e6c812698e30fa1cdbfcb1e6b6b322231e33ed1a
[occt.git] / src / Geom2dGcc / Geom2dGcc_Circ2d2TanRad.hxx
1 // Created on: 1992-10-20
2 // Created by: Remi GILET
3 // Copyright (c) 1992-1999 Matra Datavision
4 // Copyright (c) 1999-2014 OPEN CASCADE SAS
5 //
6 // This file is part of Open CASCADE Technology software library.
7 //
8 // This library is free software; you can redistribute it and/or modify it under
9 // the terms of the GNU Lesser General Public License version 2.1 as published
10 // by the Free Software Foundation, with special exception defined in the file
11 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12 // distribution for complete text of the license and disclaimer of any warranty.
13 //
14 // Alternatively, this file may be used under the terms of Open CASCADE
15 // commercial license or contractual agreement.
16
17 #ifndef _Geom2dGcc_Circ2d2TanRad_HeaderFile
18 #define _Geom2dGcc_Circ2d2TanRad_HeaderFile
19
20 #include <Standard.hxx>
21 #include <Standard_DefineAlloc.hxx>
22 #include <Standard_Handle.hxx>
23
24 #include <Standard_Boolean.hxx>
25 #include <TColgp_Array1OfCirc2d.hxx>
26 #include <Standard_Integer.hxx>
27 #include <GccEnt_Array1OfPosition.hxx>
28 #include <TColStd_Array1OfInteger.hxx>
29 #include <TColgp_Array1OfPnt2d.hxx>
30 #include <TColStd_Array1OfReal.hxx>
31 #include <Standard_Real.hxx>
32 #include <GccEnt_Position.hxx>
33 class Standard_OutOfRange;
34 class GccEnt_BadQualifier;
35 class StdFail_NotDone;
36 class Standard_NegativeValue;
37 class Geom2dGcc_QualifiedCurve;
38 class Geom2d_Point;
39 class GccAna_Circ2d2TanRad;
40 class Geom2dGcc_Circ2d2TanRadGeo;
41 class gp_Circ2d;
42 class gp_Pnt2d;
43
44
45 //! This class implements the algorithms used to
46 //! create 2d circles tangent to one curve and a
47 //! point/line/circle/curv and with a given radius.
48 //! For each construction methods arguments are:
49 //! - Two Qualified elements for tangency constrains.
50 //! (for example EnclosedCirc if we want the
51 //! solution inside the argument EnclosedCirc).
52 //! - Two Reals. One (Radius) for the radius and the
53 //! other (Tolerance) for the tolerance.
54 //! Tolerance is only used for the limit cases.
55 //! For example :
56 //! We want to create a circle inside a circle C1 and
57 //! inside a curve Cu2 with a radius Radius and a
58 //! tolerance Tolerance.
59 //! If we did not used Tolerance it is impossible to
60 //! find a solution in the the following case : Cu2 is
61 //! inside C1 and there is no intersection point
62 //! between the two elements.
63 //! with Tolerance we will give a solution if the
64 //! lowest distance between C1 and Cu2 is lower than or
65 //! equal Tolerance.
66 class Geom2dGcc_Circ2d2TanRad 
67 {
68 public:
69
70   DEFINE_STANDARD_ALLOC
71
72   
73   Standard_EXPORT Geom2dGcc_Circ2d2TanRad(const Geom2dGcc_QualifiedCurve& Qualified1, const Geom2dGcc_QualifiedCurve& Qualified2, const Standard_Real Radius, const Standard_Real Tolerance);
74   
75   Standard_EXPORT Geom2dGcc_Circ2d2TanRad(const Geom2dGcc_QualifiedCurve& Qualified1, const Handle(Geom2d_Point)& Point, const Standard_Real Radius, const Standard_Real Tolerance);
76   
77   //! These constructors create one or more 2D circles of radius Radius either
78   //! -   tangential to the 2 curves Qualified1 and Qualified2,   or
79   //! -   tangential to the curve Qualified1 and passing through the point Point, or
80   //! -   passing through two points Point1 and Point2.
81   //! Tolerance is a tolerance criterion used by the algorithm
82   //! to find a solution when, mathematically, the problem
83   //! posed does not have a solution, but where there is
84   //! numeric uncertainty attached to the arguments.
85   //! For example, take two circles C1 and C2, such that C2
86   //! is inside C1, and almost tangential to C1. There is, in
87   //! fact, no point of intersection between C1 and C2. You
88   //! now want to find a circle of radius R (smaller than the
89   //! radius of C2), which is tangential to C1 and C2, and
90   //! inside these two circles: a pure mathematical resolution
91   //! will not find a solution. This is where the tolerance
92   //! criterion is used: the algorithm considers that C1 and
93   //! C2 are tangential if the shortest distance between these
94   //! two circles is less than or equal to Tolerance. Thus, a
95   //! solution is found by the algorithm.
96   //! Exceptions
97   //! GccEnt_BadQualifier if a qualifier is inconsistent with
98   //! the argument it qualifies (for example, enclosing for a line).
99   //! Standard_NegativeValue if Radius is negative.
100   Standard_EXPORT Geom2dGcc_Circ2d2TanRad(const Handle(Geom2d_Point)& Point1, const Handle(Geom2d_Point)& Point2, const Standard_Real Radius, const Standard_Real Tolerance);
101   
102   Standard_EXPORT void Results (const GccAna_Circ2d2TanRad& Circ);
103   
104   Standard_EXPORT void Results (const Geom2dGcc_Circ2d2TanRadGeo& Circ);
105   
106   //! This method returns True if the algorithm succeeded.
107   //! Note: IsDone protects against a failure arising from a
108   //! more internal intersection algorithm, which has reached its numeric limits.
109   Standard_EXPORT Standard_Boolean IsDone() const;
110   
111   //! This method returns the number of solutions.
112   //! NotDone is raised if the algorithm failed.
113   //! Exceptions
114   //! StdFail_NotDone if the construction fails.
115   Standard_EXPORT Standard_Integer NbSolutions() const;
116   
117   //! Returns the solution number Index and raises OutOfRange
118   //! exception if Index is greater than the number of solutions.
119   //! Be careful: the Index is only a way to get all the
120   //! solutions, but is not associated to these outside the context of the algorithm-object.
121   //! Warning
122   //! This indexing simply provides a means of consulting the
123   //! solutions. The index values are not associated with
124   //! these solutions outside the context of the algorithm object.
125   //! Exceptions
126   //! Standard_OutOfRange if Index is less than zero or
127   //! greater than the number of solutions computed by this algorithm.
128   //! StdFail_NotDone if the construction fails.
129   Standard_EXPORT gp_Circ2d ThisSolution (const Standard_Integer Index) const;
130   
131   //! Returns the qualifiers Qualif1 and Qualif2 of the
132   //! tangency arguments for the solution of index Index
133   //! computed by this algorithm.
134   //! The returned qualifiers are:
135   //! -   those specified at the start of construction when the
136   //! solutions are defined as enclosed, enclosing or
137   //! outside with respect to the arguments, or
138   //! -   those computed during construction (i.e. enclosed,
139   //! enclosing or outside) when the solutions are defined
140   //! as unqualified with respect to the arguments, or
141   //! -   GccEnt_noqualifier if the tangency argument is a point, or
142   //! -   GccEnt_unqualified in certain limit cases where it
143   //! is impossible to qualify the solution as enclosed, enclosing or outside.
144   //! Exceptions
145   //! Standard_OutOfRange if Index is less than zero or
146   //! greater than the number of solutions computed by this algorithm.
147   //! StdFail_NotDone if the construction fails.
148   Standard_EXPORT void WhichQualifier (const Standard_Integer Index, GccEnt_Position& Qualif1, GccEnt_Position& Qualif2) const;
149   
150   //! Returns information about the tangency point between the
151   //! result number Index and the first argument.
152   //! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
153   //! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
154   //! OutOfRange is raised if Index is greater than the number of solutions.
155   //! notDone is raised if the construction algorithm did not succeed.
156   Standard_EXPORT void Tangency1 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
157   
158   //! Returns information about the tangency point between the
159   //! result number Index and the second argument.
160   //! ParSol is the intrinsic parameter of the point PntSol on the solution curv.
161   //! ParArg is the intrinsic parameter of the point PntSol on the argument curv.
162   //! OutOfRange is raised if Index is greater than the number of solutions.
163   //! notDone is raised if the construction algorithm did not succeed.
164   Standard_EXPORT void Tangency2 (const Standard_Integer Index, Standard_Real& ParSol, Standard_Real& ParArg, gp_Pnt2d& PntSol) const;
165   
166   //! Returns true if the solution of index Index and,
167   //! respectively, the first or second argument of this
168   //! algorithm are the same (i.e. there are 2 identical circles).
169   //! If Rarg is the radius of the first or second argument,
170   //! Rsol is the radius of the solution and dist is the
171   //! distance between the two centers, we consider the two
172   //! circles to be identical if |Rarg - Rsol| and dist
173   //! are less than or equal to the tolerance criterion given at
174   //! the time of construction of this algorithm.
175   //! OutOfRange is raised if Index is greater than the number of solutions.
176   //! notDone is raised if the construction algorithm did not succeed.
177   Standard_EXPORT Standard_Boolean IsTheSame1 (const Standard_Integer Index) const;
178   
179   //! Returns true if the solution of index Index and,
180   //! respectively, the first or second argument of this
181   //! algorithm are the same (i.e. there are 2 identical circles).
182   //! If Rarg is the radius of the first or second argument,
183   //! Rsol is the radius of the solution and dist is the
184   //! distance between the two centers, we consider the two
185   //! circles to be identical if |Rarg - Rsol| and dist
186   //! are less than or equal to the tolerance criterion given at
187   //! the time of construction of this algorithm.
188   //! OutOfRange is raised if Index is greater than the number of solutions.
189   //! notDone is raised if the construction algorithm did not succeed.
190   Standard_EXPORT Standard_Boolean IsTheSame2 (const Standard_Integer Index) const;
191
192
193
194
195 protected:
196
197
198
199
200
201 private:
202
203
204
205   Standard_Boolean WellDone;
206   TColgp_Array1OfCirc2d cirsol;
207   Standard_Integer NbrSol;
208   GccEnt_Array1OfPosition qualifier1;
209   GccEnt_Array1OfPosition qualifier2;
210   TColStd_Array1OfInteger TheSame1;
211   TColStd_Array1OfInteger TheSame2;
212   TColgp_Array1OfPnt2d pnttg1sol;
213   TColgp_Array1OfPnt2d pnttg2sol;
214   TColStd_Array1OfReal par1sol;
215   TColStd_Array1OfReal par2sol;
216   TColStd_Array1OfReal pararg1;
217   TColStd_Array1OfReal pararg2;
218   Standard_Boolean Invert;
219
220
221 };
222
223
224
225
226
227
228
229 #endif // _Geom2dGcc_Circ2d2TanRad_HeaderFile