0024784: Move documentation in CDL files to proper location
[occt.git] / src / gp / gp_Trsf.cdl
CommitLineData
b311480e 1-- Copyright (c) 1991-1999 Matra Datavision
973c2be1 2-- Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 3--
973c2be1 4-- This file is part of Open CASCADE Technology software library.
b311480e 5--
d5f74e42 6-- This library is free software; you can redistribute it and/or modify it under
7-- the terms of the GNU Lesser General Public License version 2.1 as published
973c2be1 8-- by the Free Software Foundation, with special exception defined in the file
9-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
10-- distribution for complete text of the license and disclaimer of any warranty.
b311480e 11--
973c2be1 12-- Alternatively, this file may be used under the terms of Open CASCADE
13-- commercial license or contractual agreement.
7fd59977 14
15class Trsf from gp inherits Storable
16
17 --- Purpose: Defines a non-persistent transformation in 3D space.
18 -- The following transformations are implemented :
19 -- . Translation, Rotation, Scale
20 -- . Symmetry with respect to a point, a line, a plane.
21 -- Complex transformations can be obtained by combining the
22 -- previous elementary transformations using the method
23 -- Multiply.
24 -- The transformations can be represented as follow :
25 --
26 -- V1 V2 V3 T XYZ XYZ
27 -- | a11 a12 a13 a14 | | x | | x'|
28 -- | a21 a22 a23 a24 | | y | | y'|
29 -- | a31 a32 a33 a34 | | z | = | z'|
30 -- | 0 0 0 1 | | 1 | | 1 |
31 --
32 -- where {V1, V2, V3} defines the vectorial part of the
33 -- transformation and T defines the translation part of the
34 -- transformation.
ff8178ef 35 -- This transformation never change the nature of the objects.
7fd59977 36
37
38uses Ax1 from gp,
39 Ax2 from gp,
40 Ax3 from gp,
41 Mat from gp,
42 Pnt from gp,
43 TrsfForm from gp,
44 Vec from gp,
45 XYZ from gp,
46 Trsf2d from gp,
47 Quaternion from gp
48
49raises ConstructionError from Standard,
50 OutOfRange from Standard
51
52is
53
54 Create returns Trsf from gp;
55 ---C++: inline
56 --- Purpose : Returns the identity transformation.
57
58 Create(T : Trsf2d from gp) returns Trsf from gp;
7fd59977 59 ---Purpose: Creates a 3D transformation from the 2D transformation T.
60 -- The resulting transformation has a homogeneous
61 -- vectorial part, V3, and a translation part, T3, built from T:
62 -- a11 a12
63 -- 0 a13
64 -- V3 = a21 a22 0 T3
65 -- = a23
66 -- 0 0 1.
67 -- 0
68 -- It also has the same scale factor as T. This
69 -- guarantees (by projection) that the transformation
70 -- which would be performed by T in a plane (2D space)
71 -- is performed by the resulting transformation in the xOy
72 -- plane of the 3D space, (i.e. in the plane defined by the
73 -- origin (0., 0., 0.) and the vectors DX (1., 0., 0.), and DY
74 -- (0., 1., 0.)). The scale factor is applied to the entire space.
75
76 SetMirror (me : in out; P : Pnt) is static;
77 ---C++: inline
78 --- Purpose :
79 -- Makes the transformation into a symmetrical transformation.
80 -- P is the center of the symmetry.
81
82
83 SetMirror (me : in out; A1 : Ax1) is static;
84 --- Purpose :
85 -- Makes the transformation into a symmetrical transformation.
86 -- A1 is the center of the axial symmetry.
87
88
89 SetMirror (me : in out; A2 : Ax2) is static;
90 --- Purpose :
91 -- Makes the transformation into a symmetrical transformation.
92 -- A2 is the center of the planar symmetry
93 -- and defines the plane of symmetry by its origin, "X
94 -- Direction" and "Y Direction".
95
96
97 SetRotation (me : in out; A1 : Ax1; Ang : Real) is static;
98 --- Purpose :
99 -- Changes the transformation into a rotation.
100 -- A1 is the rotation axis and Ang is the angular value of the
101 -- rotation in radians.
102
103 SetRotation (me : in out; R : Quaternion) is static;
104 --- Purpose :
105 -- Changes the transformation into a rotation defined by quaternion.
106 -- Note that rotation is performed around origin, i.e.
107 -- no translation is involved.
108
109 SetScale (me : in out; P : Pnt; S : Real)
110 --- Purpose :
111 -- Changes the transformation into a scale.
112 -- P is the center of the scale and S is the scaling value.
113 -- Raises ConstructionError If <S> is null.
114 raises
115 ConstructionError from Standard
116 is static;
117
118 SetDisplacement (me : in out; FromSystem1, ToSystem2 : Ax3) is static;
119 --- Purpose :
120 -- Modifies this transformation so that it transforms the
121 -- coordinate system defined by FromSystem1 into the
122 -- one defined by ToSystem2. After this modification, this
123 -- transformation transforms:
124 -- - the origin of FromSystem1 into the origin of ToSystem2,
125 -- - the "X Direction" of FromSystem1 into the "X
126 -- Direction" of ToSystem2,
127 -- - the "Y Direction" of FromSystem1 into the "Y
128 -- Direction" of ToSystem2, and
129 -- - the "main Direction" of FromSystem1 into the "main
130 -- Direction" of ToSystem2.
131 -- Warning
132 -- When you know the coordinates of a point in one
133 -- coordinate system and you want to express these
134 -- coordinates in another one, do not use the
135 -- transformation resulting from this function. Use the
136 -- transformation that results from SetTransformation instead.
137 -- SetDisplacement and SetTransformation create
138 -- related transformations: the vectorial part of one is the
139 -- inverse of the vectorial part of the other.
140
141
142 SetTransformation (me : in out; FromSystem1, ToSystem2 : Ax3) is static;
143 --- Purpose : Modifies this transformation so that it transforms the
144 -- coordinates of any point, (x, y, z), relative to a source
145 -- coordinate system into the coordinates (x', y', z') which
146 -- are relative to a target coordinate system, but which
147 -- represent the same point
148 -- The transformation is from the coordinate
149 -- system "FromSystem1" to the coordinate system "ToSystem2".
150 -- Example :
151 -- In a C++ implementation :
152 -- Real x1, y1, z1; // are the coordinates of a point in the
153 -- // local system FromSystem1
154 -- Real x2, y2, z2; // are the coordinates of a point in the
155 -- // local system ToSystem2
156 -- gp_Pnt P1 (x1, y1, z1)
157 -- Trsf T;
158 -- T.SetTransformation (FromSystem1, ToSystem2);
159 -- gp_Pnt P2 = P1.Transformed (T);
160 -- P2.Coord (x2, y2, z2);
161
162
163 SetTransformation (me : in out; ToSystem : Ax3) is static;
164 --- Purpose : Modifies this transformation so that it transforms the
165 -- coordinates of any point, (x, y, z), relative to a source
166 -- coordinate system into the coordinates (x', y', z') which
167 -- are relative to a target coordinate system, but which
168 -- represent the same point
169 -- The transformation is from the default coordinate system
170 -- {P(0.,0.,0.), VX (1.,0.,0.), VY (0.,1.,0.), VZ (0., 0. ,1.) }
171 -- to the local coordinate system defined with the Ax3 ToSystem.
172 -- Use in the same way as the previous method. FromSystem1 is
173 -- defaulted to the absolute coordinate system.
174
175
176 SetTransformation (me : in out; R : Quaternion; T : Vec) is static;
177 --- Purpose :
178 -- Sets transformation by directly specified rotation and translation.
179
180 SetTranslation (me : in out; V : Vec) is static;
181 ---C++: inline
182 --- Purpose :
183 -- Changes the transformation into a translation.
184 -- V is the vector of the translation.
185
186 SetTranslation (me : in out; P1, P2 : Pnt) is static;
187 ---C++: inline
188 --- Purpose :
189 -- Makes the transformation into a translation where the translation vector
190 -- is the vector (P1, P2) defined from point P1 to point P2.
191
192
193 SetTranslationPart (me : in out; V : Vec) is static;
194 --- Purpose : Replaces the translation vector with the vector V.
195
196
197 SetScaleFactor (me : in out; S : Real)
198 --- Purpose : Modifies the scale factor.
199 -- Raises ConstructionError If S is null.
200 raises
201 ConstructionError from Standard
202 is static;
203
204 SetValues(me : in out;
205 a11, a12, a13, a14,
206 a21, a22, a23, a24,
207 a31, a32, a33, a34 : Real;
208 Tolang, TolDist : Real)
209
210 ---Purpose: Sets the coefficients of the transformation. The
211 -- transformation of the point x,y,z is the point
212 -- x',y',z' with :
213 --
214 -- x' = a11 x + a12 y + a13 z + a14
215 -- y' = a21 x + a22 y + a23 z + a24
216 -- z' = a31 x + a32 y + a43 z + a34
217 --
218 -- Tolang and TolDist are used to test for null
219 -- angles and null distances to determine the form of
220 -- the transformation (identity, translation, etc..).
221 --
222 -- The method Value(i,j) will return aij.
223 -- Raises ConstructionError if the determinant of the aij is null. Or if
224 -- the matrix as not a uniform scale.
225
226 raises
227 ConstructionError from Standard
228
229 is static;
230
231
232 IsNegative (me) returns Boolean is static;
233 ---C++: inline
234 --- Purpose : Returns true if the determinant of the vectorial part of
235 -- this transformation is negative.
236
237 Form (me) returns TrsfForm is static;
238 --- Purpose :
239 -- Returns the nature of the transformation. It can be: an
240 -- identity transformation, a rotation, a translation, a mirror
241 -- transformation (relative to a point, an axis or a plane), a
242 -- scaling transformation, or a compound transformation.
243 ---C++: inline
244
245 ScaleFactor (me) returns Real is static;
246 --- Purpose : Returns the scale factor.
247 ---C++: inline
248
249
250 TranslationPart (me) returns XYZ is static;
251 --- Purpose :
252 -- Returns the translation part of the transformation's matrix
253 ---C++: inline
254 ---C++: return const&
255
256 GetRotation (me; theAxis : out XYZ from gp;
257 theAngle: out Real from Standard)
258 returns Boolean from Standard is static;
259 --- Purpose :
260 -- Returns the boolean True if there is non-zero rotation.
261 -- In the presence of rotation, the output parameters store the axis
262 -- and the angle of rotation. The method always returns positive
263 -- value "theAngle", i.e., 0. < theAngle <= PI.
264 -- Note that this rotation is defined only by the vectorial part of
265 -- the transformation; generally you would need to check also the
266 -- translational part to obtain the axis (gp_Ax1) of rotation.
267
268 GetRotation (me) returns Quaternion from gp is static;
269 --- Purpose :
270 -- Returns quaternion representing rotational part of the transformation.
271
272 VectorialPart (me) returns Mat is static;
273 --- Purpose :
274 -- Returns the vectorial part of the transformation. It is
275 -- a 3*3 matrix which includes the scale factor.
276
277
278 HVectorialPart (me) returns Mat is static;
279 --- Purpose :
280 -- Computes the homogeneous vectorial part of the transformation.
281 -- It is a 3*3 matrix which doesn't include the scale factor.
282 -- In other words, the vectorial part of this transformation is equal
283 -- to its homogeneous vectorial part, multiplied by the scale factor.
284 -- The coefficients of this matrix must be multiplied by the
285 -- scale factor to obtain the coefficients of the transformation.
286 ---C++: inline
287 ---C++: return const&
288
289
290 Value (me; Row, Col : Integer) returns Real
291 ---C++: inline
292 --- Purpose :
293 -- Returns the coefficients of the transformation's matrix.
294 -- It is a 3 rows * 4 columns matrix.
295 -- This coefficient includes the scale factor.
296 -- Raises OutOfRanged if Row < 1 or Row > 3 or Col < 1 or Col > 4
297 raises OutOfRange
298 is static;
299
300
301
302
303
304 Invert (me : in out) raises ConstructionError is static;
305
306 Inverted (me) returns Trsf raises ConstructionError is static;
307 --- Purpose :
308 -- Computes the reverse transformation
309 -- Raises an exception if the matrix of the transformation
310 -- is not inversible, it means that the scale factor is lower
311 -- or equal to Resolution from package gp.
312 -- Computes the transformation composed with T and <me>.
313 -- In a C++ implementation you can also write Tcomposed = <me> * T.
314 --- Example :
315 -- Trsf T1, T2, Tcomp; ...............
316 -- Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
317 -- Pnt P1(10.,3.,4.);
318 -- Pnt P2 = P1.Transformed(Tcomp); //using Tcomp
319 -- Pnt P3 = P1.Transformed(T1); //using T1 then T2
320 -- P3.Transform(T2); // P3 = P2 !!!
321 ---C++: inline
322
323 Multiplied (me; T : Trsf) returns Trsf is static;
324 ---C++: inline
325 ---C++: alias operator *
326
327 Multiply (me : in out; T : Trsf) is static;
328 ---C++: alias operator *=
329 --- Purpose :
330 -- Computes the transformation composed with T and <me>.
331 -- In a C++ implementation you can also write Tcomposed = <me> * T.
332 -- Example :
333 -- Trsf T1, T2, Tcomp; ...............
334 -- //composition :
335 -- Tcomp = T2.Multiplied(T1); // or (Tcomp = T2 * T1)
336 -- // transformation of a point
337 -- Pnt P1(10.,3.,4.);
338 -- Pnt P2 = P1.Transformed(Tcomp); //using Tcomp
339 -- Pnt P3 = P1.Transformed(T1); //using T1 then T2
340 -- P3.Transform(T2); // P3 = P2 !!!
341 -- Computes the transformation composed with <me> and T.
342 -- <me> = T * <me>
343
344 PreMultiply (me : in out; T : Trsf) is static;
345 --- Purpose :
346 -- Computes the transformation composed with <me> and T.
347 -- <me> = T * <me>
348
349
350 Power (me : in out; N : Integer) raises ConstructionError is static;
351
352 Powered (me : in out; N : Integer) returns Trsf
353 ---C++: inline
354 --- Purpose :
355 -- Computes the following composition of transformations
356 -- <me> * <me> * .......* <me>, N time.
357 -- if N = 0 <me> = Identity
358 -- if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
359 --
360 -- Raises if N < 0 and if the matrix of the transformation not
361 -- inversible.
362 raises ConstructionError
363 is static;
364
365
366
367 Transforms (me; X, Y, Z : out Real) is static;
368 ---C++: inline
369
370 Transforms (me; Coord : out XYZ) is static;
371 ---C++: inline
372 --- Purpose : Transformation of a triplet XYZ with a Trsf
373
374
375
376fields
377
378 scale : Real;
379 shape : TrsfForm;
380 matrix : Mat;
381 loc : XYZ;
382
383
384friends
385
386 class GTrsf
387
388end;