#include <TColStd_Array1OfReal.hxx>
#include <GeomAbs_Shape.hxx>
#include <Precision.hxx>
+#include <Geom2d_Circle.hxx>
+#include <IntAna2d_AnaIntersection.hxx>
+#include <IntAna2d_IntPoint.hxx>
#include <stdio.h>
#ifdef WNT
return 0;
}
+//=======================================================================
+//function : intersect
+//purpose :
+//=======================================================================
+
+static Standard_Integer intersect_ana(Draw_Interpretor& di, Standard_Integer n, const char** a)
+{
+ if( n < 2)
+ {
+ cout<< "2dintana circle circle "<<endl;
+ return 1;
+ }
+
+ Handle(Geom2d_Curve) C1 = DrawTrSurf::GetCurve2d(a[1]);
+ if ( C1.IsNull() && !C1->IsKind(STANDARD_TYPE(Geom2d_Circle)))
+ return 1;
+
+ Handle(Geom2d_Curve) C2 = DrawTrSurf::GetCurve2d(a[2]);
+ if ( C2.IsNull() && !C2->IsKind(STANDARD_TYPE(Geom2d_Circle)))
+ return 1;
+
+ Handle(Geom2d_Circle) aCir1 = Handle(Geom2d_Circle)::DownCast(C1);
+ Handle(Geom2d_Circle) aCir2 = Handle(Geom2d_Circle)::DownCast(C2);
+
+ IntAna2d_AnaIntersection Intersector(aCir1->Circ2d(), aCir2->Circ2d());
+
+ Standard_Integer i;
+
+ for ( i = 1; i <= Intersector.NbPoints(); i++) {
+ gp_Pnt2d P = Intersector.Point(i).Value();
+ di<<"Intersection point "<<i<<" : "<<P.X()<<" "<<P.Y()<<"\n";
+ di<<"parameter on the fist: "<<Intersector.Point(i).ParamOnFirst();
+ di<<" parameter on the second: "<<Intersector.Point(i).ParamOnSecond()<<"\n";
+ Handle(Draw_Marker2D) mark = new Draw_Marker2D( P, Draw_X, Draw_vert);
+ dout << mark;
+ }
+ dout.Flush();
+
+ return 0;
+}
+
+
void GeomliteTest::API2dCommands(Draw_Interpretor& theCommands)
{
theCommands.Add("2dintersect", "intersect curve curve [Tol]",__FILE__,
intersect,g);
+
+ theCommands.Add("2dintanalytical", "intersect curve curve using IntAna",__FILE__,
+ intersect_ana,g);
}
if (ang1<0) {ang1=2*M_PI+ang1;} // On revient entre 0 et 2PI
lpnt[0].SetValue(XS,YS,ang1,ang2);
}
- else if (((sum-d)>Epsilon(d)) && ((d-dif)>Epsilon(d))) {
+ else if (((sum-d)>Epsilon(sum)) && ((d-dif)>Epsilon(sum))) {
empt=Standard_False;
para=Standard_False;
iden=Standard_False;
Standard_Real ref2=Ox2.Angle(ax); // Resultat entre -PI et +PI
Standard_Real l1=(d*d + R1*R1 -R2*R2)/(2.0*d);
+ Standard_Real aDet = R1*R1-l1*l1;
+ if(aDet < 0.) {
+ aDet = 0.;
+ l1 = (l1 > 0 ? R1 : - R1);
+ }
Standard_Real h= Sqrt(R1*R1-l1*l1);
Standard_Real XS1= C1.Location().X() + l1*ax.X()/d - h*ax.Y()/d;
lpnt[0].SetValue(XS1,YS1,ang11,ang21);
lpnt[1].SetValue(XS2,YS2,ang12,ang22);
}
- else if (Abs(d-dif)<=Epsilon(d)) { // Cercles tangents interieurs
+ else if (Abs(d-dif)<=Epsilon(sum)) { // Cercles tangents interieurs
empt=Standard_False;
para=Standard_False;
iden=Standard_False;
nbp=1;
gp_Vec2d ax(C1.Location(),C2.Location());
+ if(C1.Radius() < C2.Radius())
+ ax.Reverse();
+
gp_Vec2d Ox1(C1.XAxis().Direction());
gp_Vec2d Ox2(C2.XAxis().Direction());
Standard_Real ang1=Ox1.Angle(ax); // Resultat entre -PI et +PI