0027305: Using undefined variables, which causes devide by zero
[occt.git] / src / IntPatch / IntPatch_ImpPrmIntersection.cxx
CommitLineData
b311480e 1// Created on: 1992-05-07
2// Created by: Jacques GOUSSARD
3// Copyright (c) 1992-1999 Matra Datavision
973c2be1 4// Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 5//
973c2be1 6// This file is part of Open CASCADE Technology software library.
b311480e 7//
d5f74e42 8// This library is free software; you can redistribute it and/or modify it under
9// the terms of the GNU Lesser General Public License version 2.1 as published
973c2be1 10// by the Free Software Foundation, with special exception defined in the file
11// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12// distribution for complete text of the license and disclaimer of any warranty.
b311480e 13//
973c2be1 14// Alternatively, this file may be used under the terms of Open CASCADE
15// commercial license or contractual agreement.
7fd59977 16
7fd59977 17
18#include <Adaptor2d_HCurve2d.hxx>
42cf5bc1 19#include <Adaptor3d_HSurface.hxx>
20#include <Adaptor3d_TopolTool.hxx>
21#include <IntPatch_ArcFunction.hxx>
22#include <IntPatch_ImpPrmIntersection.hxx>
23#include <IntPatch_Line.hxx>
24#include <IntPatch_Point.hxx>
25#include <IntPatch_RLine.hxx>
26#include <IntPatch_RstInt.hxx>
27#include <IntPatch_SequenceOfLine.hxx>
7fd59977 28#include <IntPatch_TheIWalking.hxx>
29#include <IntPatch_TheIWLineOfTheIWalking.hxx>
30#include <IntPatch_ThePathPointOfTheSOnBounds.hxx>
31#include <IntPatch_TheSegmentOfTheSOnBounds.hxx>
32#include <IntPatch_TheSurfFunction.hxx>
7fd59977 33#include <IntPatch_WLine.hxx>
42cf5bc1 34#include <IntSurf.hxx>
35#include <IntSurf_InteriorPoint.hxx>
36#include <IntSurf_LineOn2S.hxx>
37#include <IntSurf_PathPoint.hxx>
38#include <IntSurf_PntOn2S.hxx>
39#include <IntSurf_SequenceOfPathPoint.hxx>
40#include <Standard_ConstructionError.hxx>
41#include <Standard_DomainError.hxx>
4e14c88f 42#include <Standard_NumericError.hxx>
42cf5bc1 43#include <Standard_OutOfRange.hxx>
4e14c88f 44#include <Standard_TypeMismatch.hxx>
42cf5bc1 45#include <StdFail_NotDone.hxx>
46#include <TColStd_Array1OfInteger.hxx>
47
0797d9d3 48#ifndef OCCT_DEBUG
191478a5 49#define No_Standard_RangeError
50#define No_Standard_OutOfRange
51#endif
52
191478a5 53#include <math_Vector.hxx>
54#include <math_Matrix.hxx>
55#include <TopTrans_CurveTransition.hxx>
56#include <TopAbs_State.hxx>
57#include <TopAbs_Orientation.hxx>
58#include <TColStd_Array1OfInteger.hxx>
59#include <TColStd_Array1OfReal.hxx>
60
61#include <IntSurf_SequenceOfInteriorPoint.hxx>
62#include <IntSurf_QuadricTool.hxx>
63#include <GeomAbs_SurfaceType.hxx>
d4b867e6 64#include <IntAna2d_AnaIntersection.hxx>
65#include <gp_Lin2d.hxx>
66#include <ElCLib.hxx>
67
68#include <Bnd_Box2d.hxx>
ec357c5c 69#include <IntPatch_PointLine.hxx>
191478a5 70
4e14c88f 71#include <Extrema_GenLocateExtPS.hxx>
a09c8f3a 72#include <math_FunctionSetRoot.hxx>
4e14c88f 73
77dbd1f1 74static Standard_Boolean DecomposeResult(const Handle(IntPatch_PointLine)& theLine,
4e14c88f 75 const Standard_Boolean IsReversed,
76 const IntSurf_Quadric& theQuad,
77 const Handle(Adaptor3d_TopolTool)& thePDomain,
78 const Handle(Adaptor3d_HSurface)& theQSurf,
79 const Handle(Adaptor3d_HSurface)& theOtherSurf,
80 const Standard_Real theArcTol,
a09c8f3a 81 const Standard_Real theTolTang,
4e14c88f 82 IntPatch_SequenceOfLine& theLines);
191478a5 83static
84 void ComputeTangency (const IntPatch_TheSOnBounds& solrst,
85 IntSurf_SequenceOfPathPoint& seqpdep,
86 const Handle(Adaptor3d_TopolTool)& Domain,
87 IntPatch_TheSurfFunction& Func,
88 const Handle(Adaptor3d_HSurface)& PSurf,
89 TColStd_Array1OfInteger& Destination);
90static
91 void Recadre(const Standard_Boolean ,
92 GeomAbs_SurfaceType typeS1,
93 GeomAbs_SurfaceType typeS2,
94 IntPatch_Point& pt,
95 const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline,
96 Standard_Integer Param,
97 Standard_Real U1,
98 Standard_Real V1,
99 Standard_Real U2,
100 Standard_Real V2);
7fd59977 101
77dbd1f1 102static
103 Standard_Boolean IsCoincide(IntPatch_TheSurfFunction& theFunc,
104 const Handle(IntPatch_PointLine)& theLine,
105 const Handle(Adaptor2d_HCurve2d)& theArc,
106 const Standard_Boolean isTheSurface1Using,
107 const Standard_Real theToler3D,
108 const Standard_Real theToler2D,
109 const Standard_Real thePeriod);
d4b867e6 110
a09c8f3a 111enum PrePoint_Type
112{
113 PrePoint_NONE,
114 PrePoint_SEAMU,
115 PrePoint_SEAMV,
116 PrePoint_SEAMUV,
117 PrePoint_POLESEAMU,
118 PrePoint_POLE
119};
120
121static PrePoint_Type IsSeamOrPole(const Handle(Adaptor3d_HSurface)& theQSurf,
122 const Handle(IntSurf_LineOn2S)& theLine,
123 const Standard_Boolean IsReversed,
124 const Standard_Integer theRefIndex,
125 const Standard_Real theDeltaMax)
126{
127 if((theRefIndex < 1) || (theRefIndex >= theLine->NbPoints()))
128 return PrePoint_NONE;
129
130 //Parameters on Quadric and on parametric for reference point
131 Standard_Real aUQRef, aVQRef, aUPRef, aVPRef;
132 Standard_Real aUQNext, aVQNext, aUPNext, aVPNext;
133
134 if(IsReversed)
135 {
136 theLine->Value(theRefIndex).Parameters (aUPRef, aVPRef, aUQRef, aVQRef);
137 theLine->Value(theRefIndex+1).Parameters(aUPNext, aVPNext, aUQNext, aVQNext);
138 }
139 else
140 {
141 theLine->Value(theRefIndex).Parameters (aUQRef, aVQRef, aUPRef, aVPRef);
142 theLine->Value(theRefIndex+1).Parameters(aUQNext, aVQNext, aUPNext, aVPNext);
143 }
144
145 const GeomAbs_SurfaceType aType = theQSurf->GetType();
146
147 const Standard_Real aDeltaU = Abs(aUQRef - aUQNext);
148
149 if((aType != GeomAbs_Torus) && (aDeltaU < theDeltaMax))
150 return PrePoint_NONE;
151
152 switch(aType)
153 {
154 case GeomAbs_Cylinder:
155 return PrePoint_SEAMU;
156
157 case GeomAbs_Torus:
158 {
159 const Standard_Real aDeltaV = Abs(aVQRef - aVQNext);
160
161 if((aDeltaU >= theDeltaMax) && (aDeltaV >= theDeltaMax))
162 return PrePoint_SEAMUV;
163
164 if(aDeltaU >= theDeltaMax)
165 return PrePoint_SEAMU;
166
167 if(aDeltaV >= theDeltaMax)
168 return PrePoint_SEAMV;
169 }
170
171 break;
172 case GeomAbs_Sphere:
173 case GeomAbs_Cone:
174 return PrePoint_POLESEAMU;
175 default:
176 break;
177 }
178
179 return PrePoint_NONE;
180}
181
182// The function for searching intersection point, which
183// lies in the seam-edge of the quadric definetely.
184class FuncPreciseSeam: public math_FunctionSetWithDerivatives
185{
186public:
187 FuncPreciseSeam(const Handle(Adaptor3d_HSurface)& theQSurf, const Handle(Adaptor3d_HSurface)& thePSurf, const Standard_Boolean isTheUSeam): myQSurf(theQSurf), myPSurf(thePSurf), myIsUSeam(isTheUSeam) {};
188
189 Standard_EXPORT virtual Standard_Integer NbVariables() const
190 {
191 return 3;
192 };
193
194 Standard_EXPORT virtual Standard_Integer NbEquations() const
195 {
196 return 3;
197 }
198
199 Standard_EXPORT virtual Standard_Boolean Value (const math_Vector& theX, math_Vector& theF)
200 {
201 try
202 {
203 const Standard_Integer anIndX = theX.Lower(), anIndF = theF.Lower();
204 const gp_Pnt aP1(myPSurf->Value(theX(anIndX), theX(anIndX+1)));
205 const gp_Pnt aP2(myIsUSeam? myQSurf->Value(0.0, theX(anIndX+2)) : myQSurf->Value(theX(anIndX+2), 0.0));
206
207 (aP1.XYZ()-aP2.XYZ()).Coord(theF(anIndF), theF(anIndF+1), theF(anIndF+2));
208 }
209 catch(Standard_Failure)
210 {
211 return Standard_False;
212 }
213
214 return Standard_True;
215 };
216
217 Standard_EXPORT virtual Standard_Boolean Derivatives (const math_Vector& theX, math_Matrix& theD)
218 {
219 try
220 {
221 const Standard_Integer anIndX = theX.Lower(), anIndRD = theD.LowerRow(), anIndCD = theD.LowerCol();
222 gp_Pnt aPt;
223 gp_Vec aD1u, aD1v, aD2u, aD2v;
224 myPSurf->D1(theX(anIndX), theX(anIndX+1), aPt, aD1u, aD1v);
225 if(myIsUSeam)
226 myQSurf->D1(0.0, theX(anIndX+2), aPt, aD2u, aD2v);
227 else
228 myQSurf->D1(theX(anIndX+2), 0.0, aPt, aD2u, aD2v);
229
230 // d/dX1
231 aD1u.Coord(theD(anIndRD, anIndCD), theD(anIndRD+1, anIndCD), theD(anIndRD+2, anIndCD));
232
233 // d/dX1
234 aD1v.Coord(theD(anIndRD, anIndCD+1), theD(anIndRD+1, anIndCD+1), theD(anIndRD+2, anIndCD+1));
235
236 // d/dX3
237 if(myIsUSeam)
238 aD2v.Reversed().Coord(theD(anIndRD, anIndCD+2), theD(anIndRD+1, anIndCD+2), theD(anIndRD+2, anIndCD+2));
239 else
240 aD2u.Reversed().Coord(theD(anIndRD, anIndCD+2), theD(anIndRD+1, anIndCD+2), theD(anIndRD+2, anIndCD+2));
241 }
242 catch(Standard_Failure)
243 {
244 return Standard_False;
245 }
246
247 return Standard_True;
248 };
249
250 Standard_EXPORT virtual Standard_Boolean Values (const math_Vector& theX, math_Vector& theF, math_Matrix& theD)
251 {
252 try
253 {
254 const Standard_Integer anIndX = theX.Lower(), anIndF = theF.Lower(), anIndRD = theD.LowerRow(), anIndCD = theD.LowerCol();
255 gp_Pnt aP1, aP2;
256 gp_Vec aD1u, aD1v, aD2u, aD2v;
257 myPSurf->D1(theX(anIndX), theX(anIndX+1), aP1, aD1u, aD1v);
258 if(myIsUSeam)
259 myQSurf->D1(0.0, theX(anIndX+2), aP2, aD2u, aD2v);
260 else
261 myQSurf->D1(theX(anIndX+2), 0.0, aP2, aD2u, aD2v);
262
263 //Value
264 (aP1.XYZ()-aP2.XYZ()).Coord(theF(anIndF), theF(anIndF+1), theF(anIndF+2));
265
266 // d/dX1
267 aD1u.Coord(theD(anIndRD, anIndCD), theD(anIndRD+1, anIndCD), theD(anIndRD+2, anIndCD));
268
269 // d/dX1
270 aD1v.Coord(theD(anIndRD, anIndCD+1), theD(anIndRD+1, anIndCD+1), theD(anIndRD+2, anIndCD+1));
271
272 // d/dX3
273 if(myIsUSeam)
274 aD2v.Reversed().Coord(theD(anIndRD, anIndCD+2), theD(anIndRD+1, anIndCD+2), theD(anIndRD+2, anIndCD+2));
275 else
276 aD2u.Reversed().Coord(theD(anIndRD, anIndCD+2), theD(anIndRD+1, anIndCD+2), theD(anIndRD+2, anIndCD+2));
277 }
278 catch(Standard_Failure)
279 {
280 return Standard_False;
281 }
282
283 return Standard_True;
284 }
285
286protected:
287 FuncPreciseSeam operator=(FuncPreciseSeam&);
288
289private:
290 const Handle(Adaptor3d_HSurface)& myQSurf;
291 const Handle(Adaptor3d_HSurface)& myPSurf;
292 const Standard_Boolean myIsUSeam;
293};
294
7fd59977 295//=======================================================================
296//function : IntPatch_ImpPrmIntersection
297//purpose :
298//=======================================================================
7fd59977 299IntPatch_ImpPrmIntersection::IntPatch_ImpPrmIntersection ()
191478a5 300 : done(Standard_False),
301 empt(Standard_False),
302 myIsStartPnt(Standard_False),
303 myUStart(0.0),
304 myVStart(0.0)
7fd59977 305{ }
306
307
308//=======================================================================
309//function : IntPatch_ImpPrmIntersection
310//purpose :
311//=======================================================================
312
313IntPatch_ImpPrmIntersection::IntPatch_ImpPrmIntersection
191478a5 314 (const Handle(Adaptor3d_HSurface)& Surf1,
315 const Handle(Adaptor3d_TopolTool)& D1,
316 const Handle(Adaptor3d_HSurface)& Surf2,
317 const Handle(Adaptor3d_TopolTool)& D2,
318 const Standard_Real TolArc,
319 const Standard_Real TolTang,
320 const Standard_Real Fleche,
321 const Standard_Real Pas)
322 : done(Standard_False),
323 empt(Standard_False),
324 myIsStartPnt(Standard_False),
325 myUStart(0.0),
326 myVStart(0.0)
7fd59977 327{
328 Perform(Surf1,D1,Surf2,D2,TolArc,TolTang,Fleche,Pas);
329}
330
331
332//=======================================================================
333//function : SetStartPoint
334//purpose :
335//=======================================================================
336
337void IntPatch_ImpPrmIntersection::SetStartPoint(const Standard_Real U,
191478a5 338 const Standard_Real V)
7fd59977 339{
340 myIsStartPnt = Standard_True;
341 myUStart = U; myVStart = V;
342}
343
7fd59977 344//=======================================================================
345//function : ComputeTangency
346//purpose :
347//=======================================================================
348void ComputeTangency (const IntPatch_TheSOnBounds& solrst,
191478a5 349 IntSurf_SequenceOfPathPoint& seqpdep,
350 const Handle(Adaptor3d_TopolTool)& Domain,
351 IntPatch_TheSurfFunction& Func,
352 const Handle(Adaptor3d_HSurface)& PSurf,
353 TColStd_Array1OfInteger& Destination)
7fd59977 354{
355 Standard_Integer i,k, NbPoints, seqlength;
356 Standard_Real theparam,test;
357 Standard_Boolean fairpt, ispassing;
358 TopAbs_Orientation arcorien,vtxorien;
359 Handle(Adaptor2d_HCurve2d) thearc;
360 Handle(Adaptor3d_HVertex) vtx,vtxbis;
361 //Standard_Boolean ispassing;
362 IntPatch_ThePathPointOfTheSOnBounds PStart;
363 IntSurf_PathPoint PPoint;
364 gp_Vec vectg;
365 gp_Dir2d dirtg;
366 gp_Pnt ptbid;
367 gp_Vec d1u,d1v,v1,v2;
368 gp_Pnt2d p2d;
369 gp_Vec2d d2d;
370 //
1ef32e96
RL
371 double aX[2], aF[1], aD[1][2];
372 math_Vector X(aX, 1, 2);
373 math_Vector F(aF, 1, 1);
374 math_Matrix D(aD, 1, 1, 1, 2);
7fd59977 375 //
376 seqlength = 0;
377 NbPoints = solrst.NbPoints();
378 for (i=1; i<= NbPoints; i++) {
379 if (Destination(i) == 0) {
380 PStart = solrst.Point(i);
381 thearc = PStart.Arc();
382 theparam = PStart.Parameter();
383 arcorien = Domain->Orientation(thearc);
384 ispassing = (arcorien == TopAbs_INTERNAL ||
191478a5 385 arcorien == TopAbs_EXTERNAL);
386
7fd59977 387 thearc->D0(theparam,p2d);
388 X(1) = p2d.X();
389 X(2) = p2d.Y();
390 PPoint.SetValue(PStart.Value(),X(1),X(2));
191478a5 391
7fd59977 392 Func.Values(X,F,D);
393 if (Func.IsTangent()) {
191478a5 394 PPoint.SetTangency(Standard_True);
7fd59977 395 Destination(i) = seqlength+1;
191478a5 396 if (!PStart.IsNew()) {
397 vtx = PStart.Vertex();
398 for (k=i+1; k<=NbPoints; k++) {
399 if (Destination(k) ==0) {
400 PStart = solrst.Point(k);
401 if (!PStart.IsNew()) {
402 vtxbis = PStart.Vertex();
403 if (Domain->Identical(vtx,vtxbis)) {
404 thearc = PStart.Arc();
405 theparam = PStart.Parameter();
406 arcorien = Domain->Orientation(thearc);
407 ispassing = ispassing && (arcorien == TopAbs_INTERNAL ||
408 arcorien == TopAbs_EXTERNAL);
409
410 thearc->D0(theparam,p2d);
411 PPoint.AddUV(p2d.X(),p2d.Y());
412 Destination(k) = seqlength+1;
413 }
414 }
415 }
416 }
417 }
418 PPoint.SetPassing(ispassing);
419 seqpdep.Append(PPoint);
420 seqlength++;
7fd59977 421 }
422 else { // on a un point de depart potentiel
423
191478a5 424 vectg = Func.Direction3d();
425 dirtg = Func.Direction2d();
426
427 PSurf->D1(X(1),X(2),ptbid,d1u,d1v);
428 thearc->D1(theparam,p2d,d2d);
429 v2.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
430 v1 = d1u.Crossed(d1v);
431
432 test = vectg.Dot(v1.Crossed(v2));
433 if (PStart.IsNew()) {
434 if ((test < 0. && arcorien == TopAbs_FORWARD) ||
435 (test > 0. && arcorien == TopAbs_REVERSED)) {
436 vectg.Reverse();
437 dirtg.Reverse();
438 }
439 PPoint.SetDirections(vectg,dirtg);
440 PPoint.SetPassing(ispassing);
7fd59977 441 Destination(i) = seqlength+1;
191478a5 442 seqpdep.Append(PPoint);
443 seqlength++;
444 }
445 else { // traiter la transition complexe
446 gp_Dir bidnorm(1.,1.,1.);
447 Standard_Real tole = 1.e-8;
448 TopAbs_Orientation LocTrans;
449 TopTrans_CurveTransition comptrans;
450 comptrans.Reset(vectg,bidnorm,0.);
451 if (arcorien == TopAbs_FORWARD ||
452 arcorien == TopAbs_REVERSED) {
453 // pour essai
454
455 vtx = PStart.Vertex();
456 vtxorien = Domain->Orientation(vtx);
457 if (Abs(test) <= tole) {
458 LocTrans = TopAbs_EXTERNAL; // et pourquoi pas INTERNAL
459 }
460 else {
461 if (((test > 0.)&& arcorien == TopAbs_FORWARD) ||
462 ((test < 0.)&& arcorien == TopAbs_REVERSED)){
463 LocTrans = TopAbs_FORWARD;
464 }
465 else {
466 LocTrans = TopAbs_REVERSED;
467 }
468 if (arcorien == TopAbs_REVERSED) {v2.Reverse();}
469 }
470
471 comptrans.Compare(tole,v2,bidnorm,0.,LocTrans,vtxorien);
472 }
7fd59977 473 Destination(i) = seqlength+1;
191478a5 474 for (k= i+1; k<=NbPoints; k++) {
475 if (Destination(k) == 0) {
476 PStart = solrst.Point(k);
477 if (!PStart.IsNew()) {
478 vtxbis = PStart.Vertex();
479 if (Domain->Identical(vtx,vtxbis)) {
480 thearc = PStart.Arc();
481 theparam = PStart.Parameter();
482 arcorien = Domain->Orientation(thearc);
483
484 PPoint.AddUV(X(1),X(2));
485
486 thearc->D1(theparam,p2d,d2d);
487 PPoint.AddUV(p2d.X(),p2d.Y());
488
489 if (arcorien == TopAbs_FORWARD ||
490 arcorien == TopAbs_REVERSED) {
491 ispassing = Standard_False;
492 v2.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
493
494 test = vectg.Dot(v1.Crossed(v2));
495 vtxorien = Domain->Orientation(PStart.Vertex());
496 if (Abs(test) <= tole) {
497 LocTrans = TopAbs_EXTERNAL; // et pourquoi pas INTERNAL
498 }
499 else {
500 if (((test > 0.)&& arcorien == TopAbs_FORWARD) ||
501 ((test < 0.)&& arcorien == TopAbs_REVERSED)){
502 LocTrans = TopAbs_FORWARD;
503 }
504 else {
505 LocTrans = TopAbs_REVERSED;
506 }
507 if (arcorien == TopAbs_REVERSED) {v2.Reverse();}
508 }
509
510 comptrans.Compare(tole,v2,bidnorm,0.,LocTrans,vtxorien);
511 }
512 Destination(k) = seqlength+1;
513 }
514 }
515 }
516 }
7fd59977 517 fairpt = Standard_True;
191478a5 518 if (!ispassing) {
519 TopAbs_State Before = comptrans.StateBefore();
520 TopAbs_State After = comptrans.StateAfter();
521 if ((Before == TopAbs_UNKNOWN)||(After == TopAbs_UNKNOWN)) {
522 fairpt = Standard_False;
523 }
524 else if (Before == TopAbs_IN) {
525 if (After == TopAbs_IN) {
526 ispassing = Standard_True;
527 }
528 else {
529 vectg.Reverse();
530 dirtg.Reverse();
531 }
532 }
533 else {
534 if (After !=TopAbs_IN) {
535 fairpt = Standard_False;
536 }
537 }
538 }
539 if (fairpt) {
540 PPoint.SetDirections(vectg,dirtg);
541 PPoint.SetPassing(ispassing);
542 seqpdep.Append(PPoint);
543 seqlength++;
544 }
545 else { // il faut remettre en "ordre" si on ne garde pas le point.
546 for (k=i; k <=NbPoints ; k++) {
547 if (Destination(k)==seqlength + 1) {
548 Destination(k) = -Destination(k);
549 }
550 }
551 }
552 }
7fd59977 553 }
554 }
555 }
556}
557//=======================================================================
558//function : Recadre
559//purpose :
560//=======================================================================
561void Recadre(const Standard_Boolean ,
191478a5 562 GeomAbs_SurfaceType typeS1,
563 GeomAbs_SurfaceType typeS2,
564 IntPatch_Point& pt,
565 const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline,
566 Standard_Integer Param,
567 Standard_Real U1,
568 Standard_Real V1,
569 Standard_Real U2,
570 Standard_Real V2)
7fd59977 571{
572 Standard_Real U1p,V1p,U2p,V2p;
573 iwline->Line()->Value(Param).Parameters(U1p,V1p,U2p,V2p);
574 switch(typeS1)
575 {
191478a5 576 case GeomAbs_Torus:
577 while(V1<(V1p-1.5*M_PI)) V1+=M_PI+M_PI;
578 while(V1>(V1p+1.5*M_PI)) V1-=M_PI+M_PI;
579 case GeomAbs_Cylinder:
580 case GeomAbs_Cone:
581 case GeomAbs_Sphere:
582 while(U1<(U1p-1.5*M_PI)) U1+=M_PI+M_PI;
583 while(U1>(U1p+1.5*M_PI)) U1-=M_PI+M_PI;
584 default:
585 break;
7fd59977 586 }
587 switch(typeS2)
588 {
191478a5 589 case GeomAbs_Torus:
590 while(V2<(V2p-1.5*M_PI)) V2+=M_PI+M_PI;
591 while(V2>(V2p+1.5*M_PI)) V2-=M_PI+M_PI;
592 case GeomAbs_Cylinder:
593 case GeomAbs_Cone:
594 case GeomAbs_Sphere:
595 while(U2<(U2p-1.5*M_PI)) U2+=M_PI+M_PI;
596 while(U2>(U2p+1.5*M_PI)) U2-=M_PI+M_PI;
597 default:
598 break;
7fd59977 599 }
600 pt.SetParameters(U1,V1,U2,V2);
601}
602
603//=======================================================================
604//function : Perform
605//purpose :
606//=======================================================================
607void IntPatch_ImpPrmIntersection::Perform (const Handle(Adaptor3d_HSurface)& Surf1,
191478a5 608 const Handle(Adaptor3d_TopolTool)& D1,
609 const Handle(Adaptor3d_HSurface)& Surf2,
610 const Handle(Adaptor3d_TopolTool)& D2,
611 const Standard_Real TolArc,
612 const Standard_Real TolTang,
613 const Standard_Real Fleche,
614 const Standard_Real Pas)
7fd59977 615{
616 Standard_Boolean reversed, procf, procl, dofirst, dolast;
d4b867e6 617 Standard_Integer indfirst = 0, indlast = 0, ind2, NbSegm;
7fd59977 618 Standard_Integer NbPointIns, NbPointRst, Nblines, Nbpts, NbPointDep;
619 Standard_Real U1,V1,U2,V2,paramf,paraml,currentparam;
191478a5 620
7fd59977 621 IntPatch_TheSegmentOfTheSOnBounds thesegm;
622 IntSurf_PathPoint PPoint;
623
624 Handle(IntPatch_RLine) rline;
625 Handle(IntPatch_WLine) wline;
626 IntPatch_ThePathPointOfTheSOnBounds PStart,PStartf,PStartl;
627 IntPatch_Point ptdeb,ptfin,ptbis;
191478a5 628
7fd59977 629 IntPatch_IType typ;
630 IntSurf_Transition TLine,TArc;
631 IntSurf_TypeTrans trans1,trans2;
632 gp_Pnt valpt,ptbid;
633 gp_Vec tgline,tgrst,norm1,norm2,d1u,d1v;
634 gp_Dir DirNormale;
635 gp_Vec VecNormale;
191478a5 636
7fd59977 637 gp_Pnt2d p2d;
638 gp_Vec2d d2d;
191478a5 639
7fd59977 640 Handle(Adaptor2d_HCurve2d) currentarc;
641 GeomAbs_SurfaceType typeS1, typeS2;
642 IntSurf_Quadric Quad;
643 IntPatch_TheSurfFunction Func;
644 IntPatch_ArcFunction AFunc;
645 //
646 typeS1 = Surf1->GetType();
647 typeS2 = Surf2->GetType();
191478a5 648
7fd59977 649 paramf =0.;
650 paraml =0.;
651 trans1 = IntSurf_Undecided;
652 trans2 = IntSurf_Undecided;
653 //
654 done = Standard_False;
655 empt = Standard_True;
656 slin.Clear();
657 spnt.Clear();
658 //
659 reversed = Standard_False;
191478a5 660 switch (typeS1)
661 {
662 case GeomAbs_Plane:
663 Quad.SetValue(Surf1->Plane());
664 break;
7fd59977 665
191478a5 666 case GeomAbs_Cylinder:
667 Quad.SetValue(Surf1->Cylinder());
668 break;
7fd59977 669
191478a5 670 case GeomAbs_Sphere:
671 Quad.SetValue(Surf1->Sphere());
672 break;
7fd59977 673
191478a5 674 case GeomAbs_Cone:
675 Quad.SetValue(Surf1->Cone());
676 break;
7fd59977 677
191478a5 678 default:
679 {
7fd59977 680 reversed = Standard_True;
191478a5 681 switch (typeS2)
682 {
683 case GeomAbs_Plane:
684 Quad.SetValue(Surf2->Plane());
685 break;
686
687 case GeomAbs_Cylinder:
688 Quad.SetValue(Surf2->Cylinder());
689 break;
690
691 case GeomAbs_Sphere:
692 Quad.SetValue(Surf2->Sphere());
693 break;
694
695 case GeomAbs_Cone:
696 Quad.SetValue(Surf2->Cone());
697 break;
698 default:
699 {
700 Standard_ConstructionError::Raise();
701 break;
702 }
7fd59977 703 }
704 }
705 break;
706 }
707 //
708 Func.SetImplicitSurface(Quad);
709 Func.Set(IntSurf_QuadricTool::Tolerance(Quad));
710 AFunc.SetQuadric(Quad);
711 //
712 if (!reversed) {
713 Func.Set(Surf2);
714 AFunc.Set(Surf2);
715 }
716 else {
717 Func.Set(Surf1);
718 AFunc.Set(Surf1);
719 }
720 //
721 if (!reversed) {
722 solrst.Perform(AFunc,D2,TolArc,TolTang);
723 }
724 else {
725 solrst.Perform(AFunc,D1,TolArc,TolTang);
726 }
727 if (!solrst.IsDone()) {
728 return;
729 }
730 //
731 IntSurf_SequenceOfPathPoint seqpdep;
732 IntSurf_SequenceOfInteriorPoint seqpins;
733 //
734 NbPointRst = solrst.NbPoints();
735 TColStd_Array1OfInteger Destination(1,NbPointRst+1); Destination.Init(0);
736 if (NbPointRst) {
737 if (!reversed) {
738 ComputeTangency(solrst,seqpdep,D2,Func,Surf2,Destination);
739 }
740 else {
741 ComputeTangency(solrst,seqpdep,D1,Func,Surf1,Destination);
742 }
743 }
744 //
e618b526 745 Standard_Boolean SearchIns = Standard_True;
746 if(Quad.TypeQuadric() == GeomAbs_Plane && solrst.NbSegments() > 0)
747 {
748 //For such kind of cases it is possible that whole surface is on one side of plane,
749 //plane only touches surface and does not cross it,
750 //so no inner points exist.
751 SearchIns = Standard_False;
752 Handle(Adaptor3d_TopolTool) T;
753 if(reversed)
754 {
755 T = D1;
756 }
7fd59977 757 else
e618b526 758 {
759 T = D2;
760 }
761 Standard_Integer aNbSamples = 0;
762 aNbSamples = T->NbSamples();
763 gp_Pnt2d s2d;
764 gp_Pnt s3d;
765 Standard_Real aValf[1], aUVap[2];
766 math_Vector Valf(aValf,1,1), UVap(aUVap,1,2);
767 T->SamplePoint(1,s2d, s3d);
768 UVap(1)=s2d.X();
769 UVap(2)=s2d.Y();
770 Func.Value(UVap,Valf);
771 Standard_Real rvalf = Sign(1.,Valf(1));
d4b867e6 772 for(Standard_Integer i = 2; i <= aNbSamples; ++i)
e618b526 773 {
94f71cad 774 T->SamplePoint(i,s2d, s3d);
e618b526 775 UVap(1)=s2d.X();
776 UVap(2)=s2d.Y();
777 Func.Value(UVap,Valf);
778 if(rvalf * Valf(1) < 0.)
779 {
780 SearchIns = Standard_True;
781 break;
782 }
783 }
7fd59977 784 }
e618b526 785 // Recherche des points interieurs
786 NbPointIns = 0;
787 if(SearchIns) {
788 if (!reversed) {
789 if (myIsStartPnt)
790 solins.Perform(Func,Surf2,myUStart,myVStart);
791 else
792 solins.Perform(Func,Surf2,D2,TolTang);
793 }
794 else {
795 if (myIsStartPnt)
796 solins.Perform(Func,Surf1,myUStart,myVStart);
797 else
798 solins.Perform(Func,Surf1,D1,TolTang);
799 }
800 NbPointIns = solins.NbPoints();
d4b867e6 801 for (Standard_Integer i=1; i <= NbPointIns; i++) {
e618b526 802 seqpins.Append(solins.Value(i));
803 }
7fd59977 804 }
805 //
7fd59977 806 NbPointDep=seqpdep.Length();
807 //
808 if (NbPointDep || NbPointIns) {
809 IntPatch_TheIWalking iwalk(TolTang,Fleche,Pas);
810 if (!reversed) {
811 iwalk.Perform(seqpdep,seqpins,Func,Surf2);
812 }
813 else {
814 iwalk.Perform(seqpdep,seqpins,Func,Surf1,Standard_True);
815 }
816 if(!iwalk.IsDone()) {
817 return;
818 }
191478a5 819
7fd59977 820 Standard_Real Vmin, Vmax, TolV = 1.e-14;
821 if (!reversed) { //Surf1 is quadric
822 Vmin = Surf1->FirstVParameter();
823 Vmax = Surf1->LastVParameter();
824 }
825 else { //Surf2 is quadric
826 Vmin = Surf2->FirstVParameter();
827 Vmax = Surf2->LastVParameter();
828 }
829 //
830 Nblines = iwalk.NbLines();
d4b867e6 831 for (Standard_Integer j=1; j<=Nblines; j++) {
7fd59977 832 const Handle(IntPatch_TheIWLineOfTheIWalking)& iwline = iwalk.Value(j);
833 const Handle(IntSurf_LineOn2S)& thelin = iwline->Line();
191478a5 834
7fd59977 835 Nbpts = thelin->NbPoints();
836 if(Nbpts>=2) {
d4b867e6 837 Standard_Integer k = 0;
191478a5 838 tgline = iwline->TangentVector(k);
839 if(k>=1 && k<=Nbpts) { } else { k=Nbpts>>1; }
840 valpt = thelin->Value(k).Value();
841
842 if (!reversed) {
843 thelin->Value(k).ParametersOnS2(U2,V2);
844 norm1 = Quad.Normale(valpt);
845 Surf2->D1(U2,V2,ptbid,d1u,d1v);
846 norm2 = d1u.Crossed(d1v);
847 }
848 else {
849 thelin->Value(k).ParametersOnS1(U2,V2);
850 norm2 = Quad.Normale(valpt);
851 Surf1->D1(U2,V2,ptbid,d1u,d1v);
852 norm1 = d1u.Crossed(d1v);
853 }
854 if (tgline.DotCross(norm2,norm1) > 0.) {
855 trans1 = IntSurf_Out;
856 trans2 = IntSurf_In;
857 }
858 else {
859 trans1 = IntSurf_In;
860 trans2 = IntSurf_Out;
861 }
862
863 //
864 Standard_Real AnU1,AnU2,AnV2;
865
866 GeomAbs_SurfaceType typQuad = Quad.TypeQuadric();
867 Standard_Boolean arecadr=Standard_False;
868 valpt = thelin->Value(1).Value();
869 Quad.Parameters(valpt,AnU1,V1);
870
871 if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
872 if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
873
874 if(reversed) {
875 thelin->SetUV(1,Standard_False,AnU1,V1); //-- on va lire u2,v2
876 thelin->Value(1).ParametersOnS1(AnU2,AnV2);
877 }
878 else {
879 thelin->SetUV(1,Standard_True,AnU1,V1); //-- on va lire u1,v1
880 thelin->Value(1).ParametersOnS2(AnU2,AnV2);
881 }
882
883 if(typQuad==GeomAbs_Cylinder ||
884 typQuad==GeomAbs_Cone ||
885 typQuad==GeomAbs_Sphere) {
886 arecadr=Standard_True;
887 }
888 //
889 for (k=2; k<=Nbpts; ++k) {
890 valpt = thelin->Value(k).Value();
891 Quad.Parameters(valpt,U1,V1);
892 //
893 if((V1 < Vmin) && (Vmin-V1 < TolV)) {
894 V1 = Vmin;
895 }
896 if((V1 > Vmax) && (V1-Vmax < TolV)) {
897 V1 = Vmax;
898 }
899 //
900 if(arecadr) {
901 //modified by NIZNHY-PKV Fri Mar 28 15:06:01 2008f
902 Standard_Real aCf, aTwoPI;
903 //
904 aCf=0.;
905 aTwoPI=M_PI+M_PI;
906 if ((U1-AnU1) > 1.5*M_PI) {
907 while ((U1-AnU1) > (1.5*M_PI+aCf*aTwoPI)) {
908 aCf=aCf+1.;
909 }
910 U1=U1-aCf*aTwoPI;
911 }
912 //
913 else {
914 while ((U1-AnU1) < (-1.5*M_PI-aCf*aTwoPI)) {
915 aCf=aCf+1.;
916 }
917 U1=U1+aCf*aTwoPI;
918 }
919 // was:
920 //if ((U1-AnU1) > 1.5*M_PI) {
921 // U1-=M_PI+M_PI;
922 //}
923 //else if ((U1-AnU1) < -1.5*M_PI) {
924 // U1+=M_PI+M_PI;
925 //}
926 //modified by NIZNHY-PKV Fri Mar 28 15:06:11 2008t
927 }
928 //
929 if(reversed) {
930 thelin->SetUV(k,Standard_False,U1,V1);
931
932 thelin->Value(k).ParametersOnS1(U2,V2);
933 switch(typeS1) {
934 case GeomAbs_Cylinder:
935 case GeomAbs_Cone:
936 case GeomAbs_Sphere:
937 case GeomAbs_Torus:
938 while(U2<(AnU2-1.5*M_PI)) U2+=M_PI+M_PI;
939 while(U2>(AnU2+1.5*M_PI)) U2-=M_PI+M_PI;
940 break;
941 default:
942 break;
943 }
944 if(typeS2==GeomAbs_Torus) {
945 while(V2<(AnV2-1.5*M_PI)) V2+=M_PI+M_PI;
946 while(V2>(AnV2+1.5*M_PI)) V2-=M_PI+M_PI;
947 }
948 thelin->SetUV(k,Standard_True,U2,V2);
949 }
950 else {
951 thelin->SetUV(k,Standard_True,U1,V1);
952
953 thelin->Value(k).ParametersOnS2(U2,V2);
954 switch(typeS2) {
955 case GeomAbs_Cylinder:
956 case GeomAbs_Cone:
957 case GeomAbs_Sphere:
958 case GeomAbs_Torus:
959 while(U2<(AnU2-1.5*M_PI)) U2+=M_PI+M_PI;
960 while(U2>(AnU2+1.5*M_PI)) U2-=M_PI+M_PI;
961 break;
962 default:
963 break;
964 }
965 if(typeS2==GeomAbs_Torus) {
966 while(V2<(AnV2-1.5*M_PI)) V2+=M_PI+M_PI;
967 while(V2>(AnV2+1.5*M_PI)) V2-=M_PI+M_PI;
968 }
969 thelin->SetUV(k,Standard_False,U2,V2);
970
971 }
972
973 AnU1=U1;
974 AnU2=U2;
975 AnV2=V2;
976 }
977 // <-A
978 wline = new IntPatch_WLine(thelin,Standard_False,trans1,trans2);
979
77dbd1f1 980#ifdef INTPATCH_IMPPRMINTERSECTION_DEBUG
981 wline->Dump(0);
4e14c88f 982#endif
983
191478a5 984 if ( iwline->HasFirstPoint()
e618b526 985 && iwline->IsTangentAtBegining() == Standard_False)
986 {
987 indfirst = iwline->FirstPointIndex();
988 PPoint = seqpdep(indfirst);
989 tgline = PPoint.Direction3d();
990 Standard_Integer themult = PPoint.Multiplicity();
d4b867e6 991 for (Standard_Integer i=NbPointRst; i>=1; i--) {
e618b526 992 if (Destination(i) == indfirst) {
993 if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
994 Quad.Parameters(PPoint.Value(),U1,V1);
995
996 if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
997 if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
998
999 PPoint.Parameters(themult,U2,V2);
1000 Surf2->D1(U2,V2,ptbid,d1u,d1v); //-- @@@@
1001 }
1002 else { //-- typeS1 != Pln && Cyl && Sph && Cone
1003 Quad.Parameters(PPoint.Value(),U2,V2);
191478a5 1004
e618b526 1005 if((V2 < Vmin) && (Vmin-V2 < TolV)) V2 = Vmin;
1006 if((V2 > Vmax) && (V2-Vmax < TolV)) V2 = Vmax;
191478a5 1007
e618b526 1008 PPoint.Parameters(themult,U1,V1);
1009 Surf1->D1(U1,V1,ptbid,d1u,d1v); //-- @@@@
1010 }
191478a5 1011
e618b526 1012 VecNormale = d1u.Crossed(d1v);
1013 //-- Modif du 27 Septembre 94 (Recadrage des pts U,V)
1014 ptdeb.SetValue(PPoint.Value(),TolArc,Standard_False);
1015 ptdeb.SetParameters(U1,V1,U2,V2);
1016 ptdeb.SetParameter(1.);
191478a5 1017
e618b526 1018 Recadre(reversed,typeS1,typeS2,ptdeb,iwline,1,U1,V1,U2,V2);
191478a5 1019
e618b526 1020 currentarc = solrst.Point(i).Arc();
1021 currentparam = solrst.Point(i).Parameter();
1022 currentarc->D1(currentparam,p2d,d2d);
1023 tgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
191478a5 1024
e618b526 1025 Standard_Real squaremagnitudeVecNormale = VecNormale.SquareMagnitude();
1026 if(squaremagnitudeVecNormale > 1e-13) {
1027 DirNormale=VecNormale;
1028 IntSurf::MakeTransition(tgline,tgrst,DirNormale,TLine,TArc);
1029 }
1030 else {
1031 TLine.SetValue(Standard_True,IntSurf_Undecided);
1032 TArc.SetValue(Standard_True,IntSurf_Undecided);
1033 }
191478a5 1034
e618b526 1035 ptdeb.SetArc(reversed,currentarc,currentparam,TLine,TArc);
1036 if (!solrst.Point(i).IsNew()) {
1037 ptdeb.SetVertex(reversed,solrst.Point(i).Vertex());
1038 }
1039 wline->AddVertex(ptdeb);
1040 if (themult == 0) {
1041 wline->SetFirstPoint(wline->NbVertex());
191478a5 1042 }
e618b526 1043
1044 themult--;
191478a5 1045 }
e618b526 1046 }
191478a5 1047 }
e618b526 1048 else if (iwline->IsTangentAtBegining())
1049 {
191478a5 1050 gp_Pnt psol = thelin->Value(1).Value();
1051 thelin->Value(1).ParametersOnS1(U1,V1);
1052 thelin->Value(1).ParametersOnS2(U2,V2);
1053 ptdeb.SetValue(psol,TolArc,Standard_True);
1054 ptdeb.SetParameters(U1,V1,U2,V2);
1055 ptdeb.SetParameter(1.);
1056 wline->AddVertex(ptdeb);
1057 wline->SetFirstPoint(wline->NbVertex());
1058 }
e618b526 1059 else
1060 {
191478a5 1061 gp_Pnt psol = thelin->Value(1).Value();
1062 thelin->Value(1).ParametersOnS1(U1,V1);
1063 thelin->Value(1).ParametersOnS2(U2,V2);
1064 ptdeb.SetValue(psol,TolArc,Standard_False);
1065 ptdeb.SetParameters(U1,V1,U2,V2);
1066 ptdeb.SetParameter(1.);
1067 wline->AddVertex(ptdeb);
1068 wline->SetFirstPoint(wline->NbVertex());
1069 }
1070
1071
1072 if ( iwline->HasLastPoint()
e618b526 1073 && iwline->IsTangentAtEnd() == Standard_False)
1074 {
1075 indlast = iwline->LastPointIndex();
1076 PPoint = seqpdep(indlast);
1077 tgline = PPoint.Direction3d().Reversed();
1078 Standard_Integer themult = PPoint.Multiplicity();
d4b867e6 1079 for (Standard_Integer i=NbPointRst; i >=1; i--) {
e618b526 1080 if (Destination(i) == indlast) {
1081 if (!reversed) {
1082 Quad.Parameters(PPoint.Value(),U1,V1);
1083
1084 if((V1 < Vmin) && (Vmin-V1 < TolV)) V1 = Vmin;
1085 if((V1 > Vmax) && (V1-Vmax < TolV)) V1 = Vmax;
1086
1087 PPoint.Parameters(themult,U2,V2);
1088 Surf2->D1(U2,V2,ptbid,d1u,d1v); //-- @@@@
1089 VecNormale = d1u.Crossed(d1v); //-- @@@@
1090 }
1091 else {
1092 Quad.Parameters(PPoint.Value(),U2,V2);
191478a5 1093
e618b526 1094 if((V2 < Vmin) && (Vmin-V2 < TolV)) V2 = Vmin;
1095 if((V2 > Vmax) && (V2-Vmax < TolV)) V2 = Vmax;
191478a5 1096
e618b526 1097 PPoint.Parameters(themult,U1,V1);
1098 Surf1->D1(U1,V1,ptbid,d1u,d1v); //-- @@@@
1099 VecNormale = d1u.Crossed(d1v); //-- @@@@
1100 }
191478a5 1101
e618b526 1102 ptfin.SetValue(PPoint.Value(),TolArc,Standard_False);
1103 ptfin.SetParameters(U1,V1,U2,V2);
1104 ptfin.SetParameter(Nbpts);
191478a5 1105
e618b526 1106 Recadre(reversed,typeS1,typeS2,ptfin,iwline,Nbpts-1,U1,V1,U2,V2);
191478a5 1107
e618b526 1108 currentarc = solrst.Point(i).Arc();
1109 currentparam = solrst.Point(i).Parameter();
1110 currentarc->D1(currentparam,p2d,d2d);
1111 tgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
191478a5 1112
191478a5 1113
e618b526 1114 Standard_Real squaremagnitudeVecNormale = VecNormale.SquareMagnitude();
1115 if(squaremagnitudeVecNormale > 1e-13) {
1116 DirNormale=VecNormale;
1117 IntSurf::MakeTransition(tgline,tgrst,DirNormale,TLine,TArc);
1118 }
1119 else {
1120 TLine.SetValue(Standard_True,IntSurf_Undecided);
1121 TArc.SetValue(Standard_True,IntSurf_Undecided);
1122 }
191478a5 1123
191478a5 1124
e618b526 1125 ptfin.SetArc(reversed,currentarc,currentparam,TLine,TArc);
1126 if (!solrst.Point(i).IsNew()) {
1127 ptfin.SetVertex(reversed,solrst.Point(i).Vertex());
191478a5 1128 }
e618b526 1129 wline->AddVertex(ptfin);
1130 if (themult == 0) {
1131 wline->SetLastPoint(wline->NbVertex());
1132 }
1133
1134 themult--;
191478a5 1135 }
e618b526 1136 }
191478a5 1137 }
e618b526 1138 else if (iwline->IsTangentAtEnd())
1139 {
191478a5 1140 gp_Pnt psol = thelin->Value(Nbpts).Value();
1141 thelin->Value(Nbpts).ParametersOnS1(U1,V1);
1142 thelin->Value(Nbpts).ParametersOnS2(U2,V2);
1143 ptfin.SetValue(psol,TolArc,Standard_True);
1144 ptfin.SetParameters(U1,V1,U2,V2);
1145 ptfin.SetParameter(Nbpts);
1146 wline->AddVertex(ptfin);
1147 wline->SetLastPoint(wline->NbVertex());
1148 }
e618b526 1149 else
1150 {
191478a5 1151 gp_Pnt psol = thelin->Value(Nbpts).Value();
1152 thelin->Value(Nbpts).ParametersOnS1(U1,V1);
1153 thelin->Value(Nbpts).ParametersOnS2(U2,V2);
1154 ptfin.SetValue(psol,TolArc,Standard_False);
1155 ptfin.SetParameters(U1,V1,U2,V2);
1156 ptfin.SetParameter(Nbpts);
1157 wline->AddVertex(ptfin);
1158 wline->SetLastPoint(wline->NbVertex());
1159 }
1160 //
1161 // Il faut traiter les points de passage.
1162 slin.Append(wline);
7fd59977 1163 }// if(Nbpts>=2) {
1164 }// for (j=1; j<=Nblines; j++) {
1165
1166 // ON GERE LES RACCORDS ENTRE LIGNES. ELLE NE PEUVENT SE RACCORDER
1167 // QUE SUR DES POINTS DE TANGENCE
1168
1169
1170 Nblines = slin.Length();
d4b867e6 1171 for (Standard_Integer j=1; j<=Nblines-1; j++) {
7fd59977 1172 dofirst = dolast = Standard_False;
1173 const Handle(IntPatch_Line)& slinj = slin(j);
c5f3a425 1174 Handle(IntPatch_WLine) wlin1 (Handle(IntPatch_WLine)::DownCast (slinj));
7fd59977 1175 if (wlin1->HasFirstPoint()) {
191478a5 1176 ptdeb = wlin1->FirstPoint(indfirst);
1177 if (ptdeb.IsTangencyPoint()) {
1178 dofirst = Standard_True;
1179 }
7fd59977 1180 }
1181 if (wlin1->HasLastPoint()) {
191478a5 1182 ptfin = wlin1->LastPoint(indlast);
1183 if (ptfin.IsTangencyPoint()) {
1184 dolast = Standard_True;
1185 }
7fd59977 1186 }
191478a5 1187
7fd59977 1188 if (dofirst || dolast) {
d4b867e6 1189 for (Standard_Integer k=j+1; k<=Nblines;k++) {
191478a5 1190 const Handle(IntPatch_Line)& slink = slin(k);
c5f3a425 1191 Handle(IntPatch_WLine) wlin2 (Handle(IntPatch_WLine)::DownCast (slink));
191478a5 1192 if (wlin2->HasFirstPoint()) {
1193 ptbis = wlin2->FirstPoint(ind2);
1194 if (ptbis.IsTangencyPoint()) {
1195 if (dofirst ) {
1196 if (ptdeb.Value().Distance(ptbis.Value()) <= TolArc) {
1197 ptdeb.SetMultiple(Standard_True);
1198 if (!ptbis.IsMultiple()) {
1199 ptbis.SetMultiple(Standard_True);
1200 wlin2->Replace(ind2,ptbis);
1201 }
1202 }
1203 }
1204 if (dolast ) {
1205 if (ptfin.Value().Distance(ptbis.Value()) <= TolArc) {
1206 ptfin.SetMultiple(Standard_True);
1207 if (!ptbis.IsMultiple()) {
1208 ptbis.SetMultiple(Standard_True);
1209 wlin2->Replace(ind2,ptbis);
1210 }
1211 }
1212 }
1213 }
1214 }
1215 if (wlin2->HasLastPoint()) {
1216 ptbis = wlin2->LastPoint(ind2);
1217 if (ptbis.IsTangencyPoint()) {
1218 if (dofirst ) {
1219 if (ptdeb.Value().Distance(ptbis.Value()) <= TolArc) {
1220 ptdeb.SetMultiple(Standard_True);
1221 if (!ptbis.IsMultiple()) {
1222 ptbis.SetMultiple(Standard_True);
1223 wlin2->Replace(ind2,ptbis);
1224 }
1225 }
1226 }
1227 if (dolast ) {
1228 if (ptfin.Value().Distance(ptbis.Value()) <= TolArc) {
1229 ptfin.SetMultiple(Standard_True);
1230 if (!ptbis.IsMultiple()) {
1231 ptbis.SetMultiple(Standard_True);
1232 wlin2->Replace(ind2,ptbis);
1233 }
1234 }
1235 }
1236 }
1237 }
1238 }
1239 if(dofirst)
1240 wlin1->Replace(indfirst,ptdeb);
1241 if(dolast)
1242 wlin1->Replace(indlast,ptfin);
7fd59977 1243 }
1244 }
1245 }// if (seqpdep.Length() != 0 || seqpins.Length() != 0) {
1246 //
1247 // Treatment the segments
1248 NbSegm = solrst.NbSegments();
1249 if (NbSegm) {
d4b867e6 1250 for(Standard_Integer i=1; i<=NbSegm; i++) {
7fd59977 1251 thesegm = solrst.Segment(i);
e618b526 1252 //Check if segment is degenerated
1253 if(thesegm.HasFirstPoint() && thesegm.HasLastPoint())
1254 {
1255 Standard_Real tol2 = Precision::Confusion();
1256 tol2 *= tol2;
1257 const gp_Pnt& aPf = thesegm.FirstPoint().Value();
1258 const gp_Pnt& aPl = thesegm.LastPoint().Value();
1259 if(aPf.SquareDistance(aPl) <= tol2)
1260 {
1261 //segment can be degenerated - check inner point
1262 paramf = thesegm.FirstPoint().Parameter();
1263 paraml = thesegm.LastPoint().Parameter();
1264 gp_Pnt2d _p2d =
1265 thesegm.Curve()->Value(.57735 * paramf + 0.42265 * paraml);
1266 gp_Pnt aPm;
1267 if(reversed)
1268 {
1269 Surf1->D0(_p2d.X(), _p2d.Y(), aPm);
1270 }
1271 else
1272 {
1273 Surf2->D0(_p2d.X(), _p2d.Y(), aPm);
1274 }
1275 if(aPm.SquareDistance(aPf) <= tol2)
1276 {
1277 //Degenerated
1278 continue;
1279 }
1280 }
1281 }
1282
1283
7fd59977 1284 //----------------------------------------------------------------------
1285 // on cree une ligne d intersection contenant uniquement le segment.
1286 // VOIR POUR LA TRANSITION DE LA LIGNE
1287 // On ajoute aussi un polygone pour le traitement des intersections
1288 // entre ligne et restrictions de la surface implicite (PutVertexOnLine)
1289 //----------------------------------------------------------------------
1290 //-- Calcul de la transition sur la rline (12 fev 97)
1291 //-- reversed a le sens de OnFirst
1292 //--
1293 dofirst = dolast = Standard_False;
1294 procf = Standard_False;
1295 procl = Standard_False;
1296 IntSurf_Transition TLineUnk,TArcUnk;
1297
1298 IntPatch_Point _thepointAtBeg;
1299 IntPatch_Point _thepointAtEnd;
191478a5 1300
7fd59977 1301 Standard_Boolean TransitionOK=Standard_False;
1302
1303 if(thesegm.HasFirstPoint()) {
191478a5 1304 Standard_Real _u1,_v1,_u2,_v2;
1305
1306 dofirst = Standard_True;
1307 PStartf = thesegm.FirstPoint();
1308 paramf = PStartf.Parameter();
1309
1310 gp_Pnt2d _p2d = thesegm.Curve()->Value(paramf);
1311 Handle(Adaptor3d_HVertex) _vtx;
1312 if(PStartf.IsNew()==Standard_False)
1313 _vtx= PStartf.Vertex();
1314 const gp_Pnt& _Pp = PStartf.Value();
1315 _thepointAtBeg.SetValue(_Pp,PStartf.Tolerance(),Standard_False);
1316 if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
1317 Quad.Parameters(_Pp,_u1,_v1);
1318 _u2=_p2d.X(); _v2=_p2d.Y();
1319 }
1320 else { //-- typeS1 != Pln && Cyl && Sph && Cone
1321 Quad.Parameters(_Pp,_u2,_v2);
1322 _u1=_p2d.X(); _v1=_p2d.Y();
1323 }
1324 _thepointAtBeg.SetParameters(_u1,_v1,_u2,_v2);
1325 _thepointAtBeg.SetParameter(paramf);
1326 if(PStartf.IsNew()==Standard_False)
1327 _thepointAtBeg.SetVertex(reversed,_vtx);
1328 _thepointAtBeg.SetArc(reversed,thesegm.Curve(),paramf,TLineUnk,TArcUnk);
1329
1330
1331 gp_Vec d1u1,d1v1,d1u2,d1v2; gp_Vec2d _d2d;
1332 Surf1->D1(_u1,_v1,ptbid,d1u1,d1v1);
1333 norm1 = d1u1.Crossed(d1v1);
1334 Surf2->D1(_u2,_v2,ptbid,d1u2,d1v2);
1335 norm2 = d1u2.Crossed(d1v2);
1336
1337 thesegm.Curve()->D1(paramf,_p2d,_d2d);
1338 if(reversed) {
1339 tgline.SetLinearForm(_d2d.X(),d1u1,_d2d.Y(),d1v1);
1340 }
1341 else {
1342 tgline.SetLinearForm(_d2d.X(),d1u2,_d2d.Y(),d1v2);
1343 }
1344 _u1=tgline.DotCross(norm2,norm1);
1345 TransitionOK=Standard_True;
1346 if (_u1 > 0.00000001) {
1347 trans1 = IntSurf_Out;
1348 trans2 = IntSurf_In;
1349 }
1350 else if(_u1 < -0.00000001) {
1351 trans1 = IntSurf_In;
1352 trans2 = IntSurf_Out;
1353 }
1354 else {
1355 TransitionOK=Standard_False;
1356 }
7fd59977 1357 }
1358 if(thesegm.HasLastPoint()) {
191478a5 1359 Standard_Real _u1,_v1,_u2,_v2;
1360
1361 dolast = Standard_True;
1362 PStartl = thesegm.LastPoint();
1363 paraml = PStartl.Parameter();
1364
1365 gp_Pnt2d _p2d = thesegm.Curve()->Value(paraml);
1366 Handle(Adaptor3d_HVertex) _vtx;
1367 if(PStartl.IsNew()==Standard_False)
1368 _vtx = PStartl.Vertex();
1369 const gp_Pnt& _Pp = PStartl.Value();
1370 IntPatch_Point _thepoint;
1371 _thepointAtEnd.SetValue(_Pp,PStartl.Tolerance(),Standard_False);
1372 if (!reversed) { //-- typeS1 = Pln || Cyl || Sph || Cone
1373 Quad.Parameters(_Pp,_u1,_v1);
1374 _u2=_p2d.X(); _v2=_p2d.Y();
1375 }
1376 else { //-- typeS1 != Pln && Cyl && Sph && Cone
1377 Quad.Parameters(_Pp,_u2,_v2);
1378 _u1=_p2d.X(); _v1=_p2d.Y();
1379 }
1380 _thepointAtEnd.SetParameters(_u1,_v1,_u2,_v2);
1381 _thepointAtEnd.SetParameter(paraml);
1382 if(PStartl.IsNew()==Standard_False)
1383 _thepointAtEnd.SetVertex(reversed,_vtx);
1384 _thepointAtEnd.SetArc(reversed,thesegm.Curve(),paraml,TLineUnk,TArcUnk);
1385
1386
1387
1388 gp_Vec d1u1,d1v1,d1u2,d1v2; gp_Vec2d _d2d;
1389 Surf1->D1(_u1,_v1,ptbid,d1u1,d1v1);
1390 norm1 = d1u1.Crossed(d1v1);
1391 Surf2->D1(_u2,_v2,ptbid,d1u2,d1v2);
1392 norm2 = d1u2.Crossed(d1v2);
1393
1394 thesegm.Curve()->D1(paraml,_p2d,_d2d);
1395 if(reversed) {
1396 tgline.SetLinearForm(_d2d.X(),d1u1,_d2d.Y(),d1v1);
1397 }
1398 else {
1399 tgline.SetLinearForm(_d2d.X(),d1u2,_d2d.Y(),d1v2);
1400 }
1401 _u1=tgline.DotCross(norm2,norm1);
1402 TransitionOK=Standard_True;
1403 if (_u1 > 0.00000001) {
1404 trans1 = IntSurf_Out;
1405 trans2 = IntSurf_In;
1406 }
1407 else if(_u1 < -0.00000001) {
1408 trans1 = IntSurf_In;
1409 trans2 = IntSurf_Out;
1410 }
1411 else {
1412 TransitionOK=Standard_False;
1413 }
7fd59977 1414 }
1415 if(TransitionOK==Standard_False) {
191478a5 1416 //-- rline = new IntPatch_RLine (thesegm.Curve(),reversed,Standard_False);
1417 rline = new IntPatch_RLine (Standard_False);
1418 if(reversed) {
1419 rline->SetArcOnS1(thesegm.Curve());
1420 }
1421 else {
1422 rline->SetArcOnS2(thesegm.Curve());
1423 }
7fd59977 1424 }
1425 else {
191478a5 1426 //-- rline = new IntPatch_RLine (thesegm.Curve(),reversed,Standard_False,trans1,trans2);
1427 rline = new IntPatch_RLine (Standard_False,trans1,trans2);
1428 if(reversed) {
1429 rline->SetArcOnS1(thesegm.Curve());
1430 }
1431 else {
1432 rline->SetArcOnS2(thesegm.Curve());
1433 }
7fd59977 1434 }
1435
1436 //------------------------------
1437 //-- Ajout des points
1438 //--
1439 if (thesegm.HasFirstPoint()) {
191478a5 1440 rline->AddVertex(_thepointAtBeg);
1441 rline->SetFirstPoint(rline->NbVertex());
7fd59977 1442 }
191478a5 1443
7fd59977 1444 if (thesegm.HasLastPoint()) {
191478a5 1445 rline->AddVertex(_thepointAtEnd);
1446 rline->SetLastPoint(rline->NbVertex());
7fd59977 1447 }
1448
1449 // Polygone sur restriction solution
1450 if (dofirst && dolast) {
191478a5 1451 Standard_Real prm;
1452 gp_Pnt ptpoly;
1453 IntSurf_PntOn2S p2s;
1454 Handle(IntSurf_LineOn2S) Thelin = new IntSurf_LineOn2S ();
1455 Handle(Adaptor2d_HCurve2d) arcsegm = thesegm.Curve();
1456 Standard_Integer nbsample = 100;
1457
1458 if (!reversed) {
d4b867e6 1459 for (Standard_Integer j=1; j<=nbsample; j++) {
191478a5 1460 prm = paramf + (j-1)*(paraml-paramf)/(nbsample-1);
1461 arcsegm->D0(prm,p2d);
1462 Surf2->D0(p2d.X(),p2d.Y(),ptpoly);
1463
1464 Quad.Parameters(ptpoly,U1,V1);
1465 p2s.SetValue(ptpoly,U1,V1,p2d.X(),p2d.Y());
1466 Thelin->Add(p2s);
1467 }
1468 }
1469 else {
d4b867e6 1470 for (Standard_Integer j=1; j<=nbsample; j++) {
191478a5 1471 prm = paramf + (j-1)*(paraml-paramf)/(nbsample-1);
1472 arcsegm->D0(prm,p2d);
1473 Surf1->D0(p2d.X(),p2d.Y(),ptpoly);
1474
1475 Quad.Parameters(ptpoly,U2,V2);
1476 p2s.SetValue(ptpoly,p2d.X(),p2d.Y(),U2,V2);
1477 Thelin->Add(p2s);
1478 }
1479 }
1480 rline->Add(Thelin);
7fd59977 1481 }
1482
1483 if (dofirst || dolast) {
191478a5 1484 Nblines = slin.Length();
d4b867e6 1485 for (Standard_Integer j=1; j<=Nblines; j++) {
191478a5 1486 const Handle(IntPatch_Line)& slinj = slin(j);
1487 typ = slinj->ArcType();
1488 if (typ == IntPatch_Walking) {
c5f3a425 1489 Nbpts = Handle(IntPatch_WLine)::DownCast (slinj)->NbVertex();
191478a5 1490 }
1491 else {
c5f3a425 1492 Nbpts = Handle(IntPatch_RLine)::DownCast (slinj)->NbVertex();
191478a5 1493 }
d4b867e6 1494 for (Standard_Integer k=1; k<=Nbpts;k++) {
191478a5 1495 if (typ == IntPatch_Walking) {
c5f3a425 1496 ptdeb = Handle(IntPatch_WLine)::DownCast (slinj)->Vertex(k);
191478a5 1497 }
1498 else {
c5f3a425 1499 ptdeb = Handle(IntPatch_RLine)::DownCast (slinj)->Vertex(k);
191478a5 1500 }
1501 if (dofirst) {
1502
1503 if (ptdeb.Value().Distance(PStartf.Value()) <=TolArc) {
1504 ptdeb.SetMultiple(Standard_True);
1505 if (typ == IntPatch_Walking) {
c5f3a425 1506 Handle(IntPatch_WLine)::DownCast (slinj)->Replace(k,ptdeb);
191478a5 1507 }
1508 else {
c5f3a425 1509 Handle(IntPatch_RLine)::DownCast (slinj)->Replace(k,ptdeb);
191478a5 1510 }
1511 ptdeb.SetParameter(paramf);
1512 rline->AddVertex(ptdeb);
1513 if (!procf){
1514 procf=Standard_True;
1515 rline->SetFirstPoint(rline->NbVertex());
1516 }
1517 }
1518 }
1519 if (dolast) {
1520 if(dofirst) { //-- on recharge le ptdeb
1521 if (typ == IntPatch_Walking) {
c5f3a425 1522 ptdeb = Handle(IntPatch_WLine)::DownCast (slinj)->Vertex(k);
191478a5 1523 }
1524 else {
c5f3a425 1525 ptdeb = Handle(IntPatch_RLine)::DownCast (slinj)->Vertex(k);
191478a5 1526 }
1527 }
1528 if (ptdeb.Value().Distance(PStartl.Value()) <=TolArc) {
1529 ptdeb.SetMultiple(Standard_True);
1530 if (typ == IntPatch_Walking) {
c5f3a425 1531 Handle(IntPatch_WLine)::DownCast (slinj)->Replace(k,ptdeb);
191478a5 1532 }
1533 else {
c5f3a425 1534 Handle(IntPatch_RLine)::DownCast (slinj)->Replace(k,ptdeb);
191478a5 1535 }
1536 ptdeb.SetParameter(paraml);
1537 rline->AddVertex(ptdeb);
1538 if (!procl){
1539 procl=Standard_True;
1540 rline->SetLastPoint(rline->NbVertex());
1541 }
1542 }
1543 }
1544 }
1545 }
7fd59977 1546 }
1547 slin.Append(rline);
1548 }
1549 }// if (NbSegm)
1550 //
1551 // on traite les restrictions de la surface implicite
71958f7d 1552
1553 for (Standard_Integer i=1, aNbLin = slin.Length(); i<=aNbLin; i++)
7fd59977 1554 {
d4b867e6 1555 Handle(IntPatch_Line)& aL = slin(i);
1556
7fd59977 1557 if (!reversed)
d4b867e6 1558 IntPatch_RstInt::PutVertexOnLine(aL,Surf1,D1,Surf2,Standard_True,TolTang);
7fd59977 1559 else
d4b867e6 1560 IntPatch_RstInt::PutVertexOnLine(aL,Surf2,D2,Surf1,Standard_False,TolTang);
71958f7d 1561
1562 if(aL->ArcType() == IntPatch_Walking)
1563 {
1564 const Handle(IntPatch_WLine) aWL = Handle(IntPatch_WLine)::DownCast(aL);
1565 slin.Append(aWL);
1566 slin.Remove(i);
1567 i--;
1568 aNbLin--;
1569 }
7fd59977 1570 }
d4b867e6 1571
71958f7d 1572 // Now slin is filled as follows: lower indices correspond to Restriction line,
1573 // after (higher indices) - only Walking-line.
1574
1fbf69bb 1575 const Standard_Real aTol3d = Max(Func.Tolerance(), TolTang);
77dbd1f1 1576 const Handle(Adaptor3d_HSurface)& aQSurf = (reversed) ? Surf2 : Surf1;
1577 const Handle(Adaptor3d_HSurface)& anOtherSurf = (reversed) ? Surf1 : Surf2;
d4b867e6 1578
1579 for (Standard_Integer i = 1; i <= slin.Length(); i++)
1580 {
77dbd1f1 1581 const Handle(IntPatch_PointLine)& aL1 = Handle(IntPatch_PointLine)::DownCast(slin(i));
1582 const Handle(IntPatch_RLine)& aRL1 = Handle(IntPatch_RLine)::DownCast(aL1);
1583
1584 if(aRL1.IsNull())
1585 {
1586 //Walking-Walking cases are not supported
1587 break;
1588 }
1589
1590 const Handle(Adaptor2d_HCurve2d)& anArc = aRL1->IsArcOnS1() ?
1591 aRL1->ArcOnS1() :
1592 aRL1->ArcOnS2();
1593 if(anArc->Curve2d().GetType() != GeomAbs_Line)
1594 {
1595 //Restriction line must be isoline.
1596 //Other cases are not supported by
1597 //existing algorithms.
1598
1599 break;
1600 }
1601
1602 Standard_Boolean isFirstDeleted = Standard_False;
1603
d4b867e6 1604 for(Standard_Integer j = i + 1; j <= slin.Length(); j++)
1605 {
d4b867e6 1606 Handle(IntPatch_PointLine) aL2 = Handle(IntPatch_PointLine)::DownCast(slin(j));
d4b867e6 1607 Handle(IntPatch_RLine) aRL2 = Handle(IntPatch_RLine)::DownCast(aL2);
1608
71958f7d 1609 //Here aL1 (i-th line) is Restriction-line and aL2 (j-th line) is
1610 //Restriction or Walking
d4b867e6 1611
77dbd1f1 1612 if(!aRL2.IsNull())
1613 {
d677b214 1614 const Handle(Adaptor2d_HCurve2d)& anArc2 = aRL2->IsArcOnS1() ?
1615 aRL2->ArcOnS1() :
1616 aRL2->ArcOnS2();
1617 if(anArc2->Curve2d().GetType() != GeomAbs_Line)
d4b867e6 1618 {
77dbd1f1 1619 //Restriction line must be isoline.
1620 //Other cases are not supported by
1621 //existing algorithms.
d4b867e6 1622
77dbd1f1 1623 continue;
d4b867e6 1624 }
77dbd1f1 1625 }
d4b867e6 1626
77dbd1f1 1627 //aDir can be equal to one of following four values only
1628 //(because Reastriction line is boundary of rectangular surface):
1629 //either {0, 1} or {0, -1} or {1, 0} or {-1, 0}.
1630 const gp_Dir2d aDir = anArc->Curve2d().Line().Direction();
d4b867e6 1631
77dbd1f1 1632 Standard_Real aTol2d = anOtherSurf->UResolution(aTol3d),
1633 aPeriod = anOtherSurf->IsVPeriodic() ? anOtherSurf->VPeriod() : 0.0;
d4b867e6 1634
77dbd1f1 1635 if(Abs(aDir.X()) < 0.5)
1636 {//Restriction directs along V-direction
1637 aTol2d = anOtherSurf->VResolution(aTol3d);
1638 aPeriod = anOtherSurf->IsUPeriodic() ? anOtherSurf->UPeriod() : 0.0;
d4b867e6 1639 }
1640
77dbd1f1 1641 const Standard_Boolean isCoincide = IsCoincide(Func, aL2, anArc, aRL1->IsArcOnS1(),
1642 aTol3d, aTol2d, aPeriod);
d4b867e6 1643
1644 if(isCoincide)
77dbd1f1 1645 {
1646 if(aRL2.IsNull())
1647 {//Delete Walking-line
1648 slin.Remove(j);
1649 j--;
1650 }
1651 else
1652 {//Restriction-Restriction
1653 const Handle(Adaptor2d_HCurve2d)& anArc2 = aRL2->IsArcOnS1() ?
1654 aRL2->ArcOnS1() :
1655 aRL2->ArcOnS2();
1656
1657 const Standard_Real aRange2 = anArc2->LastParameter() -
1658 anArc2->FirstParameter();
1659 const Standard_Real aRange1 = anArc->LastParameter() -
1660 anArc->FirstParameter();
1661
1662 if(aRange2 > aRange1)
1663 {
1664 isFirstDeleted = Standard_True;
1665 break;
1666 }
1667 else
1668 {//Delete j-th line
1669 slin.Remove(j);
1670 j--;
1671 }
1672 }
d4b867e6 1673 }
77dbd1f1 1674 } //for(Standard_Integer j = i + 1; j <= slin.Length(); j++)
1675
1676 if(isFirstDeleted)
1677 {//Delete i-th line
1678 slin.Remove(i--);
d4b867e6 1679 }
77dbd1f1 1680 }//for (Standard_Integer i = 1; i <= slin.Length(); i++)
d4b867e6 1681
7fd59977 1682 empt = (slin.Length() == 0 && spnt.Length() == 0);
1683 done = Standard_True;
d4b867e6 1684
7fd59977 1685
191478a5 1686 if(slin.Length() == 0)
1687 return;
7fd59977 1688
191478a5 1689 Standard_Boolean isDecomposeRequired = (Quad.TypeQuadric() == GeomAbs_Cone) ||
a09c8f3a 1690 (Quad.TypeQuadric() == GeomAbs_Sphere) ||
1691 (Quad.TypeQuadric() == GeomAbs_Cylinder) ||
1692 (Quad.TypeQuadric() == GeomAbs_Torus);
7fd59977 1693
191478a5 1694 if(!isDecomposeRequired)
1695 return;
7fd59977 1696
d4b867e6 1697 // post processing for cones and spheres
1698
191478a5 1699 const Handle(Adaptor3d_TopolTool)& PDomain = (reversed) ? D1 : D2;
7fd59977 1700
191478a5 1701 IntPatch_SequenceOfLine dslin;
1702 Standard_Boolean isDecompose = Standard_False;
d4b867e6 1703 for(Standard_Integer i = 1; i <= slin.Length(); i++ )
191478a5 1704 {
77dbd1f1 1705 if(DecomposeResult( Handle(IntPatch_PointLine)::DownCast(slin(i)),
1706 reversed, Quad, PDomain, aQSurf,
a09c8f3a 1707 anOtherSurf, TolArc, aTol3d, dslin))
191478a5 1708 {
1709 isDecompose = Standard_True;
7fd59977 1710 }
7fd59977 1711 }
1712
191478a5 1713 if(!isDecompose)
1714 return;
1715
1716 slin.Clear();
d4b867e6 1717 for(Standard_Integer i = 1; i <= dslin.Length(); i++ )
191478a5 1718 slin.Append(dslin(i));
7fd59977 1719}
1720
1721// correct U parameter of the start point of line on Quadric
1722// (change 0->2PI or vs, if necessary)
1723static Standard_Real AdjustUFirst(Standard_Real U1,Standard_Real U2)
1724{
1725 Standard_Real u = U1;
1726
1727 // case: no adjustment
c6541a0c 1728 if( U1 > 0. && U1 < (2.*M_PI) )
7fd59977 1729 return u;
1730
1731 // case: near '0'
1732 if( U1 == 0. || fabs(U1) <= 1.e-9 ) {
c6541a0c
D
1733 if( U2 > 0. && U2 < (2.*M_PI) )
1734 u = ( U2 < ((2.*M_PI)-U2) ) ? 0. : (2.*M_PI);
7fd59977 1735 else {
1736 Standard_Real uu = U2;
c6541a0c 1737 if( U2 > (2.*M_PI) )
191478a5 1738 while( uu > (2.*M_PI) )
1739 uu -= (2.*M_PI);
7fd59977 1740 else
191478a5 1741 while( uu < 0.)
1742 uu += (2.*M_PI);
1743
c6541a0c 1744 u = ( uu < ((2.*M_PI)-uu) ) ? 0. : (2.*M_PI);
7fd59977 1745 }
1746 }
1747 // case: near '2PI'
c6541a0c
D
1748 else if( U1 == (2.*M_PI) || fabs((2.*M_PI)-fabs(U1)) <= 1.e-9 ) {
1749 if( U2 > 0. && U2 < (2.*M_PI) )
1750 u = ( U2 < ((2.*M_PI)-U2) ) ? 0. : (2.*M_PI);
7fd59977 1751 else {
1752 Standard_Real uu = U2;
c6541a0c 1753 if( U2 > (2.*M_PI) )
191478a5 1754 while( uu > (2.*M_PI) )
1755 uu -= (2.*M_PI);
7fd59977 1756 else
191478a5 1757 while( uu < 0.)
1758 uu += (2.*M_PI);
1759
c6541a0c 1760 u = ( uu < ((2.*M_PI)-uu) ) ? 0. : (2.*M_PI);
7fd59977 1761 }
1762 }
1763 // case: '<0. || >2PI'
1764 else {
1765 if(U1 < 0.)
1766 while(u < 0.)
191478a5 1767 u += 2.*M_PI;
c6541a0c
D
1768 if(U1 > (2.*M_PI))
1769 while(u > (2.*M_PI))
191478a5 1770 u -= (2.*M_PI);
7fd59977 1771 }
1772
1773 return u;
1774}
1775
7fd59977 1776// collect vertices, reject equals
77dbd1f1 1777static Handle(IntSurf_LineOn2S) GetVertices(const Handle(IntPatch_PointLine)& thePLine,
191478a5 1778 const Standard_Real TOL3D,
1779 const Standard_Real TOL2D)
7fd59977 1780{
191478a5 1781 // Standard_Real TOL3D = 1.e-12, TOL2D = 1.e-8;
7fd59977 1782
1783 Handle(IntSurf_LineOn2S) vertices = new IntSurf_LineOn2S();
1784
1785 Standard_Real U1 = 0., U2 = 0., V1 = 0., V2 = 0.;
1786 Standard_Integer i = 0, k = 0;
77dbd1f1 1787 Standard_Integer NbVrt = thePLine->NbVertex();
191478a5 1788
7fd59977 1789 TColStd_Array1OfInteger anVrts(1,NbVrt);
1790 anVrts.Init(0);
1791
1792 // check equal vertices
1793 for(i = 1; i <= NbVrt; i++) {
1794
1795 if( anVrts(i) == -1 ) continue;
1796
77dbd1f1 1797 const IntPatch_Point& Pi = thePLine->Vertex(i);
7fd59977 1798
1799 for(k = (i+1); k <= NbVrt; k++) {
1800
1801 if( anVrts(k) == -1 ) continue;
1802
77dbd1f1 1803 const IntPatch_Point& Pk = thePLine->Vertex(k);
7fd59977 1804
1805 if(Pi.Value().Distance(Pk.Value()) <= TOL3D) {
191478a5 1806 // suggest the points are equal;
1807 // test 2d parameters on surface
1808 Standard_Boolean sameU1 = Standard_False;
1809 Standard_Boolean sameV1 = Standard_False;
1810 Standard_Boolean sameU2 = Standard_False;
1811 Standard_Boolean sameV2 = Standard_False;
1812
1813 Pi.ParametersOnS1(U1,V1);
1814 Pk.ParametersOnS1(U2,V2);
1815 if(fabs(U1-U2) <= TOL2D) sameU1 = Standard_True;
1816 if(fabs(V1-V2) <= TOL2D) sameV1 = Standard_True;
1817
1818 Pi.ParametersOnS2(U1,V1);
1819 Pk.ParametersOnS2(U2,V2);
1820 if(fabs(U1-U2) <= TOL2D) sameU2 = Standard_True;
1821 if(fabs(V1-V2) <= TOL2D) sameV2 = Standard_True;
1822
1823 if((sameU1 && sameV1) && (sameU2 && sameV2))
1824 anVrts(k) = -1;
7fd59977 1825 }
1826 }
1827 }
1828
1829 // copy further processed vertices
1830 for(i = 1; i <= NbVrt; i++) {
1831 if( anVrts(i) == -1 ) continue;
77dbd1f1 1832 vertices->Add(thePLine->Vertex(i).PntOn2S());
7fd59977 1833 }
1834 return vertices;
1835}
1836
7fd59977 1837static void SearchVertices(const Handle(IntSurf_LineOn2S)& Line,
191478a5 1838 const Handle(IntSurf_LineOn2S)& Vertices,
1839 TColStd_Array1OfInteger& PTypes)
7fd59977 1840{
1841 Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
1842 Standard_Integer ip = 0, iv = 0;
1843 for(ip = 1; ip <= nbp; ip++) {
1844 const IntSurf_PntOn2S& aP = Line->Value(ip);
1845 Standard_Integer type = 0;
1846 for(iv = 1; iv <= nbv; iv++) {
1847 const IntSurf_PntOn2S& aV = Vertices->Value(iv);
16423f20 1848 if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
191478a5 1849 type = iv;
1850 break;
7fd59977 1851 }
1852 }
1853 PTypes(ip) = type;
1854 }
1855}
1856
1857static inline Standard_Boolean IsSeamParameter(const Standard_Real U,
191478a5 1858 const Standard_Real TOL2D)
7fd59977 1859{
c6541a0c 1860 return (fabs(U) <= TOL2D || fabs(2.*M_PI - U) <= TOL2D);
7fd59977 1861}
1862
1863static inline Standard_Real AdjustU(const Standard_Real U)
1864{
c6541a0c 1865 Standard_Real u = U, DBLPI = 2.*M_PI;
7fd59977 1866 if(u < 0. || u > DBLPI) {
1867 if(u < 0.)
1868 while(u < 0.)
191478a5 1869 u += DBLPI;
7fd59977 1870 else
1871 while(u > DBLPI)
191478a5 1872 u -= DBLPI;
7fd59977 1873 }
1874 return u;
1875}
1876
1877static inline void Correct2DBounds(const Standard_Real UF,
191478a5 1878 const Standard_Real UL,
1879 const Standard_Real VF,
1880 const Standard_Real VL,
1881 const Standard_Real TOL2D,
1882 Standard_Real& U,
1883 Standard_Real& V)
7fd59977 1884{
1885 Standard_Real Eps = 1.e-16;
1886 Standard_Real dUF = fabs(U - UF);
1887 Standard_Real dUL = fabs(U - UL);
1888 Standard_Real dVF = fabs(V - VF);
1889 Standard_Real dVL = fabs(V - VL);
1890 if(dUF <= TOL2D && dUF > Eps) U = UF;
1891 if(dUL <= TOL2D && dUL > Eps) U = UL;
1892 if(dVF <= TOL2D && dVF > Eps) V = VF;
1893 if(dVL <= TOL2D && dVL > Eps) V = VL;
1894}
1895
1896static void AdjustLine(Handle(IntSurf_LineOn2S)& Line,
191478a5 1897 const Standard_Boolean IsReversed,
1898 const Handle(Adaptor3d_HSurface)& QSurf,
1899 const Standard_Real TOL2D)
7fd59977 1900{
1901 Standard_Real VF = QSurf->FirstVParameter();
1902 Standard_Real VL = QSurf->LastVParameter();
1903 Standard_Real UF = QSurf->FirstUParameter();
1904 Standard_Real UL = QSurf->LastUParameter();
1905
1906 Standard_Integer nbp = Line->NbPoints(), ip = 0;
1907 Standard_Real U = 0., V = 0.;
1908 for(ip = 1; ip <= nbp; ip++) {
1909 if(IsReversed) {
1910 Line->Value(ip).ParametersOnS2(U,V);
1911 U = AdjustU(U);
1912 Correct2DBounds(UF,UL,VF,VL,TOL2D,U,V);
1913 Line->SetUV(ip,Standard_False,U,V);
1914 }
1915 else {
1916 Line->Value(ip).ParametersOnS1(U,V);
1917 U = AdjustU(U);
1918 Correct2DBounds(UF,UL,VF,VL,TOL2D,U,V);
1919 Line->SetUV(ip,Standard_True,U,V);
1920 }
1921 }
1922}
1923
1924static Standard_Boolean InsertSeamVertices(Handle(IntSurf_LineOn2S)& Line,
191478a5 1925 const Standard_Boolean IsReversed,
1926 Handle(IntSurf_LineOn2S)& Vertices,
1927 const TColStd_Array1OfInteger& PTypes,
1928 const Standard_Real TOL2D)
7fd59977 1929{
1930 Standard_Boolean result = Standard_False;
1931 Standard_Integer ip = 0, nbp = Line->NbPoints();
1932 Standard_Real U = 0., V = 0.;
1933 for(ip = 1; ip <= nbp; ip++) {
1934 Standard_Integer ipt = PTypes(ip);
1935 if(ipt != 0) {
1936 const IntSurf_PntOn2S& aP = Line->Value(ip);
1937 if(IsReversed)
191478a5 1938 aP.ParametersOnS2(U,V); // S2 - quadric
7fd59977 1939 else
191478a5 1940 aP.ParametersOnS1(U,V); // S1 - quadric
7fd59977 1941 U = AdjustU(U);
1942 if(IsSeamParameter(U,TOL2D)) {
191478a5 1943 if(ip == 1 || ip == nbp) {
1944 Standard_Real U1 = 0., V1 = 0.;
1945 Standard_Integer ipp = (ip == 1) ? (ip+1) : (ip-1);
1946 if(IsReversed)
1947 Line->Value(ipp).ParametersOnS2(U1,V1); // S2 - quadric
1948 else
1949 Line->Value(ipp).ParametersOnS1(U1,V1); // S1 - quadric
1950 Standard_Real u = AdjustUFirst(U,U1);
1951 if(fabs(u-U) >= 1.5*M_PI) {
1952 Standard_Real U2 = 0., V2 = 0.;
1953 if(IsReversed) {
1954 Line->Value(ip).ParametersOnS1(U2,V2); // prm
1955 Line->SetUV(ip,Standard_False,u,V);
1956 Line->SetUV(ip,Standard_True,U2,V2);
1957 }
1958 else {
1959 Line->Value(ip).ParametersOnS2(U2,V2); // prm
1960 Line->SetUV(ip,Standard_True,u,V);
1961 Line->SetUV(ip,Standard_False,U2,V2);
1962 }
1963 }
1964 }
1965 else {
1966 Standard_Integer ipp = ip - 1;
1967 Standard_Integer ipn = ip + 1;
1968 Standard_Real U1 = 0., V1 = 0., U2 = 0., V2 = 0.;
1969 if(IsReversed) {
1970 Line->Value(ipp).ParametersOnS2(U1,V1); // quad
1971 Line->Value(ipn).ParametersOnS2(U2,V2); // quad
1972 }
1973 else {
1974 Line->Value(ipp).ParametersOnS1(U1,V1); // quad
1975 Line->Value(ipn).ParametersOnS1(U2,V2); // quad
1976 }
1977 U1 = AdjustU(U1);
1978 U2 = AdjustU(U2);
1979 Standard_Boolean pnearZero = (fabs(U1) < fabs(2.*M_PI-U1)) ? Standard_True : Standard_False;
1980 Standard_Boolean cnearZero = (fabs(U) < fabs(2.*M_PI-U)) ? Standard_True : Standard_False;
1981 if(pnearZero == cnearZero) {
1982 if(!IsSeamParameter(U2,TOL2D) && !IsSeamParameter(U1,TOL2D)) {
1983 Standard_Real nU = (cnearZero) ? (2.*M_PI) : 0.;
1984 IntSurf_PntOn2S nP;
1985 nP.SetValue(aP.Value());
1986 Standard_Real U3 = 0., V3 = 0.;
1987 if(IsReversed) {
1988 Line->Value(ip).ParametersOnS1(U3,V3); // prm
1989 nP.SetValue(Standard_False,nU,V);
1990 nP.SetValue(Standard_True,U3,V3);
1991 }
1992 else {
1993 Line->Value(ip).ParametersOnS2(U3,V3); // prm
1994 nP.SetValue(Standard_True,nU,V);
1995 nP.SetValue(Standard_False,U3,V3);
1996 }
1997 Line->InsertBefore(ipn,nP);
1998 Vertices->Add(nP);
1999 result = Standard_True;
2000 break;
2001 }
2002 }
2003 else {
2004 if(!IsSeamParameter(U2,TOL2D) && !IsSeamParameter(U1,TOL2D)) {
2005 Standard_Real nU = (cnearZero) ? (2.*M_PI) : 0.;
2006 IntSurf_PntOn2S nP;
2007 nP.SetValue(aP.Value());
2008 Standard_Real U3 = 0., V3 = 0.;
2009 if(IsReversed) {
2010 Line->Value(ip).ParametersOnS1(U3,V3); // prm
2011 nP.SetValue(Standard_False,nU,V);
2012 nP.SetValue(Standard_True,U3,V3);
2013 }
2014 else {
2015 Line->Value(ip).ParametersOnS2(U3,V3); // prm
2016 nP.SetValue(Standard_True,nU,V);
2017 nP.SetValue(Standard_False,U3,V3);
2018 }
2019 Line->InsertBefore(ip,nP);
2020 Vertices->Add(nP);
2021 result = Standard_True;
2022 break;
2023 }
2024 else {
2025 // Line->InsertBefore(ip,Line->Value(ipn));
2026 // Line->RemovePoint(ip+2);
2027 // result = Standard_True;
2028 // cout << "swap vertex " << endl;
2029 // break;
2030 }
2031 }
2032 }
7fd59977 2033 }
2034 }
2035 }
2036 return result;
2037}
2038
191478a5 2039static void ToSmooth( const Handle(IntSurf_LineOn2S)& Line,
d4b867e6 2040 const Standard_Boolean IsReversed,
2041 const IntSurf_Quadric& Quad,
2042 const Standard_Boolean IsFirst,
2043 Standard_Real& D3D)
7fd59977 2044{
2045 if(Line->NbPoints() <= 10)
2046 return;
191478a5 2047
7fd59977 2048 D3D = 0.;
2049 Standard_Integer NbTestPnts = Line->NbPoints() / 5;
2050 if(NbTestPnts < 5) NbTestPnts = 5;
2051
2052 Standard_Integer startp = (IsFirst) ? 2 : (Line->NbPoints() - NbTestPnts - 2);
2053 Standard_Integer ip = 0;
2054 Standard_Real Uc = 0., Vc = 0., Un = 0., Vn = 0., DDU = 0., DDV = 0.;
2055
2056 for(ip = startp; ip <= NbTestPnts; ip++) {
2057 if(IsReversed) {
2058 Line->Value(ip).ParametersOnS2(Uc,Vc); // S2 - quadric
2059 Line->Value(ip+1).ParametersOnS2(Un,Vn);
2060 }
2061 else {
2062 Line->Value(ip).ParametersOnS1(Uc,Vc); // S1 - quadric
2063 Line->Value(ip+1).ParametersOnS1(Un,Vn);
2064 }
2065 DDU += fabs(fabs(Uc)-fabs(Un));
2066 DDV += fabs(fabs(Vc)-fabs(Vn));
191478a5 2067
7fd59977 2068 if(ip > startp) {
2069 Standard_Real DP = Line->Value(ip).Value().Distance(Line->Value(ip-1).Value());
2070 D3D += DP;
2071 }
2072 }
2073
2074 DDU /= (Standard_Real) NbTestPnts + 1;
2075 DDV /= (Standard_Real) NbTestPnts + 1;
191478a5 2076
7fd59977 2077 D3D /= (Standard_Real) NbTestPnts + 1;
2078
2079
2080 Standard_Integer Index1 = (IsFirst) ? 1 : (Line->NbPoints());
2081 Standard_Integer Index2 = (IsFirst) ? 2 : (Line->NbPoints()-1);
2082 Standard_Integer Index3 = (IsFirst) ? 3 : (Line->NbPoints()-2);
2083
2084 Standard_Boolean doU = Standard_False;
7fd59977 2085
2086 Standard_Real U1 = 0., U2 = 0., V1 = 0., V2 = 0., U3 = 0., V3 = 0.;
2087
2088 if(IsReversed) {
2089 Line->Value(Index1).ParametersOnS2(U1,V1); // S2 - quadric
2090 Line->Value(Index2).ParametersOnS2(U2,V2);
2091 Line->Value(Index3).ParametersOnS2(U3,V3);
2092 }
2093 else {
2094 Line->Value(Index1).ParametersOnS1(U1,V1); // S1 - quadric
2095 Line->Value(Index2).ParametersOnS1(U2,V2);
2096 Line->Value(Index3).ParametersOnS1(U3,V3);
2097 }
2098
2099 if(!doU && Quad.TypeQuadric() == GeomAbs_Sphere) {
c6541a0c 2100 if(fabs(fabs(U1)-fabs(U2)) > (M_PI/16.)) doU = Standard_True;
191478a5 2101
c6541a0c
D
2102 if(doU && (fabs(U1) <= 1.e-9 || fabs(U1-2.*M_PI) <= 1.e-9)) {
2103 if(fabs(V1-M_PI/2.) <= 1.e-9 || fabs(V1+M_PI/2.) <= 1.e-9) {}
7fd59977 2104 else {
191478a5 2105 doU = Standard_False;
7fd59977 2106 }
2107 }
2108 }
191478a5 2109
7fd59977 2110 if(Quad.TypeQuadric() == GeomAbs_Cone) {
2111 Standard_Real Uapx = 0., Vapx = 0.;
2112 Quad.Parameters(Quad.Cone().Apex(),Uapx,Vapx);
2113
c6541a0c 2114 if(fabs(fabs(U1)-fabs(U2)) > M_PI/32.) doU = Standard_True;
7fd59977 2115
c6541a0c 2116 if(doU && (fabs(U1) <= 1.e-9 || fabs(U1-2.*M_PI) <= 1.e-9)) {
7fd59977 2117 if(fabs(V1-Vapx) <= 1.e-9) {}
2118 else {
191478a5 2119 doU = Standard_False;
7fd59977 2120 }
2121 }
2122 }
2123
7fd59977 2124 if(doU) {
2125 Standard_Real dU = Min((DDU/10.),5.e-8);
2126 Standard_Real U = (U2 > U3) ? (U2 + dU) : (U2 - dU);
2127 if(IsReversed)
2128 Line->SetUV(Index1,Standard_False,U,V1);
2129 else
2130 Line->SetUV(Index1,Standard_True,U,V1);
2131 U1 = U;
2132 }
2133}
2134
2135static Standard_Boolean TestMiddleOnPrm(const IntSurf_PntOn2S& aP,
d4b867e6 2136 const IntSurf_PntOn2S& aV,
2137 const Standard_Boolean IsReversed,
2138 const Standard_Real ArcTol,
2139 const Handle(Adaptor3d_TopolTool)& PDomain)
191478a5 2140
7fd59977 2141{
2142 Standard_Boolean result = Standard_False;
2143 Standard_Real Up = 0., Vp = 0., Uv = 0., Vv = 0.;
2144 if(IsReversed) {
2145 aP.ParametersOnS1(Up,Vp); //S1 - parametric
2146 aV.ParametersOnS1(Uv,Vv);
2147 }
2148 else {
2149 aP.ParametersOnS2(Up,Vp); // S2 - parametric
2150 aV.ParametersOnS2(Uv,Vv);
2151 }
2152 Standard_Real Um = (Up + Uv)*0.5, Vm = (Vp + Vv)*0.5;
2153 gp_Pnt2d a2DPntM(Um,Vm);
2154 TopAbs_State PosM = PDomain->Classify(a2DPntM,ArcTol);
2155 if(PosM == TopAbs_ON || PosM == TopAbs_IN )
2156 result = Standard_True;
2157 return result;
2158}
2159
191478a5 2160static void VerifyVertices( const Handle(IntSurf_LineOn2S)& Line,
d4b867e6 2161 const Standard_Boolean IsReversed,
2162 const Handle(IntSurf_LineOn2S)& Vertices,
2163 const Standard_Real TOL2D,
2164 const Standard_Real ArcTol,
2165 const Handle(Adaptor3d_TopolTool)& PDomain,
2166 IntSurf_PntOn2S& VrtF,
2167 Standard_Boolean& AddFirst,
2168 IntSurf_PntOn2S& VrtL,
2169 Standard_Boolean& AddLast)
7fd59977 2170{
2171 Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
2172 Standard_Integer FIndexSame = 0, FIndexNear = 0, LIndexSame = 0, LIndexNear = 0;
2173 const IntSurf_PntOn2S& aPF = Line->Value(1);
2174 const IntSurf_PntOn2S& aPL = Line->Value(nbp);
2175 Standard_Real UF = 0., VF = 0., UL = 0., VL = 0.;
2176 if(IsReversed) {
2177 aPF.ParametersOnS2(UF,VF);
2178 aPL.ParametersOnS2(UL,VL);
2179 }
2180 else {
2181 aPF.ParametersOnS1(UF,VF);
2182 aPL.ParametersOnS1(UL,VL);
2183 }
2184 gp_Pnt2d a2DPF(UF,VF);
2185 gp_Pnt2d a2DPL(UL,VL);
2186 Standard_Real DistMinF = 1.e+100, DistMinL = 1.e+100;
2187 Standard_Integer FConjugated = 0, LConjugated = 0;
2188
2189 Standard_Integer iv = 0;
2190
2191 for(iv = 1; iv <= nbv; iv++) {
2192 Standard_Real Uv = 0., Vv = 0.;
2193 if(IsReversed) {
2194 Vertices->Value(iv).ParametersOnS2(Uv,Vv);
2195 Uv = AdjustU(Uv);
2196 Vertices->SetUV(iv,Standard_False,Uv,Vv);
2197 }
2198 else {
2199 Vertices->Value(iv).ParametersOnS1(Uv,Vv);
2200 Uv = AdjustU(Uv);
2201 Vertices->SetUV(iv,Standard_True,Uv,Vv);
2202 }
2203 }
2204
2205 for(iv = 1; iv <= nbv; iv++) {
2206 const IntSurf_PntOn2S& aV = Vertices->Value(iv);
16423f20 2207 if(aPF.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
7fd59977 2208 FIndexSame = iv;
2209 break;
2210 }
2211 else {
2212 Standard_Real Uv = 0., Vv = 0.;
2213 if(IsReversed)
2214 aV.ParametersOnS2(Uv,Vv);
2215 else
2216 aV.ParametersOnS1(Uv,Vv);
2217 gp_Pnt2d a2DV(Uv,Vv);
2218 Standard_Real Dist = a2DV.Distance(a2DPF);
2219 if(Dist < DistMinF) {
2220 DistMinF = Dist;
2221 FIndexNear = iv;
2222 if(FConjugated != 0)
2223 FConjugated = 0;
2224 }
2225 if(IsSeamParameter(Uv,TOL2D)) {
c6541a0c 2226 Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
7fd59977 2227 gp_Pnt2d a2DCV(Ucv,Vv);
2228 Standard_Real CDist = a2DCV.Distance(a2DPF);
2229 if(CDist < DistMinF) {
2230 DistMinF = CDist;
2231 FConjugated = iv;
2232 FIndexNear = iv;
2233 }
2234 }
2235 }
2236 }
2237
2238 for(iv = 1; iv <= nbv; iv++) {
2239 const IntSurf_PntOn2S& aV = Vertices->Value(iv);
16423f20 2240 if(aPL.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
7fd59977 2241 LIndexSame = iv;
2242 break;
2243 }
2244 else {
2245 Standard_Real Uv = 0., Vv = 0.;
2246 if(IsReversed)
2247 aV.ParametersOnS2(Uv,Vv);
2248 else
2249 aV.ParametersOnS1(Uv,Vv);
2250 gp_Pnt2d a2DV(Uv,Vv);
2251 Standard_Real Dist = a2DV.Distance(a2DPL);
2252 if(Dist < DistMinL) {
2253 DistMinL = Dist;
2254 LIndexNear = iv;
2255 if(LConjugated != 0)
2256 LConjugated = 0;
2257 }
2258 if(IsSeamParameter(Uv,TOL2D)) {
c6541a0c 2259 Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
7fd59977 2260 gp_Pnt2d a2DCV(Ucv,Vv);
2261 Standard_Real CDist = a2DCV.Distance(a2DPL);
2262 if(CDist < DistMinL) {
2263 DistMinL = CDist;
2264 LConjugated = iv;
2265 LIndexNear = iv;
2266 }
2267 }
2268 }
2269 }
2270
2271 AddFirst = Standard_False;
2272 AddLast = Standard_False;
2273
2274 if(FIndexSame == 0) {
2275 if(FIndexNear != 0) {
2276 const IntSurf_PntOn2S& aV = Vertices->Value(FIndexNear);
2277 Standard_Real Uv = 0., Vv = 0.;
2278 if(IsReversed)
2279 aV.ParametersOnS2(Uv,Vv);
2280 else
2281 aV.ParametersOnS1(Uv,Vv);
2282 if(IsSeamParameter(Uv,TOL2D)) {
c6541a0c 2283 Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
7fd59977 2284 Standard_Boolean test = TestMiddleOnPrm(aPF,aV,IsReversed,ArcTol,PDomain);
2285 if(test) {
2286 VrtF.SetValue(aV.Value());
2287 if(IsReversed) {
2288 Standard_Real U2 = 0., V2 = 0.;
2289 aV.ParametersOnS1(U2,V2); // S1 - prm
2290 VrtF.SetValue(Standard_True,U2,V2);
2291 if(FConjugated == 0)
2292 VrtF.SetValue(Standard_False,Uv,Vv);
2293 else
2294 VrtF.SetValue(Standard_False,Ucv,Vv);
2295 }
2296 else {
2297 Standard_Real U2 = 0., V2 = 0.;
2298 aV.ParametersOnS2(U2,V2); // S2 - prm
2299 VrtF.SetValue(Standard_False,U2,V2);
2300 if(FConjugated == 0)
2301 VrtF.SetValue(Standard_True,Uv,Vv);
2302 else
2303 VrtF.SetValue(Standard_True,Ucv,Vv);
2304 }
2305 Standard_Real Dist3D = VrtF.Value().Distance(aPF.Value());
2306 if(Dist3D > 1.5e-7 && DistMinF > TOL2D) {
2307 AddFirst = Standard_True;
2308 }
2309 }
2310 }
2311 else {
2312 // to do: analyze internal vertex
2313 }
2314 }
2315 }
191478a5 2316
7fd59977 2317 if(LIndexSame == 0) {
2318 if(LIndexNear != 0) {
2319 const IntSurf_PntOn2S& aV = Vertices->Value(LIndexNear);
2320 Standard_Real Uv = 0., Vv = 0.;
2321 if(IsReversed)
2322 aV.ParametersOnS2(Uv,Vv);
2323 else
2324 aV.ParametersOnS1(Uv,Vv);
2325 if(IsSeamParameter(Uv,TOL2D)) {
c6541a0c 2326 Standard_Real Ucv = (fabs(Uv) < fabs(2.*M_PI-Uv)) ? (2.*M_PI) : 0.;
7fd59977 2327 Standard_Boolean test = TestMiddleOnPrm(aPL,aV,IsReversed,ArcTol,PDomain);
2328 if(test) {
2329 VrtL.SetValue(aV.Value());
2330 if(IsReversed) {
2331 Standard_Real U2 = 0., V2 = 0.;
2332 aV.ParametersOnS1(U2,V2); // S1 - prm
2333 VrtL.SetValue(Standard_True,U2,V2);
2334 if(LConjugated == 0)
2335 VrtL.SetValue(Standard_False,Uv,Vv);
2336 else
2337 VrtL.SetValue(Standard_False,Ucv,Vv);
2338 }
2339 else {
2340 Standard_Real U2 = 0., V2 = 0.;
2341 aV.ParametersOnS2(U2,V2); // S2 - prm
2342 VrtL.SetValue(Standard_False,U2,V2);
2343 if(LConjugated == 0)
2344 VrtL.SetValue(Standard_True,Uv,Vv);
2345 else
2346 VrtL.SetValue(Standard_True,Ucv,Vv);
2347 }
2348 Standard_Real Dist3D = VrtL.Value().Distance(aPL.Value());
2349 if(Dist3D > 1.5e-7 && DistMinL > TOL2D) {
2350 AddLast = Standard_True;
2351 }
2352 }
2353 }
2354 else {
2355 // to do: analyze internal vertex
2356 }
2357 }
2358 }
2359}
2360
2361static Standard_Boolean AddVertices(Handle(IntSurf_LineOn2S)& Line,
191478a5 2362 const IntSurf_PntOn2S& VrtF,
2363 const Standard_Boolean AddFirst,
2364 const IntSurf_PntOn2S& VrtL,
2365 const Standard_Boolean AddLast,
2366 const Standard_Real D3DF,
2367 const Standard_Real D3DL)
7fd59977 2368{
2369 Standard_Boolean result = Standard_False;
2370 if(AddFirst) {
2371 Standard_Real DF = Line->Value(1).Value().Distance(VrtF.Value());
2372 if((D3DF*2.) > DF && DF > 1.5e-7) {
2373 Line->InsertBefore(1,VrtF);
2374 result = Standard_True;
2375 }
2376 }
2377 if(AddLast) {
2378 Standard_Real DL = Line->Value(Line->NbPoints()).Value().Distance(VrtL.Value());
2379 if((D3DL*2.) > DL && DL > 1.5e-7) {
2380 Line->Add(VrtL);
2381 result = Standard_True;
2382 }
2383 }
2384 return result;
2385}
191478a5 2386
7fd59977 2387
16423f20 2388static void PutIntVertices(const Handle(IntPatch_PointLine)& Line,
191478a5 2389 Handle(IntSurf_LineOn2S)& Result,
16423f20 2390 Standard_Boolean theIsReversed,
191478a5 2391 Handle(IntSurf_LineOn2S)& Vertices,
2392 const Standard_Real ArcTol)
7fd59977 2393{
2394 Standard_Integer nbp = Result->NbPoints(), nbv = Vertices->NbPoints();
2395
2396 if(nbp < 3)
2397 return;
2398
16423f20 2399 const Handle(IntPatch_RLine) aRLine = Handle(IntPatch_RLine)::DownCast(Line);
2400
7fd59977 2401 Standard_Integer ip = 0, iv = 0;
2402 gp_Pnt aPnt;
2403 IntPatch_Point thePnt;
2404 Standard_Real U1 = 0., V1 = 0., U2 = 0., V2 = 0.;
191478a5 2405
7fd59977 2406 for(ip = 2; ip <= (nbp-1); ip++) {
2407 const IntSurf_PntOn2S& aP = Result->Value(ip);
2408 for(iv = 1; iv <= nbv; iv++) {
2409 const IntSurf_PntOn2S& aV = Vertices->Value(iv);
16423f20 2410 if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
7fd59977 2411 aPnt = Result->Value(ip).Value();
191478a5 2412 Result->Value(ip).ParametersOnS1(U1,V1);
2413 Result->Value(ip).ParametersOnS2(U2,V2);
2414 thePnt.SetValue(aPnt,ArcTol,Standard_False);
2415 thePnt.SetParameters(U1,V1,U2,V2);
16423f20 2416
2417 Standard_Real aParam = (Standard_Real)ip;
2418
2419 if(!aRLine.IsNull())
2420 {
2421 //In fact, aRLine is always on the parametric surface.
2422 //If (theIsReversed == TRUE) then (U1, V1) - point on
2423 //parametric surface, otherwise - point on quadric.
2424 const Handle(Adaptor2d_HCurve2d)& anArc = aRLine->IsArcOnS1() ?
2425 aRLine->ArcOnS1() :
2426 aRLine->ArcOnS2();
2427
2428 const gp_Lin2d aLin(anArc->Curve2d().Line());
2429 gp_Pnt2d aPSurf;
2430
2431 if(theIsReversed)
2432 {
2433 aPSurf.SetCoord(U1, V1);
2434 }
2435 else
2436 {
2437 aPSurf.SetCoord(U2, V2);
2438 }
2439
2440 aParam = ElCLib::Parameter(aLin, aPSurf);
2441 }
2442
2443 thePnt.SetParameter(aParam);
2444 Line->AddVertex(thePnt);
7fd59977 2445 }
2446 }
2447 }
2448}
2449
2450static Standard_Boolean HasInternals(Handle(IntSurf_LineOn2S)& Line,
191478a5 2451 Handle(IntSurf_LineOn2S)& Vertices)
7fd59977 2452{
2453 Standard_Integer nbp = Line->NbPoints(), nbv = Vertices->NbPoints();
2454 Standard_Integer ip = 0, iv = 0;
2455 Standard_Boolean result = Standard_False;
191478a5 2456
7fd59977 2457 if(nbp < 3)
2458 return result;
2459
2460 for(ip = 2; ip <= (nbp-1); ip++) {
2461 const IntSurf_PntOn2S& aP = Line->Value(ip);
2462 for(iv = 1; iv <= nbv; iv++) {
2463 const IntSurf_PntOn2S& aV = Vertices->Value(iv);
16423f20 2464 if(aP.IsSame(aV, Precision::Confusion(), Precision::PConfusion())) {
7fd59977 2465 result = Standard_True;
2466 break;
2467 }
2468 }
2469 if(result)
2470 break;
2471 }
191478a5 2472
7fd59977 2473 return result;
2474}
2475static Handle(IntPatch_WLine) MakeSplitWLine (Handle(IntPatch_WLine)& WLine,
191478a5 2476 Standard_Boolean Tang,
2477 IntSurf_TypeTrans Trans1,
2478 IntSurf_TypeTrans Trans2,
2479 Standard_Real ArcTol,
2480 Standard_Integer ParFirst,
2481 Standard_Integer ParLast)
7fd59977 2482{
2483 Handle(IntSurf_LineOn2S) SLine = WLine->Curve();
2484 Handle(IntSurf_LineOn2S) sline = new IntSurf_LineOn2S();
191478a5 2485
2486 Standard_Integer ip = 0;
7fd59977 2487 for(ip = ParFirst; ip <= ParLast; ip++)
2488 sline->Add(SLine->Value(ip));
2489
2490 Handle(IntPatch_WLine) wline = new IntPatch_WLine(sline,Tang,Trans1,Trans2);
2491
2492 gp_Pnt aSPnt;
2493 IntPatch_Point TPntF,TPntL;
2494 Standard_Real uu1 = 0., vv1 = 0., uu2 = 0., vv2 = 0.;
2495
2496 aSPnt = sline->Value(1).Value();
2497 sline->Value(1).ParametersOnS1(uu1,vv1);
2498 sline->Value(1).ParametersOnS2(uu2,vv2);
2499 TPntF.SetValue(aSPnt,ArcTol,Standard_False);
2500 TPntF.SetParameters(uu1,vv1,uu2,vv2);
2501 TPntF.SetParameter(1.);
2502 wline->AddVertex(TPntF);
2503 wline->SetFirstPoint(1);
191478a5 2504
7fd59977 2505 aSPnt = sline->Value(sline->NbPoints()).Value();
2506 sline->Value(sline->NbPoints()).ParametersOnS1(uu1,vv1);
2507 sline->Value(sline->NbPoints()).ParametersOnS2(uu2,vv2);
2508 TPntL.SetValue(aSPnt,ArcTol,Standard_False);
2509 TPntL.SetParameters(uu1,vv1,uu2,vv2);
2510 TPntL.SetParameter((Standard_Real)sline->NbPoints());
2511 wline->AddVertex(TPntL);
a09c8f3a 2512 wline->SetLastPoint(wline->NbVertex());
7fd59977 2513
2514 return wline;
2515}
2516
2517static Standard_Boolean SplitOnSegments(Handle(IntPatch_WLine)& WLine,
191478a5 2518 Standard_Boolean Tang,
2519 IntSurf_TypeTrans Trans1,
2520 IntSurf_TypeTrans Trans2,
2521 Standard_Real ArcTol,
2522 IntPatch_SequenceOfLine& Segments)
7fd59977 2523{
2524 Standard_Boolean result = Standard_False;
2525 Segments.Clear();
2526
2527 Standard_Integer nbv = WLine->NbVertex();
2528 if(nbv > 3) {
2529 Standard_Integer iv = 0;
2530 for(iv = 1; iv < nbv; iv++) {
191478a5 2531 Standard_Integer firstPar =
2532 (Standard_Integer) WLine->Vertex(iv).ParameterOnLine();
2533 Standard_Integer lastPar =
2534 (Standard_Integer) WLine->Vertex(iv+1).ParameterOnLine();
7fd59977 2535 if((lastPar - firstPar) <= 1)
2536 continue;
2537 else {
191478a5 2538 Handle(IntPatch_WLine) splitwline = MakeSplitWLine(WLine,Tang,Trans1,Trans2,
2539 ArcTol,firstPar,lastPar);
7fd59977 2540 Segments.Append(splitwline);
2541 if(!result)
2542 result = Standard_True;
2543 }
2544 }
2545 }
2546 return result;
2547}
2548
4e14c88f 2549//=======================================================================
2550//function : DecomposeResult
2551//purpose : Split <theLine> in the places where it passes through seam edge
2552// or singularity (apex of cone or pole of sphere).
2553// This passage is detected by jump of U-parameter
2554// from point to point.
2555//=======================================================================
77dbd1f1 2556static Standard_Boolean DecomposeResult(const Handle(IntPatch_PointLine)& theLine,
191478a5 2557 const Standard_Boolean IsReversed,
2558 const IntSurf_Quadric& theQuad,
2559 const Handle(Adaptor3d_TopolTool)& thePDomain,
4e14c88f 2560 const Handle(Adaptor3d_HSurface)& theQSurf, //quadric
2561 const Handle(Adaptor3d_HSurface)& thePSurf, //parametric
191478a5 2562 const Standard_Real theArcTol,
a09c8f3a 2563 const Standard_Real theTolTang,
191478a5 2564 IntPatch_SequenceOfLine& theLines)
7fd59977 2565{
77dbd1f1 2566 if(theLine->ArcType() == IntPatch_Restriction)
2567 {
2568 const Handle(IntPatch_RLine)& aRL = Handle(IntPatch_RLine)::DownCast(theLine);
2569 if(!aRL.IsNull())
2570 {
2571 const Handle(Adaptor2d_HCurve2d)& anArc = aRL->IsArcOnS1() ?
2572 aRL->ArcOnS1() :
2573 aRL->ArcOnS2();
2574 if(anArc->Curve2d().GetType() != GeomAbs_Line)
2575 {
2576 //Restriction line must be isoline.
2577 //Other cases are not supported by
2578 //existing algorithms.
2579
2580 return Standard_False;
2581 }
2582 }
2583 }
2584
4e14c88f 2585 const Standard_Real aDeltaUmax = M_PI_2;
191478a5 2586 const Standard_Real aTOL3D = 1.e-10,
2587 aTOL2D = Precision::PConfusion(),
2588 aTOL2DS = Precision::PConfusion();
7fd59977 2589
77dbd1f1 2590 const Handle(IntSurf_LineOn2S)& aSLine = theLine->Curve();
7fd59977 2591
191478a5 2592 if(aSLine->NbPoints() <= 2)
2593 {
2594 return Standard_False;
2595 }
2596
2597 //Deletes repeated vertices
77dbd1f1 2598 Handle(IntSurf_LineOn2S) aVLine = GetVertices(theLine,aTOL3D,aTOL2D);
191478a5 2599
2600 Handle(IntSurf_LineOn2S) aSSLine(aSLine);
7fd59977 2601
191478a5 2602 if(aSSLine->NbPoints() <= 1)
2603 return Standard_False;
7fd59977 2604
191478a5 2605 AdjustLine(aSSLine,IsReversed,theQSurf,aTOL2D);
7fd59977 2606
77dbd1f1 2607 if(theLine->ArcType() == IntPatch_Walking)
191478a5 2608 {
2609 Standard_Boolean isInserted = Standard_True;
2610 while(isInserted)
2611 {
2612 const Standard_Integer aNbPnts = aSSLine->NbPoints();
2613 TColStd_Array1OfInteger aPTypes(1,aNbPnts);
2614 SearchVertices(aSSLine,aVLine,aPTypes);
2615 isInserted = InsertSeamVertices(aSSLine,IsReversed,aVLine,aPTypes,aTOL2D);
7fd59977 2616 }
7fd59977 2617 }
2618
191478a5 2619 const Standard_Integer aLindex = aSSLine->NbPoints();
2620 Standard_Integer aFindex = 1, aBindex = 0;
7fd59977 2621
7fd59977 2622 // build WLine parts (if any)
191478a5 2623 Standard_Boolean flNextLine = Standard_True;
2624 Standard_Boolean hasBeenDecomposed = Standard_False;
a09c8f3a 2625 PrePoint_Type aPrePointExist = PrePoint_NONE;
4e14c88f 2626
10ee9976 2627 IntSurf_PntOn2S PrePoint;
191478a5 2628 while(flNextLine)
2629 {
2630 // reset variables
2631 flNextLine = Standard_False;
2632 Standard_Boolean isDecomposited = Standard_False;
a09c8f3a 2633 Standard_Real U1 = 0., U2 = 0., V1 = 0., V2 = 0.;
7fd59977 2634
191478a5 2635 Handle(IntSurf_LineOn2S) sline = new IntSurf_LineOn2S();
7fd59977 2636
191478a5 2637 //if((Lindex-Findex+1) <= 2 )
a09c8f3a 2638 if((aLindex <= aFindex) && !aPrePointExist)
4e14c88f 2639 {
2640 //break of "while(flNextLine)" cycle
2641 break;
2642 }
10ee9976 2643
a09c8f3a 2644 if(aPrePointExist)
4e14c88f 2645 {
2646 //The last point of the line is the pole of the quadric.
2647 //Therefore, Walking-line has been broken in this point.
2648 //However, new line must start from this point. Here we must
2649 //find its 2D-coordinates.
2650
2651 //For sphere and cone, some intersection point is satisfied to the system
2652 // \cos(U_{q}) = S_{x}(U_{s},V_{s})/F(V_{q})
2653 // \sin(U_{q}) = S_{y}(U_{s},V_{s})/F(V_{q})
2654
2655 //where
2656 // @S_{x}@, @S_{y}@ are X and Y-coordinates of thePSurf;
2657 // @U_{s}@ and @V_{s}@ are UV-parameters on thePSurf;
2658 // @U_{q}@ and @V_{q}@ are UV-parameters on theQSurf;
2659 // @F(V_{q}) @ is some function, which value independs on @U_{q}@
2660 // (form of this function depends on the type of the quadric).
2661
2662 //When we go through the pole, the function @F(V_{q}) @ changes sign.
2663 //Therefore, some cases are possible, when only @\cos(U_{q}) @ or
2664 //only @ \sin(U_{q}) @ change sign.
2665
2666 //Consequently, when the line goes throug the pole, @U_{q}@ can be
2667 //changed on @\pi /2 @ (but not less).
2668
a09c8f3a 2669 //Here, we forbid "jumping" between two neighbor Walking-point
2670 //with step greater than pi/4
4e14c88f 2671 const Standard_Real aPeriod = M_PI_2, aHalfPeriod = M_PI_4;
2672 const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aFindex);
2673
a09c8f3a 2674 const Standard_Real aURes = theQSurf->UResolution(theArcTol),
2675 aVRes = theQSurf->UResolution(theArcTol);
4e14c88f 2676
a09c8f3a 2677 const Standard_Real aTol2d = (aPrePointExist == PrePoint_POLE) ? 0.0 :
2678 (aPrePointExist == PrePoint_SEAMV)? aVRes :
2679 (aPrePointExist == PrePoint_SEAMUV)? Max(aURes, aVRes) : aURes;
2680
2681 if(!PrePoint.IsSame(aRefPt, Precision::Confusion(), aTol2d))
4e14c88f 2682 {
2683 Standard_Real aURef = 0.0, aVRef = 0.0;
2684 Standard_Real aUquad = 0.0, aVquad = 0.0;
2685
2686 //Take parameters on quadric
2687 if(IsReversed)
2688 {
a09c8f3a 2689 PrePoint.ParametersOnS2(aUquad, aVquad);
4e14c88f 2690 aRefPt.ParametersOnS2(aURef, aVRef);
2691 }
2692 else
2693 {
a09c8f3a 2694 PrePoint.ParametersOnS1(aUquad, aVquad);
4e14c88f 2695 aRefPt.ParametersOnS1(aURef, aVRef);
2696 }
2697
a09c8f3a 2698 if(theQSurf->IsUPeriodic())
4e14c88f 2699 {
2700 Standard_Real aDeltaPar = aURef-aUquad;
77dbd1f1 2701 const Standard_Real anIncr = Sign(aPeriod, aDeltaPar);
4e14c88f 2702 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
2703 {
2704 aUquad += anIncr;
2705 aDeltaPar = aURef-aUquad;
2706 }
2707 }
2708
a09c8f3a 2709 if(theQSurf->IsVPeriodic())
2710 {
2711 Standard_Real aDeltaPar = aVRef-aVquad;
2712 const Standard_Real anIncr = Sign(aPeriod, aDeltaPar);
2713 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
2714 {
2715 aVquad += anIncr;
2716 aDeltaPar = aVRef-aVquad;
2717 }
2718 }
2719
2720 PrePoint.SetValue(!IsReversed, aUquad, aVquad);
2721 sline->Add(PrePoint);
4e14c88f 2722 }
2723 else
2724 {
2725 //break of "while(flNextLine)" cycle
2726 break;
2727 }
2728 }
2729
a09c8f3a 2730 aPrePointExist = PrePoint_NONE;
4e14c88f 2731
191478a5 2732 // analyze other points
2733 for(Standard_Integer k = aFindex; k <= aLindex; k++)
2734 {
2735 if( k == aFindex )
2736 {
10ee9976 2737 PrePoint = aSSLine->Value(k);
a09c8f3a 2738 sline->Add(PrePoint);
191478a5 2739 continue;
2740 }
7fd59977 2741
191478a5 2742 if(IsReversed)
2743 {
2744 aSSLine->Value(k).ParametersOnS2(U1,V1); // S2 - quadric, set U,V by Pnt3D
7fd59977 2745 }
191478a5 2746 else
2747 {
2748 aSSLine->Value(k).ParametersOnS1(U1,V1); // S1 - quadric, set U,V by Pnt3D
7fd59977 2749 }
7fd59977 2750
a09c8f3a 2751 aPrePointExist = IsSeamOrPole(theQSurf, aSSLine, IsReversed, k-1, aDeltaUmax);
2752
2753 if(aPrePointExist != PrePoint_NONE)
191478a5 2754 {
2755 aBindex = k;
2756 isDecomposited = Standard_True;
10ee9976 2757 ////
a09c8f3a 2758 const Standard_Real aPeriod = M_PI+M_PI, aHalfPeriod = M_PI;
2759 const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aBindex-1);
2760
2761 //Not quadric point
2762 Standard_Real aU0 = 0.0, aV0 = 0.0;
2763 //Quadric point
2764 Standard_Real aUQuadRef = 0.0, aVQuadRef = 0.0;
2765
2766 if(IsReversed)
10ee9976 2767 {
a09c8f3a 2768 aRefPt.Parameters(aU0, aV0, aUQuadRef, aVQuadRef);
2769 }
2770 else
2771 {
2772 aRefPt.Parameters(aUQuadRef, aVQuadRef, aU0, aV0);
2773 }
2774
2775 if(aPrePointExist == PrePoint_SEAMUV)
2776 {
2777 aPrePointExist = PrePoint_NONE;
2778
2779 gp_Pnt aPQuad;
2780 Standard_Real aUquad = 0.0;
2781 Standard_Real aVquad = 0.0;
2782
2783 theQSurf->D0(aUquad, aVquad, aPQuad);
2784
2785 Extrema_GenLocateExtPS anExtr(aPQuad, thePSurf->Surface(), aU0, aV0,
2786 Precision::PConfusion(),
2787 Precision::PConfusion());
2788
2789 if(!anExtr.IsDone())
10ee9976 2790 {
a09c8f3a 2791 break;
10ee9976 2792 }
a09c8f3a 2793
2794 if(anExtr.SquareDistance() < theTolTang*theTolTang)
10ee9976 2795 {
a09c8f3a 2796 anExtr.Point().Parameter(aU0, aV0);
2797 gp_Pnt aP0(anExtr.Point().Value());
2798
2799 IntSurf_PntOn2S aNewPoint;
2800 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), IsReversed, aU0, aV0);
2801
2802 if(!aNewPoint.IsSame(aRefPt, Precision::Confusion()))
2803 {
2804 //Adjust found U-paramter to previous point of the Walking-line
2805 Standard_Real aDeltaPar = aUQuadRef-aUquad;
2806 const Standard_Real anIncrU = Sign(aPeriod, aDeltaPar);
2807 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
2808 {
2809 aUquad += anIncrU;
2810 aDeltaPar = aUQuadRef-aUquad;
2811 }
2812
2813 //Adjust found V-paramter to previous point of the Walking-line
2814 aDeltaPar = aVQuadRef-aVquad;
2815 const Standard_Real anIncrV = Sign(aPeriod, aDeltaPar);
2816 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
2817 {
2818 aVquad += anIncrV;
2819 aDeltaPar = aVQuadRef-aVquad;
2820 }
2821
2822 aNewPoint.SetValue(!IsReversed, aUquad, aVquad);
2823
2824 sline->Add(aNewPoint);
2825 aPrePointExist = PrePoint_SEAMUV;
2826 PrePoint = aNewPoint;
2827 }
10ee9976 2828 }
10ee9976 2829 }
a09c8f3a 2830 else if(aPrePointExist == PrePoint_SEAMV)
2831 {//WLine goes through seam
2832 aPrePointExist = PrePoint_NONE;
2833
2834 FuncPreciseSeam aF(theQSurf, thePSurf, Standard_False);
bf714c84 2835 math_Vector aTol(1, 3), aStartPoint(1,3),
2836 anInfBound(1, 3), aSupBound(1, 3);
a09c8f3a 2837
2838 //Parameters on parametric surface
2839 Standard_Real aUp = 0.0, aVp = 0.0;
2840 if(IsReversed)
10ee9976 2841 {
a09c8f3a 2842 aSSLine->Value(k).ParametersOnS1(aUp, aVp);
10ee9976 2843 }
2844 else
2845 {
a09c8f3a 2846 aSSLine->Value(k).ParametersOnS2(aUp, aVp);
10ee9976 2847 }
a09c8f3a 2848
2849 aTol(1) = thePSurf->UResolution(theArcTol);
2850 aTol(2) = thePSurf->VResolution(theArcTol);
2851 aTol(3) = theQSurf->UResolution(theArcTol);
2852 aStartPoint(1) = 0.5*(aU0 + aUp);
2853 aStartPoint(2) = 0.5*(aV0 + aVp);
2854 aStartPoint(3) = 0.5*(aUQuadRef + U1);
bf714c84 2855 anInfBound(1) = thePSurf->FirstUParameter();
2856 anInfBound(2) = thePSurf->FirstVParameter();
2857 anInfBound(3) = theQSurf->FirstUParameter();
2858 aSupBound(1) = thePSurf->LastUParameter();
2859 aSupBound(2) = thePSurf->LastVParameter();
2860 aSupBound(3) = theQSurf->LastUParameter();
a09c8f3a 2861
2862 math_FunctionSetRoot aSRF(aF, aTol);
bf714c84 2863 aSRF.Perform(aF, aStartPoint, anInfBound, aSupBound);
a09c8f3a 2864
2865 if(!aSRF.IsDone())
2866 {
2867 break;
2868 }
2869
2870 // Now aStartPoint is useless. Therefore, we use it for keeping
2871 // new point.
2872 aSRF.Root(aStartPoint);
4e14c88f 2873
a09c8f3a 2874 //On parametric
2875 aU0 = aStartPoint(1);
2876 aV0 = aStartPoint(2);
2877
2878 //On quadric
2879 Standard_Real aUquad = aStartPoint(3);
2880 Standard_Real aVquad = 0.0;
2881 const gp_Pnt aPQuad(theQSurf->Value(aUquad, aVquad));
2882 const gp_Pnt aP0(thePSurf->Value(aU0, aV0));
4e14c88f 2883
4e14c88f 2884 {
a09c8f3a 2885 //Adjust found U-paramter to previous point of the Walking-line
2886 Standard_Real aDeltaPar = aVQuadRef-aVquad;
2887 const Standard_Real anIncr = Sign(aPeriod, aDeltaPar);
2888 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
2889 {
2890 aVquad += anIncr;
2891 aDeltaPar = aVQuadRef-aVquad;
2892 }
4e14c88f 2893 }
a09c8f3a 2894
2895 IntSurf_PntOn2S aNewPoint;
2896 if(IsReversed)
2897 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), aU0, aV0, aUquad, aVquad);
4e14c88f 2898 else
a09c8f3a 2899 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), aUquad, aVquad, aU0, aV0);
2900
2901 if(!aNewPoint.IsSame(aRefPt, Precision::Confusion(), Precision::PConfusion()))
4e14c88f 2902 {
a09c8f3a 2903 aNewPoint.SetValue(!IsReversed, aUquad, aVquad);
2904 sline->Add(aNewPoint);
2905 aPrePointExist = PrePoint_SEAMV;
2906 PrePoint = aNewPoint;
4e14c88f 2907 }
a09c8f3a 2908 else
2909 {
2910 if(sline->NbPoints() == 1)
2911 {
2912 //FIRST point of the sline is the pole of the quadric.
2913 //Therefore, there is no point in decomposition.
4e14c88f 2914
a09c8f3a 2915 PrePoint = aRefPt;
2916 aPrePointExist = PrePoint_SEAMV;
2917 }
2918 }
2919 }
2920 else if(aPrePointExist == PrePoint_POLESEAMU)
2921 {//Check if WLine goes through pole
2922
2923 aPrePointExist = PrePoint_NONE;
4e14c88f 2924
2925 //aPQuad is Pole
2926 gp_Pnt aPQuad;
2927 Standard_Real aUquad = 0.0;
2928 Standard_Real aVquad = 0.0;
2929
2930 if(theQuad.TypeQuadric() == GeomAbs_Sphere)
2931 {
2932 aVquad = Sign(M_PI_2, aVQuadRef);
2933 }
2934 else if(theQuad.TypeQuadric() == GeomAbs_Cone)
2935 {
2936 const Standard_Real aRadius = theQuad.Cone().RefRadius();
2937 const Standard_Real aSemiAngle = theQuad.Cone().SemiAngle();
2938 aVquad = -aRadius/sin(aSemiAngle);
2939 }
2940 else
2941 {
2942 Standard_TypeMismatch::Raise( "IntPatch_ImpPrmIntersection.cxx,"
2943 " DecomposeResult(...): "
2944 "Unsupported quadric with Pole");
2945 }
2946
2947 theQSurf->D0(aUquad, aVquad, aPQuad);
2948
2949 Extrema_GenLocateExtPS anExtr(aPQuad, thePSurf->Surface(), aU0, aV0,
2950 Precision::PConfusion(),
2951 Precision::PConfusion());
2952
2953 if(!anExtr.IsDone())
a09c8f3a 2954 {
4e14c88f 2955 break;
a09c8f3a 2956 }
4e14c88f 2957
a09c8f3a 2958 if(anExtr.SquareDistance() < theTolTang*theTolTang)
4e14c88f 2959 { //Pole is an intersection point
2960 //(lies in the quadric and the parametric surface)
2961
2962 anExtr.Point().Parameter(aU0, aV0);
2963 gp_Pnt aP0(anExtr.Point().Value());
2964
2965 IntSurf_PntOn2S aNewPoint;
2966 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), IsReversed, aU0, aV0);
2967
2968 if(!aNewPoint.IsSame(aRefPt, Precision::Confusion()))
77dbd1f1 2969 {
2970 //Found pole does not exist in the Walking-line
4e14c88f 2971 //It must be added there (with correct 2D-parameters)
2972
2973 //2D-parameters of theparametric surface have already been found (aU0, aV0).
2974 //Let find 2D-parameters on the quadric.
2975
2976 //The algorithm depends on the type of the quadric. Here we consider a Sphere only.
2977 //Analogical result can be made for another types (e.g. cone, but formulas will
2978 //be different) in case of need.
2979
2980 //First of all, we need in adjusting thePSurf in the coordinate system of the Sphere
2981 //(in order to make the equation of the sphere maximal simple). However, as it will be
2982 //shown later, thePSurf is used in algorithm in order to get its derivatives. Therefore,
2983 //for improving performance, transformation of these vectors is enough (there is no point
2984 //in transformation of full surface).
2985
2986 gp_Pnt aPtemp;
2987 gp_Vec aVecDu, aVecDv;
2988 thePSurf->D1(aU0, aV0, aPtemp, aVecDu, aVecDv);
2989
a09c8f3a 2990 //Transforms parametric surface in coordinate-system of the quadric
2991 gp_Trsf aTr;
2992 aTr.SetTransformation((theQuad.TypeQuadric() == GeomAbs_Sphere) ?
2993 theQuad.Sphere().Position() :
2994 theQuad.Cone().Position());
2995
4e14c88f 2996 //Derivatives of transformed thePSurf
2997 aVecDu.Transform(aTr);
2998 aVecDv.Transform(aTr);
2999
3000 if(theQuad.TypeQuadric() == GeomAbs_Sphere)
3001 {
3002 //The intersection point (including the pole)
3003 //must be satisfied to the following system:
3004
3005 // \left\{\begin{matrix}
3006 // R*\cos (U_{q})*\cos (V_{q})=S_{x}(U_{s},V_{s})
3007 // R*\sin (U_{q})*\cos (V_{q})=S_{y}(U_{s},V_{s})
3008 // R*\sin (V_{q})=S_{z}(U_{s},V_{s})
3009 // \end{matrix}\right,
3010 //where
3011 // R is the radius of the sphere;
3012 // @S_{x}@, @S_{y}@ and @S_{z}@ are X, Y and Z-coordinates of thePSurf;
3013 // @U_{s}@ and @V_{s}@ are equal to aU0 and aV0 corespondingly;
3014 // @U_{q}@ and @V_{q}@ are equal to aUquad and aVquad corespondingly.
3015
3016 //Consequently (from first two equations),
3017 // \left\{\begin{matrix}
3018 // \cos (U_{q}) = \frac{S_{x}(U_{s},V_{s})}{R*\cos (V_{q})}
3019 // \sin (U_{q}) = \frac{S_{y}(U_{s},V_{s})}{R*\cos (V_{q})}
3020 // \end{matrix}\right.
3021
3022 //For pole,
3023 // V_{q}=\pm \pi /2 \Rightarrow \cos (V_{q}) = 0 (denominator is equal to 0).
3024
3025 //Therefore, computation U_{q} directly is impossibly.
3026 //
3027 //Let @V_{q}@ tends to @\pm \pi /2@.
3028 //Then (indeterminate form is evaluated in accordance of L'Hospital rule),
3029 // \cos (U_{q}) = \lim_{V_{q} \to (\pi /2-0)}
3030 // \frac{S_{x}(U_{s},V_{s})}{R*\cos (V_{q})}=
3031 // -\lim_{V_{q} \to (\pi /2-0)}
3032 // \frac{\frac{\partial S_{x}}
3033 // {\partial U_{s}}*\frac{\mathrm{d} U_{s}}
3034 // {\mathrm{d} V_{q}}+\frac{\partial S_{x}}
3035 // {\partial V_{s}}*\frac{\mathrm{d} V_{s}}
3036 // {\mathrm{d} V_{q}}}{R*\sin (V_{q})} =
3037 // -\frac{1}{R}*\frac{\mathrm{d} U_{s}}
3038 // {\mathrm{d} V_{q}}*(\frac{\partial S_{x}}
3039 // {\partial U_{s}}+\frac{\partial S_{x}}
3040 // {\partial V_{s}}*\frac{\mathrm{d} V_{s}}
3041 // {\mathrm{d} U_{s}}) =
3042 // -\frac{1}{R}*\frac{\mathrm{d} V_{s}}
3043 // {\mathrm{d} V_{q}}*(\frac{\partial S_{x}}
3044 // {\partial U_{s}}*\frac{\mathrm{d} U_{s}}
3045 // {\mathrm{d} V_{s}}+\frac{\partial S_{x}}
3046 // {\partial V_{s}}).
3047
3048 //Analogicaly for @\sin (U_{q})@ (@S_{x}@ is substituted to @S_{y}@).
3049
3050 //Let mean, that
3051 // \cos (U_{q}) \left | _{V_{q} \to (-\pi /2+0)} = \cos (U_{q}) \left | _{V_{q} \to (\pi /2-0)}
3052 // \sin (U_{q}) \left | _{V_{q} \to (-\pi /2+0)} = \sin (U_{q}) \left | _{V_{q} \to (\pi /2-0)}
3053
3054 //From the 3rd equation of the system, we obtain
3055 // \frac{\mathrm{d} (R*\sin (V_{q}))}{\mathrm{d} V_{q}} =
3056 // \frac{\mathrm{d} S_{z}(U_{s},V_{s})}{\mathrm{d} V_{q}}
3057 //or
3058 // R*\cos (V_{q}) = \frac{\partial S_{z}}{\partial U_{s}}*
3059 // \frac{\mathrm{d} U_{s}} {\mathrm{d} V_{q}}+\frac{\partial S_{z}}
3060 // {\partial V_{s}}*\frac{\mathrm{d} V_{s}}{\mathrm{d} V_{q}}.
3061
3062 //If @V_{q}=\pm \pi /2@, then
3063 // \frac{\partial S_{z}}{\partial U_{s}}*
3064 // \frac{\mathrm{d} U_{s}} {\mathrm{d} V_{q}}+\frac{\partial S_{z}}
3065 // {\partial V_{s}}*\frac{\mathrm{d} V_{s}}{\mathrm{d} V_{q}} = 0.
3066
3067 //Consequently, if @\frac{\partial S_{z}}{\partial U_{s}} \neq 0 @ then
3068 // \frac{\mathrm{d} U_{s}}{\mathrm{d} V_{s}} =
3069 // -\frac{\frac{\partial S_{z}}{\partial V_{s}}}
3070 // {\frac{\partial S_{z}}{\partial U_{s}}}.
3071
3072 //If @ \frac{\partial S_{z}}{\partial V_{s}} \neq 0 @ then
3073 // \frac{\mathrm{d} V_{s}}{\mathrm{d} U_{s}} =
3074 // -\frac{\frac{\partial S_{z}}{\partial U_{s}}}
3075 // {\frac{\partial S_{z}}{\partial V_{s}}}
3076
3077 //Cases, when @ \frac{\partial S_{z}}{\partial U_{s}} =
3078 //\frac{\partial S_{z}}{\partial V_{s}} = 0 @ are not consider here.
3079 //The reason is written below.
3080
3081 //Vector with {@ \cos (U_{q}) @, @ \sin (U_{q}) @} coordinates.
3082 //Ask to pay attention to the fact that this vector is always normalyzed.
3083 gp_Vec2d aV1;
77dbd1f1 3084
3085 if( (Abs(aVecDu.Z()) < Precision::PConfusion()) &&
3086 (Abs(aVecDv.Z()) < Precision::PConfusion()))
4e14c88f 3087 {
3088 //Example of this exception is intersection a plane with a sphere
3089 //when the plane tangents the sphere in some pole (i.e. only one
3090 //intersection point, not line). In this case, U-coordinate of the
77dbd1f1 3091 //sphere is undefined (can be realy anything).
3092 //Another reason is that we have tangent zone around the pole
3093 //(see bug #26576).
3094 //Computation correct value of aUquad is impossible. Therefore,
3095 //we should throw an exception in this case.
3096 //Also, any Walking line cannot be created in this case.
3097 //Hovewer, Restriction line is not created by intersection algorithm.
3098 //It is already exists (above we check simply, if this line is
3099 //intersection line).
3100 //Therefore, we can try to find the aUquad-parameter on (existing)
3101 //Restriction line. Here, we will do it with
3102 //extrapolation algorithm.
3103 //Use interpolation algorithm is wrong because aUquad parameter
3104 //jumps while the line going though the pole.
3105
3106 if((theLine->ArcType() == IntPatch_Walking) ||
3107 (aBindex < 3))
3108 {
3109 //We must have at least two previous points
3110 //in order to do linear extrapolation.
3111 Standard_NumericError::
3112 Raise("IntPatch_ImpPrmIntersection.cxx, DecomposeResult(...): "
3113 "Cannot find UV-coordinate for quadric in the pole");
3114 }
3115 else
3116 {
3117#ifdef INTPATCH_IMPPRMINTERSECTION_DEBUG
3118 cout << "Cannot find UV-coordinate for quadric in the pole."
3119 " See considered comment above. IntPatch_ImpPrmIntersection.cxx,"
3120 " DecomposeResult(...)" << endl;
3121#endif
3122
3123 // *----------*------------x
3124 // QuadPrev QuadRef Quad (must be found)
3125
3126 const IntSurf_PntOn2S& aPt2S = aSSLine->Value(aBindex-2);
3127 //Quadric point
3128 Standard_Real aUQuadPrev = 0.0, aVQuadPrev = 0.0;
3129 if(IsReversed)
3130 {
3131 aPt2S.ParametersOnS2(aUQuadPrev, aVQuadPrev);
3132 }
3133 else
3134 {
3135 aPt2S.ParametersOnS1(aUQuadPrev, aVQuadPrev);
3136 }
3137
3138 Standard_NumericError_Raise_if(
3139 Abs(aVQuadPrev - aVQuadRef) < gp::Resolution(),
3140 "Division by zero");
3141
3142 aUquad =
3143 aUQuadPrev + (aUQuadRef - aUQuadPrev)*
3144 (aVquad - aVQuadPrev)/(aVQuadRef - aVQuadPrev);
3145 }
4e14c88f 3146 }
3147 else
3148 {
77dbd1f1 3149 if(Abs(aVecDu.Z()) > Abs(aVecDv.Z()))
3150 {
3151 const Standard_Real aDusDvs = aVecDv.Z()/aVecDu.Z();
4e14c88f 3152
77dbd1f1 3153 aV1.SetCoord( aVecDu.X()*aDusDvs - aVecDv.X(),
3154 aVecDu.Y()*aDusDvs - aVecDv.Y());
3155 }
3156 else
3157 {
3158 const Standard_Real aDvsDus = aVecDu.Z()/aVecDv.Z();
3159 aV1.SetCoord( aVecDv.X()*aDvsDus - aVecDu.X(),
3160 aVecDv.Y()*aDvsDus - aVecDu.Y());
3161 }
4e14c88f 3162
77dbd1f1 3163 aV1.Normalize();
3164
3165 if(Abs(aV1.X()) > Abs(aV1.Y()))
3166 aUquad = Sign(asin(aV1.Y()), aVquad);
3167 else
3168 aUquad = Sign(acos(aV1.X()), aVquad);
3169 }
4e14c88f 3170
4e14c88f 3171 {
77dbd1f1 3172 //Adjust found U-paramter to previous point of the Walking-line
3173 Standard_Real aDeltaPar = aUQuadRef-aUquad;
3174 const Standard_Real anIncr = Sign(aPeriod, aDeltaPar);
3175 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
3176 {
3177 aUquad += anIncr;
3178 aDeltaPar = aUQuadRef-aUquad;
3179 }
4e14c88f 3180 }
3181 }
77dbd1f1 3182
4e14c88f 3183 aNewPoint.SetValue(!IsReversed, aUquad, aVquad);
3184
3185 sline->Add(aNewPoint);
a09c8f3a 3186 aPrePointExist = PrePoint_POLE;
4e14c88f 3187 PrePoint = aNewPoint;
77dbd1f1 3188 } // if(!aNewPoint.IsSame(aRefPt, Precision::Confusion()))
3189 else
3190 {
a09c8f3a 3191 aPrePointExist = PrePoint_NONE;
3192
77dbd1f1 3193 if(sline->NbPoints() == 1)
3194 {
3195 //FIRST point of the sline is the pole of the quadric.
3196 //Therefore, there is no point in decomposition.
3197
3198 PrePoint = aRefPt;
a09c8f3a 3199 aPrePointExist = PrePoint_POLE;
77dbd1f1 3200 }
4e14c88f 3201 }
77dbd1f1 3202 } //if(anExtr.SquareDistance() < aTol*aTol)
a09c8f3a 3203 else
3204 {//Pole is not an intersection point
3205 aPrePointExist = PrePoint_SEAMU;
3206 }
3207 }
3208
3209 if(aPrePointExist == PrePoint_SEAMU)
3210 {//WLine goes through seam
3211
3212 aPrePointExist = PrePoint_NONE;
3213
3214 FuncPreciseSeam aF(theQSurf, thePSurf, Standard_True);
bf714c84 3215 math_Vector aTol(1, 3), aStartPoint(1,3),
3216 anInfBound(1, 3), aSupBound(1, 3);
a09c8f3a 3217
3218 //Parameters on parametric surface
3219 Standard_Real aUp = 0.0, aVp = 0.0;
3220 if(IsReversed)
3221 {
3222 aSSLine->Value(k).ParametersOnS1(aUp, aVp);
3223 }
3224 else
3225 {
3226 aSSLine->Value(k).ParametersOnS2(aUp, aVp);
3227 }
3228
3229 aTol(1) = thePSurf->UResolution(theArcTol);
3230 aTol(2) = thePSurf->VResolution(theArcTol);
3231 aTol(3) = theQSurf->VResolution(theArcTol);
3232 aStartPoint(1) = 0.5*(aU0 + aUp);
3233 aStartPoint(2) = 0.5*(aV0 + aVp);
3234 aStartPoint(3) = 0.5*(aVQuadRef + V1);
bf714c84 3235 anInfBound(1) = thePSurf->FirstUParameter();
3236 anInfBound(2) = thePSurf->FirstVParameter();
3237 anInfBound(3) = theQSurf->FirstVParameter();
3238 aSupBound(1) = thePSurf->LastUParameter();
3239 aSupBound(2) = thePSurf->LastVParameter();
3240 aSupBound(3) = theQSurf->LastVParameter();
a09c8f3a 3241
3242 math_FunctionSetRoot aSRF(aF, aTol);
bf714c84 3243 aSRF.Perform(aF, aStartPoint, anInfBound, aSupBound);
a09c8f3a 3244
3245 if(!aSRF.IsDone())
3246 {
3247 break;
3248 }
3249
3250 // Now aStartPoint is useless. Therefore, we use it for keeping
3251 // new point.
3252 aSRF.Root(aStartPoint);
3253
3254 //On parametric
3255 aU0 = aStartPoint(1);
3256 aV0 = aStartPoint(2);
3257
3258 //On quadric
3259 Standard_Real aUquad = 0.0;
3260 Standard_Real aVquad = aStartPoint(3);
3261 const gp_Pnt aPQuad(theQSurf->Value(aUquad, aVquad));
3262 const gp_Pnt aP0(thePSurf->Value(aU0, aV0));
3263
3264 {
3265 //Adjust found U-paramter to previous point of the Walking-line
3266 Standard_Real aDeltaPar = aUQuadRef-aUquad;
3267 const Standard_Real anIncr = Sign(aPeriod, aDeltaPar);
3268 while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
3269 {
3270 aUquad += anIncr;
3271 aDeltaPar = aUQuadRef-aUquad;
3272 }
3273 }
3274
3275 IntSurf_PntOn2S aNewPoint;
3276 if(IsReversed)
3277 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), aU0, aV0, aUquad, aVquad);
3278 else
3279 aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), aUquad, aVquad, aU0, aV0);
3280
3281 if(!aNewPoint.IsSame(aRefPt, Precision::Confusion(), Precision::PConfusion()))
3282 {
3283 aNewPoint.SetValue(!IsReversed, aUquad, aVquad);
3284 sline->Add(aNewPoint);
3285 aPrePointExist = PrePoint_SEAMU;
3286 PrePoint = aNewPoint;
3287 }
3288 else
3289 {
3290 if(sline->NbPoints() == 1)
3291 {
3292 //FIRST point of the sline is the pole of the quadric.
3293 //Therefore, there is no point in decomposition.
3294
3295 PrePoint = aRefPt;
3296 aPrePointExist = PrePoint_SEAMU;
3297 }
3298 }
4e14c88f 3299 }
3300
10ee9976 3301 ////
191478a5 3302 break;
77dbd1f1 3303 } //if(Abs(U1-AnU1) > aDeltaUmax)
7fd59977 3304
191478a5 3305 sline->Add(aSSLine->Value(k));
10ee9976 3306 PrePoint = aSSLine->Value(k);
77dbd1f1 3307 } //for(Standard_Integer k = aFindex; k <= aLindex; k++)
3308
3309 //Creation of new line as part of existing theLine.
3310 //This part is defined by sline.