plane of //! the cone. //! theRaises ConstructionError //! * if theRadius is lower than 0.0 //! * Abs(theAng) < Resolution from gp or Abs(theAng) >= (PI/2) - Resolution. gp_Cone (const gp_Ax3& theA3, const Standard_Real theAng, const Standard_Real theRadius); //! Changes the symmetry axis of the cone. Raises ConstructionError //! the direction of theA1 is parallel to the "XDirection" //! of the coordinate system of the cone. void SetAxis (const gp_Ax1& theA1) { pos.SetAxis (theA1); } //! Changes the location of the cone. void SetLocation (const gp_Pnt& theLoc) { pos.SetLocation (theLoc); } //! Changes the local coordinate system of the cone. //! This coordinate system defines the reference plane of the cone. void SetPosition (const gp_Ax3& theA3) { pos = theA3; } //! Changes the radius of the cone in the reference plane of //! the cone. //! Raised if theR < 0.0 void SetRadius (const Standard_Real theR) { Standard_ConstructionError_Raise_if (theR < 0.0, "gp_Cone::SetRadius() - radius should be positive number"); radius = theR; } //! Changes the semi-angle of the cone. //! Semi-angle can be negative. Its absolute value //! Abs(theAng) is in range ]0,PI/2[. //! Raises ConstructionError if Abs(theAng) < Resolution from gp or Abs(theAng) >= PI/2 - Resolution void SetSemiAngle (const Standard_Real theAng); //! Computes the cone's top. The Apex of the cone is on the //! negative side of the symmetry axis of the cone. gp_Pnt Apex() const { gp_XYZ aCoord = pos.Direction().XYZ(); aCoord.Multiply (-radius / Tan (semiAngle)); aCoord.Add (pos.Location().XYZ()); return gp_Pnt (aCoord); } //! Reverses the U parametrization of the cone //! reversing the YAxis. void UReverse() { pos.YReverse(); } //! Reverses the V parametrization of the cone reversing the ZAxis. void VReverse() { pos.ZReverse(); semiAngle = -semiAngle; } //! Returns true if the local coordinate system of this cone is right-handed. Standard_Boolean Direct() const { return pos.Direct(); } //! returns the symmetry axis of the cone. const gp_Ax1& Axis() const { return pos.Axis(); } //! Computes the coefficients of the implicit equation of the quadric //! in the absolute cartesian coordinates system : //! theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) + //! 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0 Standard_EXPORT void Coefficients (Standard_Real& theA1, Standard_Real& theA2, Standard_Real& theA3, Standard_Real& theB1, Standard_Real& theB2, Standard_Real& theB3, Standard_Real& theC1, Standard_Real& theC2, Standard_Real& theC3, Standard_Real& theD) const; //! returns the "Location" point of the cone. const gp_Pnt& Location() const { return pos.Location(); } //! Returns the local coordinates system of the cone. const gp_Ax3& Position() const { return pos; } //! Returns the radius of the cone in the reference plane. Standard_Real RefRadius() const { return radius; } //! Returns the half-angle at the apex of this cone. //! Attention! Semi-angle can be negative. Standard_Real SemiAngle() const { return semiAngle; } //! Returns the XAxis of the reference plane. gp_Ax1 XAxis() const { return gp_Ax1 (pos.Location(), pos.XDirection()); } //! Returns the YAxis of the reference plane. gp_Ax1 YAxis() const { return gp_Ax1 (pos.Location(), pos.YDirection()); } Standard_EXPORT void Mirror (const gp_Pnt& theP); //! Performs the symmetrical transformation of a cone //! with respect to the point theP which is the center of the //! symmetry. Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Pnt& theP) const; Standard_EXPORT void Mirror (const gp_Ax1& theA1); //! Performs the symmetrical transformation of a cone with //! respect to an axis placement which is the axis of the //! symmetry. Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax1& theA1) const; Standard_EXPORT void Mirror (const gp_Ax2& theA2); //! Performs the symmetrical transformation of a cone with respect //! to a plane. The axis placement theA2 locates the plane of the //! of the symmetry : (Location, XDirection, YDirection). Standard_NODISCARD Standard_EXPORT gp_Cone Mirrored (const gp_Ax2& theA2) const; void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); } //! Rotates a cone. theA1 is the axis of the rotation. //! Ang is the angular value of the rotation in radians. Standard_NODISCARD gp_Cone Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const { gp_Cone aCone = *this; aCone.pos.Rotate (theA1, theAng); return aCone; } void Scale (const gp_Pnt& theP, const Standard_Real theS); //! Scales a cone. theS is the scaling value. //! The absolute value of theS is used to scale the cone Standard_NODISCARD gp_Cone Scaled (const gp_Pnt& theP, const Standard_Real theS) const; void Transform (const gp_Trsf& theT); //! Transforms a cone with the transformation theT from class Trsf. Standard_NODISCARD gp_Cone Transformed (const gp_Trsf& theT) const; void Translate (const gp_Vec& theV) { pos.Translate (theV); } //! Translates a cone in the direction of the vector theV. //! The magnitude of the translation is the vector's magnitude. Standard_NODISCARD gp_Cone Translated (const gp_Vec& theV) const { gp_Cone aCone = *this; aCone.pos.Translate (theV); return aCone; } void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); } //! Translates a cone from the point P1 to the point P2. Standard_NODISCARD gp_Cone Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const { gp_Cone aCone = *this; aCone.pos.Translate (theP1, theP2); return aCone; } private: gp_Ax3 pos; Standard_Real radius; Standard_Real semiAngle; }; // ======================================================================= // function : gp_Cone // purpose : // ======================================================================= inline gp_Cone::gp_Cone (const gp_Ax3& theA3, const Standard_Real theAng, const Standard_Real theRadius) : pos (theA3), radius (theRadius), semiAngle (theAng) { Standard_Real aVal = theAng; if (aVal < 0) { aVal = -aVal; } Standard_ConstructionError_Raise_if (theRadius < 0. || aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(), "gp_Cone() - invalid construction parameters"); } // ======================================================================= // function : SetSemiAngle // purpose : // ======================================================================= inline void gp_Cone::SetSemiAngle (const Standard_Real theAng) { Standard_Real aVal = theAng; if (aVal < 0) { aVal = -aVal; } Standard_ConstructionError_Raise_if (aVal <= gp::Resolution() || M_PI * 0.5 - aVal <= gp::Resolution(), "gp_Cone::SetSemiAngle() - invalid angle range"); semiAngle = theAng; } // ======================================================================= // function : Scale // purpose : // ======================================================================= inline void gp_Cone::Scale (const gp_Pnt& theP, const Standard_Real theS) { pos.Scale (theP, theS); radius *= theS; if (radius < 0) { radius = -radius; } } // ======================================================================= // function : Scaled // purpose : // ======================================================================= inline gp_Cone gp_Cone::Scaled (const gp_Pnt& theP, const Standard_Real theS) const { gp_Cone aC = *this; aC.pos.Scale (theP, theS); aC.radius *= theS; if (aC.radius < 0) { aC.radius = -aC.radius; } return aC; } // ======================================================================= // function : Transform // purpose : // ======================================================================= inline void gp_Cone::Transform (const gp_Trsf& theT) { pos.Transform (theT); radius *= theT.ScaleFactor(); if (radius < 0) { radius = -radius; } } // ======================================================================= // function : Transformed // purpose : // ======================================================================= inline gp_Cone gp_Cone::Transformed (const gp_Trsf& theT) const { gp_Cone aC = *this; aC.pos.Transform (theT); aC.radius *= theT.ScaleFactor(); if (aC.radius < 0) { aC.radius = -aC.radius; } return aC; } #endif // _gp_Cone_HeaderFile