0024773: Convertation of the generic classes to the non-generic. Part 7
[occt.git] / src / Geom2dGcc / Geom2dGcc_Circ2dTanOnRad.cdl
CommitLineData
b311480e 1-- Created on: 1992-10-20
2-- Created by: Remi GILET
3-- Copyright (c) 1992-1999 Matra Datavision
973c2be1 4-- Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 5--
973c2be1 6-- This file is part of Open CASCADE Technology software library.
b311480e 7--
d5f74e42 8-- This library is free software; you can redistribute it and/or modify it under
9-- the terms of the GNU Lesser General Public License version 2.1 as published
973c2be1 10-- by the Free Software Foundation, with special exception defined in the file
11-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12-- distribution for complete text of the license and disclaimer of any warranty.
b311480e 13--
973c2be1 14-- Alternatively, this file may be used under the terms of Open CASCADE
15-- commercial license or contractual agreement.
7fd59977 16
17class Circ2dTanOnRad from Geom2dGcc
18
19 ---Purpose: This class implements the algorithms used to
20 -- create a 2d circle tangent to a 2d entity,
21 -- centered on a 2d entity and with a given radius.
22 -- More than one argument must be a curve.
23 -- The arguments of all construction methods are :
24 -- - The qualified element for the tangency constrains
25 -- (QualifiedCirc, QualifiedLin, QualifiedCurvPoints).
26 -- - The Center element (circle, line, curve).
27 -- - A real Tolerance.
28 -- Tolerance is only used in the limits cases.
29 -- For example :
30 -- We want to create a circle tangent to an OutsideCurv Cu1
31 -- centered on a line OnLine with a radius Radius and with
32 -- a tolerance Tolerance.
33 -- If we did not used Tolerance it is impossible to
34 -- find a solution in the the following case : OnLine is
35 -- outside Cu1. There is no intersection point between Cu1
36 -- and OnLine. The distance between the line and the
37 -- circle is greater than Radius.
38 -- With Tolerance we will give a solution if the
39 -- distance between Cu1 and OnLine is lower than or
40 -- equal Tolerance.
41
42-- inherits Entity from Standard
43
578ce4be 44uses Lin2d from gp,
45 Circ2d from gp,
46 Pnt2d from gp,
47 Point from Geom2d,
48 Array1OfCirc2d from TColgp,
49 Array1OfPnt2d from TColgp,
50 Curve from Geom2dAdaptor,
51 QualifiedCurve from Geom2dGcc,
52 Array1OfReal from TColStd,
53 Array1OfInteger from TColStd,
54 Circ2dTanOnRad from GccAna,
55 Circ2dTanOnRadGeo from Geom2dGcc,
56 Position from GccEnt,
57 Array1OfPosition from GccEnt
7fd59977 58
59raises NegativeValue from Standard,
60 OutOfRange from Standard,
61 BadQualifier from GccEnt,
62 NotDone from StdFail
63
64is
65
66Create(Qualified1 : QualifiedCurve from Geom2dGcc ;
67 OnCurv : Curve from Geom2dAdaptor;
68 Radius : Real from Standard ;
69 Tolerance : Real from Standard )
70returns Circ2dTanOnRad from Geom2dGcc
71raises NegativeValue,BadQualifier;
72 ---Purpose: Constructs one or more 2D circles of radius Radius,
73 -- centered on the 2D curve OnCurv and:
74 -- - tangential to the curve Qualified1
75
76Create(Point1 : Point from Geom2d ;
77 OnCurv : Curve from Geom2dAdaptor;
78 Radius : Real from Standard ;
79 Tolerance : Real from Standard )
80returns Circ2dTanOnRad from Geom2dGcc
81raises NegativeValue;
82 ---Purpose: Constructs one or more 2D circles of radius Radius,
83 -- centered on the 2D curve OnCurv and:
84 -- passing through the point Point1.
85 -- OnCurv is an adapted curve, i.e. an object which is an
86 -- interface between:
87 -- - the services provided by a 2D curve from the package Geom2d,
88 -- - and those required on the curve by the construction algorithm.
89 -- Similarly, the qualified curve Qualified1 is created from
90 -- an adapted curve.
91 -- Adapted curves are created in the following way:
92 -- Handle(Geom2d_Curve) myCurveOn = ... ;
93 -- Geom2dAdaptor_Curve OnCurv ( myCurveOn ) ;
94 -- The algorithm is then constructed with this object:
95 -- Handle(Geom2d_Curve) myCurve1 = ...
96 -- ;
97 -- Geom2dAdaptor_Curve Adapted1 ( myCurve1 ) ;
98 -- Geom2dGcc_QualifiedCurve
99 -- Qualified1 = Geom2dGcc::Outside(Adapted1);
100 -- Standard_Real Radius = ... , Tolerance = ... ;
101 -- Geom2dGcc_Circ2dTanOnRad
102 -- myAlgo ( Qualified1 , OnCurv , Radius , Tolerance ) ;
103 -- if ( myAlgo.IsDone() )
104 -- { Standard_Integer Nbr = myAlgo.NbSolutions() ;
105 -- gp_Circ2d Circ ;
106 -- for ( Standard_Integer i = 1 ;
107 -- i <= nbr ; i++ )
108 -- { Circ = myAlgo.ThisSolution (i) ;
109 -- ...
110 -- }
111 -- }
112
113Results(me : in out ;
114 Circ : Circ2dTanOnRad from GccAna)
115is static;
116
117Results(me : in out ;
578ce4be 118 Circ : Circ2dTanOnRadGeo from Geom2dGcc)
7fd59977 119is static;
120
121IsDone(me) returns Boolean from Standard
122is static;
123 ---Purpose: Returns true if the construction algorithm does not fail
124 -- (even if it finds no solution).
125 -- Note: IsDone protects against a failure arising from a
126 -- more internal intersection algorithm which has reached
127 -- its numeric limits.
128NbSolutions(me) returns Integer from Standard
129raises NotDone
130is static;
131 ---Purpose: Returns the number of circles, representing solutions
132 -- computed by this algorithm.
133 -- Exceptions: StdFail_NotDone if the construction fails.
134
135ThisSolution(me ; Index : Integer from Standard) returns Circ2d from gp
136raises OutOfRange, NotDone
137is static;
138 ---Purpose: Returns the solution number Index and raises OutOfRange
139 -- exception if Index is greater than the number of solutions.
140 -- Be carefull: the Index is only a way to get all the
141 -- solutions, but is not associated to theses outside the context
142 -- of the algorithm-object.
143 -- Exceptions
144 -- Standard_OutOfRange if Index is less than zero or
145 -- greater than the number of solutions computed by this algorithm.
146 -- StdFail_NotDone if the construction fails.
147
148WhichQualifier(me ;
149 Index : Integer from Standard;
150 Qualif1 : out Position from GccEnt )
151raises OutOfRange, NotDone
152is static;
153 --- Purpose: Returns the qualifier Qualif1 of the tangency argument
154 -- for the solution of index Index computed by this algorithm.
155 -- The returned qualifier is:
156 -- - that specified at the start of construction when the
157 -- solutions are defined as enclosed, enclosing or
158 -- outside with respect to the arguments, or
159 -- - that computed during construction (i.e. enclosed,
160 -- enclosing or outside) when the solutions are defined
161 -- as unqualified with respect to the arguments, or
162 -- - GccEnt_noqualifier if the tangency argument is a point.
163 -- Exceptions
164 -- Standard_OutOfRange if Index is less than zero or
165 -- greater than the number of solutions computed by this algorithm.
166 -- StdFail_NotDone if the construction fails.
167
168Tangency1(me ;
169 Index : Integer from Standard;
170 ParSol,ParArg : out Real from Standard;
171 PntSol : out Pnt2d from gp )
172raises OutOfRange, NotDone
173is static;
174 ---Purpose: Returns informations about the tangency point between the
175 -- result number Index and the first argument.
176 -- ParSol is the intrinsic parameter of the point on the solution curv.
177 -- ParArg is the intrinsic parameter of the point on the argument curv.
178 -- PntSol is the tangency point on the solution curv.
179 -- PntArg is the tangency point on the argument curv.
180 -- Exceptions
181 -- Standard_OutOfRange if Index is less than zero or
182 -- greater than the number of solutions computed by this algorithm.
183 -- StdFail_NotDone if the construction fails.
184
185CenterOn3 (me ;
186 Index : Integer from Standard;
187 ParArg : out Real from Standard;
188 PntSol : out Pnt2d from gp )
189raises OutOfRange, NotDone
190is static;
191 ---Purpose: Returns the center PntSol on the second argument (i.e.
192 -- line or circle) of the solution of index Index computed by
193 -- this algorithm.
194 -- ParArg is the intrinsic parameter of the point on the argument curv.
195 -- PntSol is the center point of the solution curv.
196 -- PntArg is the projection of PntSol on the argument curv.
197 -- Exceptions:
198 -- Standard_OutOfRange if Index is less than zero or
199 -- greater than the number of solutions computed by this algorithm.
200 -- StdFail_NotDone if the construction fails.
201
202IsTheSame1(me ;
203 Index : Integer from Standard) returns Boolean from Standard
204raises OutOfRange, NotDone
205is static;
206 ---Purpose: Returns true if the solution of index Index and the first
207 -- argument of this algorithm are the same (i.e. there are 2
208 -- identical circles).
209 -- If Rarg is the radius of the first argument, Rsol is the
210 -- radius of the solution and dist is the distance between
211 -- the two centers, we consider the two circles to be
212 -- identical if |Rarg - Rsol| and dist are less than
213 -- or equal to the tolerance criterion given at the time of
214 -- construction of this algorithm.
215 -- OutOfRange is raised if Index is greater than the number of solutions.
216 -- notDone is raised if the construction algorithm did not succeed.
217
218fields
219
220 WellDone : Boolean from Standard;
221 -- True if the algorithm succeeded.
222
223 NbrSol : Integer from Standard;
224 -- The number of possible solutions. We have to decide about the
225 -- status of the multiple solutions...
226
227 cirsol : Array1OfCirc2d from TColgp;
228 ---Purpose : The solutions.
229
230 qualifier1 : Array1OfPosition from GccEnt;
231 -- The qualifiers of the first argument.
232
233 TheSame1 : Array1OfInteger from TColStd;
234
235 pnttg1sol : Array1OfPnt2d from TColgp;
236 -- The tangency point between the solution and the first argument on
237 -- the solution.
238
239 par1sol : Array1OfReal from TColStd;
240 -- The parameter of the tangency point between the solution and the
241 -- first argument on the solution.
242
243 pararg1 : Array1OfReal from TColStd;
244 -- The parameter of the tangency point between the solution and the first
245 -- argument on the first argument.
246
247 pntcen3 : Array1OfPnt2d from TColgp;
248 -- The center point of the solution on the first argument.
249
250 parcen3 : Array1OfReal from TColStd;
251 -- The parameter of the center point of the solution on the second
252 -- argument.
253
254end Circ2dTanOnRad;
255
256