]>
Commit | Line | Data |
---|---|---|
4bbaf12b | 1 | // Created on: 2014-01-20 |
2 | // Created by: Alexaner Malyshev | |
4b65fc77 | 3 | // Copyright (c) 2014-2015 OPEN CASCADE SAS |
4bbaf12b | 4 | // |
5 | // This file is part of Open CASCADE Technology software library. | |
6 | // | |
7 | // This library is free software; you can redistribute it and/or modify it under | |
8 | // the terms of the GNU Lesser General Public License version 2.1 as published | |
9 | // by the Free Software Foundation, with special exception defined in the file | |
10 | // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT | |
11 | // distribution for complete text of the license and disclaimer of any warranty. | |
12 | // | |
13 | // Alternatively, this file may be used under the terms of Open CASCADE | |
14 | // commercial license or contractual agreement | |
15 | ||
16 | #include <math_GlobOptMin.hxx> | |
17 | ||
18 | #include <math_BFGS.hxx> | |
19 | #include <math_Matrix.hxx> | |
20 | #include <math_MultipleVarFunctionWithGradient.hxx> | |
21 | #include <math_MultipleVarFunctionWithHessian.hxx> | |
22 | #include <math_NewtonMinimum.hxx> | |
23 | #include <math_Powell.hxx> | |
4bbaf12b | 24 | #include <Standard_Integer.hxx> |
25 | #include <Standard_Real.hxx> | |
e8746a26 | 26 | #include <Precision.hxx> |
4bbaf12b | 27 | |
4bbaf12b | 28 | |
29 | //======================================================================= | |
30 | //function : math_GlobOptMin | |
31 | //purpose : Constructor | |
32 | //======================================================================= | |
33 | math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc, | |
34 | const math_Vector& theA, | |
35 | const math_Vector& theB, | |
5493d334 | 36 | const Standard_Real theC, |
37 | const Standard_Real theDiscretizationTol, | |
38 | const Standard_Real theSameTol) | |
4bbaf12b | 39 | : myN(theFunc->NbVariables()), |
40 | myA(1, myN), | |
41 | myB(1, myN), | |
42 | myGlobA(1, myN), | |
43 | myGlobB(1, myN), | |
44 | myX(1, myN), | |
45 | myTmp(1, myN), | |
5493d334 | 46 | myV(1, myN), |
3f733bb1 | 47 | myMaxV(1, myN), |
4b65fc77 | 48 | myExpandCoeff(1, myN), |
49 | myCellSize(0, myN - 1), | |
50 | myFilter(theFunc->NbVariables()) | |
4bbaf12b | 51 | { |
52 | Standard_Integer i; | |
53 | ||
54 | myFunc = theFunc; | |
55 | myC = theC; | |
78e7cada | 56 | myIsFindSingleSolution = Standard_False; |
4bbaf12b | 57 | myZ = -1; |
58 | mySolCount = 0; | |
59 | ||
60 | for(i = 1; i <= myN; i++) | |
61 | { | |
62 | myGlobA(i) = theA(i); | |
63 | myGlobB(i) = theB(i); | |
64 | ||
65 | myA(i) = theA(i); | |
66 | myB(i) = theB(i); | |
67 | } | |
68 | ||
5493d334 | 69 | for(i = 1; i <= myN; i++) |
70 | { | |
71 | myMaxV(i) = (myB(i) - myA(i)) / 3.0; | |
72 | } | |
73 | ||
3f733bb1 | 74 | myExpandCoeff(1) = 1.0; |
75 | for(i = 2; i <= myN; i++) | |
76 | { | |
77 | myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1)); | |
78 | } | |
79 | ||
5493d334 | 80 | myTol = theDiscretizationTol; |
81 | mySameTol = theSameTol; | |
82 | ||
4b65fc77 | 83 | const Standard_Integer aMaxSquareSearchSol = 200; |
84 | Standard_Integer aSolNb = Standard_Integer(Pow(3.0, Standard_Real(myN))); | |
85 | myMinCellFilterSol = Max(2 * aSolNb, aMaxSquareSearchSol); | |
86 | initCellSize(); | |
87 | ||
4bbaf12b | 88 | myDone = Standard_False; |
89 | } | |
90 | ||
91 | //======================================================================= | |
92 | //function : SetGlobalParams | |
93 | //purpose : Set params without memory allocation. | |
94 | //======================================================================= | |
95 | void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc, | |
96 | const math_Vector& theA, | |
97 | const math_Vector& theB, | |
5493d334 | 98 | const Standard_Real theC, |
99 | const Standard_Real theDiscretizationTol, | |
100 | const Standard_Real theSameTol) | |
4bbaf12b | 101 | { |
102 | Standard_Integer i; | |
103 | ||
104 | myFunc = theFunc; | |
105 | myC = theC; | |
106 | myZ = -1; | |
107 | mySolCount = 0; | |
108 | ||
109 | for(i = 1; i <= myN; i++) | |
110 | { | |
111 | myGlobA(i) = theA(i); | |
112 | myGlobB(i) = theB(i); | |
113 | ||
114 | myA(i) = theA(i); | |
115 | myB(i) = theB(i); | |
116 | } | |
117 | ||
3f733bb1 | 118 | for(i = 1; i <= myN; i++) |
119 | { | |
120 | myMaxV(i) = (myB(i) - myA(i)) / 3.0; | |
121 | } | |
122 | ||
123 | myExpandCoeff(1) = 1.0; | |
124 | for(i = 2; i <= myN; i++) | |
125 | { | |
126 | myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1)); | |
127 | } | |
128 | ||
5493d334 | 129 | myTol = theDiscretizationTol; |
130 | mySameTol = theSameTol; | |
131 | ||
4b65fc77 | 132 | initCellSize(); |
133 | ||
4bbaf12b | 134 | myDone = Standard_False; |
135 | } | |
136 | ||
137 | //======================================================================= | |
138 | //function : SetLocalParams | |
139 | //purpose : Set params without memory allocation. | |
140 | //======================================================================= | |
141 | void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA, | |
142 | const math_Vector& theLocalB) | |
143 | { | |
144 | Standard_Integer i; | |
145 | ||
146 | myZ = -1; | |
147 | mySolCount = 0; | |
148 | ||
149 | for(i = 1; i <= myN; i++) | |
150 | { | |
151 | myA(i) = theLocalA(i); | |
152 | myB(i) = theLocalB(i); | |
153 | } | |
154 | ||
5493d334 | 155 | for(i = 1; i <= myN; i++) |
156 | { | |
157 | myMaxV(i) = (myB(i) - myA(i)) / 3.0; | |
158 | } | |
159 | ||
3f733bb1 | 160 | myExpandCoeff(1) = 1.0; |
161 | for(i = 2; i <= myN; i++) | |
162 | { | |
163 | myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1)); | |
164 | } | |
165 | ||
4bbaf12b | 166 | myDone = Standard_False; |
167 | } | |
168 | ||
5493d334 | 169 | //======================================================================= |
170 | //function : SetTol | |
171 | //purpose : Set algorithm tolerances. | |
172 | //======================================================================= | |
173 | void math_GlobOptMin::SetTol(const Standard_Real theDiscretizationTol, | |
174 | const Standard_Real theSameTol) | |
175 | { | |
176 | myTol = theDiscretizationTol; | |
177 | mySameTol = theSameTol; | |
178 | } | |
179 | ||
180 | //======================================================================= | |
181 | //function : GetTol | |
182 | //purpose : Get algorithm tolerances. | |
183 | //======================================================================= | |
184 | void math_GlobOptMin::GetTol(Standard_Real& theDiscretizationTol, | |
185 | Standard_Real& theSameTol) | |
186 | { | |
187 | theDiscretizationTol = myTol; | |
188 | theSameTol = mySameTol; | |
189 | } | |
190 | ||
4bbaf12b | 191 | //======================================================================= |
192 | //function : ~math_GlobOptMin | |
193 | //purpose : | |
194 | //======================================================================= | |
195 | math_GlobOptMin::~math_GlobOptMin() | |
196 | { | |
197 | } | |
198 | ||
199 | //======================================================================= | |
200 | //function : Perform | |
201 | //purpose : Compute Global extremum point | |
202 | //======================================================================= | |
203 | // In this algo indexes started from 1, not from 0. | |
78e7cada | 204 | void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution) |
4bbaf12b | 205 | { |
206 | Standard_Integer i; | |
207 | ||
208 | // Compute parameters range | |
209 | Standard_Real minLength = RealLast(); | |
210 | Standard_Real maxLength = RealFirst(); | |
211 | for(i = 1; i <= myN; i++) | |
212 | { | |
213 | Standard_Real currentLength = myB(i) - myA(i); | |
214 | if (currentLength < minLength) | |
215 | minLength = currentLength; | |
216 | if (currentLength > maxLength) | |
217 | maxLength = currentLength; | |
218 | } | |
219 | ||
e8746a26 | 220 | if (minLength < Precision::PConfusion()) |
221 | { | |
222 | #ifdef OCCT_DEBUG | |
223 | cout << "math_GlobOptMin::Perform(): Degenerated parameters space" << endl; | |
224 | #endif | |
225 | ||
226 | return; | |
227 | } | |
228 | ||
229 | // Compute initial values for myF, myY, myC. | |
230 | computeInitialValues(); | |
231 | ||
797d11c6 | 232 | myE1 = minLength * myTol; |
233 | myE2 = maxLength * myTol; | |
78e7cada | 234 | |
235 | myIsFindSingleSolution = isFindSingleSolution; | |
236 | if (isFindSingleSolution) | |
237 | { | |
238 | // Run local optimization | |
239 | // if current value better than optimal. | |
240 | myE3 = 0.0; | |
241 | } | |
797d11c6 | 242 | else |
78e7cada | 243 | { |
244 | if (myC > 1.0) | |
245 | myE3 = - maxLength * myTol / 4.0; | |
246 | else | |
247 | myE3 = - maxLength * myTol * myC / 4.0; | |
248 | } | |
4bbaf12b | 249 | |
4b65fc77 | 250 | isFirstCellFilterInvoke = Standard_True; |
4bbaf12b | 251 | computeGlobalExtremum(myN); |
252 | ||
253 | myDone = Standard_True; | |
4bbaf12b | 254 | } |
255 | ||
256 | //======================================================================= | |
257 | //function : computeLocalExtremum | |
258 | //purpose : | |
259 | //======================================================================= | |
260 | Standard_Boolean math_GlobOptMin::computeLocalExtremum(const math_Vector& thePnt, | |
261 | Standard_Real& theVal, | |
262 | math_Vector& theOutPnt) | |
263 | { | |
264 | Standard_Integer i; | |
265 | ||
266 | //Newton method | |
267 | if (dynamic_cast<math_MultipleVarFunctionWithHessian*>(myFunc)) | |
268 | { | |
269 | math_MultipleVarFunctionWithHessian* myTmp = | |
270 | dynamic_cast<math_MultipleVarFunctionWithHessian*> (myFunc); | |
859a47c3 | 271 | math_NewtonMinimum newtonMinimum(*myTmp); |
91806b90 | 272 | newtonMinimum.SetBoundary(myGlobA, myGlobB); |
859a47c3 | 273 | newtonMinimum.Perform(*myTmp, thePnt); |
274 | ||
4bbaf12b | 275 | if (newtonMinimum.IsDone()) |
276 | { | |
277 | newtonMinimum.Location(theOutPnt); | |
278 | theVal = newtonMinimum.Minimum(); | |
279 | } | |
280 | else return Standard_False; | |
281 | } else | |
282 | ||
283 | // BFGS method used. | |
284 | if (dynamic_cast<math_MultipleVarFunctionWithGradient*>(myFunc)) | |
285 | { | |
286 | math_MultipleVarFunctionWithGradient* myTmp = | |
287 | dynamic_cast<math_MultipleVarFunctionWithGradient*> (myFunc); | |
07f1a2e6 | 288 | math_BFGS bfgs(myTmp->NbVariables()); |
289 | bfgs.Perform(*myTmp, thePnt); | |
4bbaf12b | 290 | if (bfgs.IsDone()) |
291 | { | |
292 | bfgs.Location(theOutPnt); | |
293 | theVal = bfgs.Minimum(); | |
294 | } | |
295 | else return Standard_False; | |
296 | } else | |
297 | ||
298 | // Powell method used. | |
299 | if (dynamic_cast<math_MultipleVarFunction*>(myFunc)) | |
300 | { | |
301 | math_Matrix m(1, myN, 1, myN, 0.0); | |
302 | for(i = 1; i <= myN; i++) | |
303 | m(1, 1) = 1.0; | |
304 | ||
859a47c3 | 305 | math_Powell powell(*myFunc, 1e-10); |
306 | powell.Perform(*myFunc, thePnt, m); | |
4bbaf12b | 307 | |
308 | if (powell.IsDone()) | |
309 | { | |
310 | powell.Location(theOutPnt); | |
311 | theVal = powell.Minimum(); | |
312 | } | |
313 | else return Standard_False; | |
314 | } | |
315 | ||
316 | if (isInside(theOutPnt)) | |
317 | return Standard_True; | |
318 | else | |
319 | return Standard_False; | |
320 | } | |
321 | ||
797d11c6 | 322 | //======================================================================= |
323 | //function : computeInitialValues | |
324 | //purpose : | |
325 | //======================================================================= | |
326 | void math_GlobOptMin::computeInitialValues() | |
327 | { | |
328 | Standard_Integer i; | |
329 | math_Vector aCurrPnt(1, myN); | |
330 | math_Vector aBestPnt(1, myN); | |
e8746a26 | 331 | math_Vector aParamStep(1, myN); |
797d11c6 | 332 | Standard_Real aCurrVal = RealLast(); |
333 | Standard_Real aBestVal = RealLast(); | |
334 | ||
335 | // Check functional value in midpoint, low and upp point border and | |
336 | // in each point try to perform local optimization. | |
337 | aBestPnt = (myA + myB) * 0.5; | |
338 | myFunc->Value(aBestPnt, aBestVal); | |
339 | ||
340 | for(i = 1; i <= 3; i++) | |
341 | { | |
342 | aCurrPnt = myA + (myB - myA) * (i - 1) / 2.0; | |
343 | ||
344 | if(computeLocalExtremum(aCurrPnt, aCurrVal, aCurrPnt)) | |
345 | { | |
346 | // Local Extremum finds better solution than current point. | |
347 | if (aCurrVal < aBestVal) | |
348 | { | |
349 | aBestVal = aCurrVal; | |
350 | aBestPnt = aCurrPnt; | |
351 | } | |
352 | } | |
353 | } | |
354 | ||
355 | myF = aBestVal; | |
356 | myY.Clear(); | |
357 | for(i = 1; i <= myN; i++) | |
358 | myY.Append(aBestPnt(i)); | |
359 | mySolCount++; | |
360 | ||
361 | // Lipschitz const approximation | |
e8746a26 | 362 | Standard_Real aLipConst = 0.0, aPrevValDiag, aPrevValProj; |
797d11c6 | 363 | Standard_Integer aPntNb = 13; |
e8746a26 | 364 | myFunc->Value(myA, aPrevValDiag); |
365 | aPrevValProj = aPrevValDiag; | |
797d11c6 | 366 | Standard_Real aStep = (myB - myA).Norm() / aPntNb; |
e8746a26 | 367 | aParamStep = (myB - myA) / aPntNb; |
797d11c6 | 368 | for(i = 1; i <= aPntNb; i++) |
369 | { | |
e8746a26 | 370 | aCurrPnt = myA + aParamStep * i; |
797d11c6 | 371 | |
e8746a26 | 372 | // Walk over diagonal. |
373 | myFunc->Value(aCurrPnt, aCurrVal); | |
374 | aLipConst = Max (Abs(aCurrVal - aPrevValDiag), aLipConst); | |
375 | aPrevValDiag = aCurrVal; | |
797d11c6 | 376 | |
e8746a26 | 377 | // Walk over diag in projected space aPnt(1) = myA(1) = const. |
378 | aCurrPnt(1) = myA(1); | |
379 | myFunc->Value(aCurrPnt, aCurrVal); | |
380 | aLipConst = Max (Abs(aCurrVal - aPrevValProj), aLipConst); | |
381 | aPrevValProj = aCurrVal; | |
797d11c6 | 382 | } |
e8746a26 | 383 | |
384 | aLipConst *= Sqrt(myN) / aStep; | |
797d11c6 | 385 | |
386 | if (aLipConst < myC * 0.1) | |
387 | { | |
388 | myC = Max(aLipConst * 0.1, 0.01); | |
389 | } | |
390 | else if (aLipConst > myC * 10) | |
391 | { | |
392 | myC = Min(myC * 2, 30.0); | |
393 | } | |
394 | } | |
395 | ||
4bbaf12b | 396 | //======================================================================= |
397 | //function : ComputeGlobalExtremum | |
398 | //purpose : | |
399 | //======================================================================= | |
400 | void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j) | |
401 | { | |
402 | Standard_Integer i; | |
403 | Standard_Real d; // Functional in moved point. | |
404 | Standard_Real val = RealLast(); // Local extrema computed in moved point. | |
3f733bb1 | 405 | Standard_Real aStepBestValue = RealLast(); |
406 | Standard_Real aRealStep = 0.0; | |
407 | math_Vector aStepBestPoint(1, myN); | |
4bbaf12b | 408 | Standard_Boolean isInside = Standard_False; |
409 | Standard_Real r; | |
debc95ee | 410 | Standard_Boolean isReached = Standard_False; |
4bbaf12b | 411 | |
debc95ee | 412 | for(myX(j) = myA(j) + myE1; |
413 | (myX(j) < myB(j) + myE1) && (!isReached); | |
414 | myX(j) += myV(j)) | |
4bbaf12b | 415 | { |
416 | if (myX(j) > myB(j)) | |
debc95ee | 417 | { |
4bbaf12b | 418 | myX(j) = myB(j); |
debc95ee | 419 | isReached = Standard_True; |
420 | } | |
4bbaf12b | 421 | |
422 | if (j == 1) | |
423 | { | |
424 | isInside = Standard_False; | |
425 | myFunc->Value(myX, d); | |
3f733bb1 | 426 | r = (d + myZ * myC * aRealStep - myF) * myZ; |
4bbaf12b | 427 | if(r > myE3) |
428 | { | |
429 | isInside = computeLocalExtremum(myX, val, myTmp); | |
430 | } | |
3f733bb1 | 431 | aStepBestValue = (isInside && (val < d))? val : d; |
432 | aStepBestPoint = (isInside && (val < d))? myTmp : myX; | |
4bbaf12b | 433 | |
78e7cada | 434 | // Solutions are close to each other |
435 | // and it is allowed to have more than one solution. | |
436 | if (Abs(aStepBestValue - myF) < mySameTol * 0.01 && | |
437 | !myIsFindSingleSolution) | |
4bbaf12b | 438 | { |
3f733bb1 | 439 | if (!isStored(aStepBestPoint)) |
4bbaf12b | 440 | { |
3f733bb1 | 441 | if ((aStepBestValue - myF) * myZ > 0.0) |
442 | myF = aStepBestValue; | |
4bbaf12b | 443 | for(i = 1; i <= myN; i++) |
3f733bb1 | 444 | myY.Append(aStepBestPoint(i)); |
4bbaf12b | 445 | mySolCount++; |
446 | } | |
447 | } | |
448 | ||
78e7cada | 449 | // New best solution: |
450 | // new point is out of (mySameTol * 0.01) surrounding or | |
451 | // new point is better than old + single point search. | |
452 | Standard_Real aFunctionalDelta = (aStepBestValue - myF) * myZ; | |
453 | if (aFunctionalDelta > mySameTol * 0.01 || | |
454 | (aFunctionalDelta > 0.0 && myIsFindSingleSolution)) | |
4bbaf12b | 455 | { |
456 | mySolCount = 0; | |
3f733bb1 | 457 | myF = aStepBestValue; |
4bbaf12b | 458 | myY.Clear(); |
459 | for(i = 1; i <= myN; i++) | |
3f733bb1 | 460 | myY.Append(aStepBestPoint(i)); |
4bbaf12b | 461 | mySolCount++; |
4b65fc77 | 462 | |
463 | isFirstCellFilterInvoke = Standard_True; | |
4bbaf12b | 464 | } |
465 | ||
3f733bb1 | 466 | aRealStep = myE2 + Abs(myF - d) / myC; |
467 | myV(1) = Min(aRealStep, myMaxV(1)); | |
4bbaf12b | 468 | } |
469 | else | |
470 | { | |
471 | myV(j) = RealLast() / 2.0; | |
472 | computeGlobalExtremum(j - 1); | |
3f733bb1 | 473 | |
474 | // Nullify steps on lower dimensions. | |
475 | for(i = 1; i < j; i++) | |
476 | myV(i) = 0.0; | |
4bbaf12b | 477 | } |
3f733bb1 | 478 | // Compute step in (j + 1) dimension according to scale. |
479 | if (j < myN) | |
4bbaf12b | 480 | { |
3f733bb1 | 481 | Standard_Real aUpperDimStep = myV(j) * myExpandCoeff(j + 1); |
482 | if (myV(j + 1) > aUpperDimStep) | |
483 | { | |
484 | if (aUpperDimStep > myMaxV(j + 1)) // Case of too big step. | |
485 | myV(j + 1) = myMaxV(j + 1); | |
486 | else | |
487 | myV(j + 1) = aUpperDimStep; | |
488 | } | |
4bbaf12b | 489 | } |
490 | } | |
491 | } | |
492 | ||
493 | //======================================================================= | |
494 | //function : IsInside | |
495 | //purpose : | |
496 | //======================================================================= | |
497 | Standard_Boolean math_GlobOptMin::isInside(const math_Vector& thePnt) | |
498 | { | |
499 | Standard_Integer i; | |
500 | ||
501 | for(i = 1; i <= myN; i++) | |
502 | { | |
503 | if (thePnt(i) < myGlobA(i) || thePnt(i) > myGlobB(i)) | |
504 | return Standard_False; | |
505 | } | |
506 | ||
507 | return Standard_True; | |
508 | } | |
509 | //======================================================================= | |
510 | //function : IsStored | |
511 | //purpose : | |
512 | //======================================================================= | |
513 | Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt) | |
514 | { | |
515 | Standard_Integer i,j; | |
516 | Standard_Boolean isSame = Standard_True; | |
20a216fe | 517 | math_Vector aTol(1, myN); |
518 | aTol = (myB - myA) * mySameTol; | |
4bbaf12b | 519 | |
4b65fc77 | 520 | // C1 * n^2 = C2 * 3^dim * n |
521 | if (mySolCount < myMinCellFilterSol) | |
4bbaf12b | 522 | { |
4b65fc77 | 523 | for(i = 0; i < mySolCount; i++) |
4bbaf12b | 524 | { |
4b65fc77 | 525 | isSame = Standard_True; |
526 | for(j = 1; j <= myN; j++) | |
4bbaf12b | 527 | { |
4b65fc77 | 528 | if ((Abs(thePnt(j) - myY(i * myN + j))) > aTol(j)) |
529 | { | |
530 | isSame = Standard_False; | |
531 | break; | |
532 | } | |
4bbaf12b | 533 | } |
4b65fc77 | 534 | if (isSame == Standard_True) |
535 | return Standard_True; | |
4bbaf12b | 536 | } |
4b65fc77 | 537 | } |
538 | else | |
539 | { | |
50bc8f96 | 540 | NCollection_CellFilter_Inspector anInspector(myN, Precision::PConfusion()); |
4b65fc77 | 541 | if (isFirstCellFilterInvoke) |
542 | { | |
543 | myFilter.Reset(myCellSize); | |
4bbaf12b | 544 | |
4b65fc77 | 545 | // Copy initial data into cell filter. |
546 | for(Standard_Integer aSolIdx = 0; aSolIdx < mySolCount; aSolIdx++) | |
547 | { | |
548 | math_Vector aVec(1, myN); | |
549 | for(Standard_Integer aSolDim = 1; aSolDim <= myN; aSolDim++) | |
550 | aVec(aSolDim) = myY(aSolIdx * myN + aSolDim); | |
551 | ||
552 | myFilter.Add(aVec, aVec); | |
553 | } | |
554 | } | |
555 | ||
556 | isFirstCellFilterInvoke = Standard_False; | |
557 | ||
558 | math_Vector aLow(1, myN), anUp(1, myN); | |
559 | anInspector.Shift(thePnt, myCellSize, aLow, anUp); | |
560 | ||
561 | anInspector.ClearFind(); | |
562 | anInspector.SetCurrent(thePnt); | |
563 | myFilter.Inspect(aLow, anUp, anInspector); | |
564 | if (!anInspector.isFind()) | |
565 | { | |
566 | // Point is out of close cells, add new one. | |
567 | myFilter.Add(thePnt, thePnt); | |
568 | } | |
4bbaf12b | 569 | } |
570 | return Standard_False; | |
571 | } | |
572 | ||
573 | //======================================================================= | |
574 | //function : NbExtrema | |
575 | //purpose : | |
576 | //======================================================================= | |
577 | Standard_Integer math_GlobOptMin::NbExtrema() | |
578 | { | |
579 | return mySolCount; | |
580 | } | |
581 | ||
582 | //======================================================================= | |
583 | //function : GetF | |
584 | //purpose : | |
585 | //======================================================================= | |
586 | Standard_Real math_GlobOptMin::GetF() | |
587 | { | |
588 | return myF; | |
589 | } | |
590 | ||
591 | //======================================================================= | |
592 | //function : IsDone | |
593 | //purpose : | |
594 | //======================================================================= | |
595 | Standard_Boolean math_GlobOptMin::isDone() | |
596 | { | |
597 | return myDone; | |
598 | } | |
599 | ||
600 | //======================================================================= | |
601 | //function : Points | |
602 | //purpose : | |
603 | //======================================================================= | |
604 | void math_GlobOptMin::Points(const Standard_Integer theIndex, math_Vector& theSol) | |
605 | { | |
606 | Standard_Integer j; | |
607 | ||
608 | for(j = 1; j <= myN; j++) | |
609 | theSol(j) = myY((theIndex - 1) * myN + j); | |
610 | } | |
4b65fc77 | 611 | |
612 | //======================================================================= | |
613 | //function : initCellSize | |
614 | //purpose : | |
615 | //======================================================================= | |
616 | void math_GlobOptMin::initCellSize() | |
617 | { | |
618 | for(Standard_Integer anIdx = 1; anIdx <= myN; anIdx++) | |
619 | { | |
620 | myCellSize(anIdx - 1) = (myGlobB(anIdx) - myGlobA(anIdx)) | |
621 | * Precision::PConfusion() / (2.0 * Sqrt(2.0)); | |
622 | } | |
623 | } |