0024166: Unable to create file with "Save" menu of voxeldemo Qt sample
[occt.git] / src / Geom2dGcc / Geom2dGcc_Circ2dTanOnRad.cdl
CommitLineData
b311480e 1-- Created on: 1992-10-20
2-- Created by: Remi GILET
3-- Copyright (c) 1992-1999 Matra Datavision
4-- Copyright (c) 1999-2012 OPEN CASCADE SAS
5--
6-- The content of this file is subject to the Open CASCADE Technology Public
7-- License Version 6.5 (the "License"). You may not use the content of this file
8-- except in compliance with the License. Please obtain a copy of the License
9-- at http://www.opencascade.org and read it completely before using this file.
10--
11-- The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
12-- main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
13--
14-- The Original Code and all software distributed under the License is
15-- distributed on an "AS IS" basis, without warranty of any kind, and the
16-- Initial Developer hereby disclaims all such warranties, including without
17-- limitation, any warranties of merchantability, fitness for a particular
18-- purpose or non-infringement. Please see the License for the specific terms
19-- and conditions governing the rights and limitations under the License.
20
7fd59977 21
22class Circ2dTanOnRad from Geom2dGcc
23
24 ---Purpose: This class implements the algorithms used to
25 -- create a 2d circle tangent to a 2d entity,
26 -- centered on a 2d entity and with a given radius.
27 -- More than one argument must be a curve.
28 -- The arguments of all construction methods are :
29 -- - The qualified element for the tangency constrains
30 -- (QualifiedCirc, QualifiedLin, QualifiedCurvPoints).
31 -- - The Center element (circle, line, curve).
32 -- - A real Tolerance.
33 -- Tolerance is only used in the limits cases.
34 -- For example :
35 -- We want to create a circle tangent to an OutsideCurv Cu1
36 -- centered on a line OnLine with a radius Radius and with
37 -- a tolerance Tolerance.
38 -- If we did not used Tolerance it is impossible to
39 -- find a solution in the the following case : OnLine is
40 -- outside Cu1. There is no intersection point between Cu1
41 -- and OnLine. The distance between the line and the
42 -- circle is greater than Radius.
43 -- With Tolerance we will give a solution if the
44 -- distance between Cu1 and OnLine is lower than or
45 -- equal Tolerance.
46
47-- inherits Entity from Standard
48
49uses Lin2d from gp,
50 Circ2d from gp,
51 Pnt2d from gp,
52 Point from Geom2d,
53 Array1OfCirc2d from TColgp,
54 Array1OfPnt2d from TColgp,
55 Curve from Geom2dAdaptor,
56 QualifiedCurve from Geom2dGcc,
57 Array1OfReal from TColStd,
58 Array1OfInteger from TColStd,
59 Circ2dTanOnRad from GccAna,
60 MyCirc2dTanOnRad from Geom2dGcc,
61 Position from GccEnt,
62 Array1OfPosition from GccEnt
63
64raises NegativeValue from Standard,
65 OutOfRange from Standard,
66 BadQualifier from GccEnt,
67 NotDone from StdFail
68
69is
70
71Create(Qualified1 : QualifiedCurve from Geom2dGcc ;
72 OnCurv : Curve from Geom2dAdaptor;
73 Radius : Real from Standard ;
74 Tolerance : Real from Standard )
75returns Circ2dTanOnRad from Geom2dGcc
76raises NegativeValue,BadQualifier;
77 ---Purpose: Constructs one or more 2D circles of radius Radius,
78 -- centered on the 2D curve OnCurv and:
79 -- - tangential to the curve Qualified1
80
81Create(Point1 : Point from Geom2d ;
82 OnCurv : Curve from Geom2dAdaptor;
83 Radius : Real from Standard ;
84 Tolerance : Real from Standard )
85returns Circ2dTanOnRad from Geom2dGcc
86raises NegativeValue;
87 ---Purpose: Constructs one or more 2D circles of radius Radius,
88 -- centered on the 2D curve OnCurv and:
89 -- passing through the point Point1.
90 -- OnCurv is an adapted curve, i.e. an object which is an
91 -- interface between:
92 -- - the services provided by a 2D curve from the package Geom2d,
93 -- - and those required on the curve by the construction algorithm.
94 -- Similarly, the qualified curve Qualified1 is created from
95 -- an adapted curve.
96 -- Adapted curves are created in the following way:
97 -- Handle(Geom2d_Curve) myCurveOn = ... ;
98 -- Geom2dAdaptor_Curve OnCurv ( myCurveOn ) ;
99 -- The algorithm is then constructed with this object:
100 -- Handle(Geom2d_Curve) myCurve1 = ...
101 -- ;
102 -- Geom2dAdaptor_Curve Adapted1 ( myCurve1 ) ;
103 -- Geom2dGcc_QualifiedCurve
104 -- Qualified1 = Geom2dGcc::Outside(Adapted1);
105 -- Standard_Real Radius = ... , Tolerance = ... ;
106 -- Geom2dGcc_Circ2dTanOnRad
107 -- myAlgo ( Qualified1 , OnCurv , Radius , Tolerance ) ;
108 -- if ( myAlgo.IsDone() )
109 -- { Standard_Integer Nbr = myAlgo.NbSolutions() ;
110 -- gp_Circ2d Circ ;
111 -- for ( Standard_Integer i = 1 ;
112 -- i <= nbr ; i++ )
113 -- { Circ = myAlgo.ThisSolution (i) ;
114 -- ...
115 -- }
116 -- }
117
118Results(me : in out ;
119 Circ : Circ2dTanOnRad from GccAna)
120is static;
121
122Results(me : in out ;
123 Circ : MyCirc2dTanOnRad from Geom2dGcc)
124is static;
125
126IsDone(me) returns Boolean from Standard
127is static;
128 ---Purpose: Returns true if the construction algorithm does not fail
129 -- (even if it finds no solution).
130 -- Note: IsDone protects against a failure arising from a
131 -- more internal intersection algorithm which has reached
132 -- its numeric limits.
133NbSolutions(me) returns Integer from Standard
134raises NotDone
135is static;
136 ---Purpose: Returns the number of circles, representing solutions
137 -- computed by this algorithm.
138 -- Exceptions: StdFail_NotDone if the construction fails.
139
140ThisSolution(me ; Index : Integer from Standard) returns Circ2d from gp
141raises OutOfRange, NotDone
142is static;
143 ---Purpose: Returns the solution number Index and raises OutOfRange
144 -- exception if Index is greater than the number of solutions.
145 -- Be carefull: the Index is only a way to get all the
146 -- solutions, but is not associated to theses outside the context
147 -- of the algorithm-object.
148 -- Exceptions
149 -- Standard_OutOfRange if Index is less than zero or
150 -- greater than the number of solutions computed by this algorithm.
151 -- StdFail_NotDone if the construction fails.
152
153WhichQualifier(me ;
154 Index : Integer from Standard;
155 Qualif1 : out Position from GccEnt )
156raises OutOfRange, NotDone
157is static;
158 --- Purpose: Returns the qualifier Qualif1 of the tangency argument
159 -- for the solution of index Index computed by this algorithm.
160 -- The returned qualifier is:
161 -- - that specified at the start of construction when the
162 -- solutions are defined as enclosed, enclosing or
163 -- outside with respect to the arguments, or
164 -- - that computed during construction (i.e. enclosed,
165 -- enclosing or outside) when the solutions are defined
166 -- as unqualified with respect to the arguments, or
167 -- - GccEnt_noqualifier if the tangency argument is a point.
168 -- Exceptions
169 -- Standard_OutOfRange if Index is less than zero or
170 -- greater than the number of solutions computed by this algorithm.
171 -- StdFail_NotDone if the construction fails.
172
173Tangency1(me ;
174 Index : Integer from Standard;
175 ParSol,ParArg : out Real from Standard;
176 PntSol : out Pnt2d from gp )
177raises OutOfRange, NotDone
178is static;
179 ---Purpose: Returns informations about the tangency point between the
180 -- result number Index and the first argument.
181 -- ParSol is the intrinsic parameter of the point on the solution curv.
182 -- ParArg is the intrinsic parameter of the point on the argument curv.
183 -- PntSol is the tangency point on the solution curv.
184 -- PntArg is the tangency point on the argument curv.
185 -- Exceptions
186 -- Standard_OutOfRange if Index is less than zero or
187 -- greater than the number of solutions computed by this algorithm.
188 -- StdFail_NotDone if the construction fails.
189
190CenterOn3 (me ;
191 Index : Integer from Standard;
192 ParArg : out Real from Standard;
193 PntSol : out Pnt2d from gp )
194raises OutOfRange, NotDone
195is static;
196 ---Purpose: Returns the center PntSol on the second argument (i.e.
197 -- line or circle) of the solution of index Index computed by
198 -- this algorithm.
199 -- ParArg is the intrinsic parameter of the point on the argument curv.
200 -- PntSol is the center point of the solution curv.
201 -- PntArg is the projection of PntSol on the argument curv.
202 -- Exceptions:
203 -- Standard_OutOfRange if Index is less than zero or
204 -- greater than the number of solutions computed by this algorithm.
205 -- StdFail_NotDone if the construction fails.
206
207IsTheSame1(me ;
208 Index : Integer from Standard) returns Boolean from Standard
209raises OutOfRange, NotDone
210is static;
211 ---Purpose: Returns true if the solution of index Index and the first
212 -- argument of this algorithm are the same (i.e. there are 2
213 -- identical circles).
214 -- If Rarg is the radius of the first argument, Rsol is the
215 -- radius of the solution and dist is the distance between
216 -- the two centers, we consider the two circles to be
217 -- identical if |Rarg - Rsol| and dist are less than
218 -- or equal to the tolerance criterion given at the time of
219 -- construction of this algorithm.
220 -- OutOfRange is raised if Index is greater than the number of solutions.
221 -- notDone is raised if the construction algorithm did not succeed.
222
223fields
224
225 WellDone : Boolean from Standard;
226 -- True if the algorithm succeeded.
227
228 NbrSol : Integer from Standard;
229 -- The number of possible solutions. We have to decide about the
230 -- status of the multiple solutions...
231
232 cirsol : Array1OfCirc2d from TColgp;
233 ---Purpose : The solutions.
234
235 qualifier1 : Array1OfPosition from GccEnt;
236 -- The qualifiers of the first argument.
237
238 TheSame1 : Array1OfInteger from TColStd;
239
240 pnttg1sol : Array1OfPnt2d from TColgp;
241 -- The tangency point between the solution and the first argument on
242 -- the solution.
243
244 par1sol : Array1OfReal from TColStd;
245 -- The parameter of the tangency point between the solution and the
246 -- first argument on the solution.
247
248 pararg1 : Array1OfReal from TColStd;
249 -- The parameter of the tangency point between the solution and the first
250 -- argument on the first argument.
251
252 pntcen3 : Array1OfPnt2d from TColgp;
253 -- The center point of the solution on the first argument.
254
255 parcen3 : Array1OfReal from TColStd;
256 -- The parameter of the center point of the solution on the second
257 -- argument.
258
259end Circ2dTanOnRad;
260
261