class EdgeTool;
class Face;
-
+
class Domain;
+
+ class Cinert;
- class Cinert instantiates CGProps from GProp( Curve from BRepAdaptor,
- EdgeTool from BRepGProp);
-
- class Sinert instantiates SGProps from GProp( Edge from TopoDS,
- Face from BRepGProp ,
- Domain from BRepGProp);
+ class Sinert;
+
+ class Vinert;
+
+ class VinertGK;
+
+ class UFunction;
+ class TFunction;
- class Vinert instantiates VGProps from GProp( Edge from TopoDS,
- Face from BRepGProp,
- Domain from BRepGProp);
-
- class VinertGK instantiates VGPropsGK from GProp( Edge from TopoDS,
- Face from BRepGProp,
- Domain from BRepGProp);
--
-- Package methods to compute global properties.
- --
+ --
LinearProperties(S : Shape from TopoDS; LProps : in out GProps from GProp);
---Purpose: Computes the linear global properties of the shape S,
end BRepGProp;
-
-
-
-
-- Jean-Claude Vauthier January 1992, September 1992
-
-generic class CGProps from GProp (Curve as any;
- Tool as any)
-
-inherits GProps from GProp
+class Cinert from BRepGProp inherits GProps from GProp
--- Purpose :
-- Computes the global properties of bounded curves
-- in 3D space. The curve must have at least a continuity C1.
- -- It can be a curve as defined in the template CurveTool from
+ -- It can be a curve as defined in the template CurveTool from
-- package GProp. This template gives the minimum of methods
-- required to evaluate the global properties of a curve 3D with
-- the algorithmes of GProp.
-uses Pnt from gp
+uses Pnt from gp,
+ Curve from BRepAdaptor,
+ EdgeTool from BRepGProp
is
- Create returns CGProps;
+ Create returns Cinert;
- Create (C : Curve; CLocation : Pnt) returns CGProps;
+ Create (C : Curve from BRepAdaptor; CLocation : Pnt) returns Cinert;
SetLocation(me : in out;CLocation : Pnt) ;
- Perform(me : in out; C : Curve);
+ Perform(me : in out; C : Curve from BRepAdaptor);
-end CGProps;
+end Cinert;
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
-#include <math.hxx>
-#include <math_Vector.hxx>
-#include <gp.hxx>
-#include <gp_Vec.hxx>
-#include <Standard_NotImplemented.hxx>
+#include <BRepGProp_Cinert.ixx>
+#include <math.hxx>
#include <TColStd_Array1OfReal.hxx>
+#include <BRepGProp_EdgeTool.hxx>
+BRepGProp_Cinert::BRepGProp_Cinert(){}
-GProp_CGProps::GProp_CGProps(){}
-
-void GProp_CGProps::SetLocation(const gp_Pnt& CLocation)
+void BRepGProp_Cinert::SetLocation(const gp_Pnt& CLocation)
{
loc = CLocation;
}
-void GProp_CGProps::Perform (const Curve& C)
+void BRepGProp_Cinert::Perform (const BRepAdaptor_Curve& C)
{
Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
- Standard_Real Lower = Tool::FirstParameter (C);
- Standard_Real Upper = Tool::LastParameter (C);
- Standard_Integer Order = Min(Tool::IntegrationOrder (C),
- math::GaussPointsMax());
-
+ Standard_Real Lower = BRepGProp_EdgeTool::FirstParameter (C);
+ Standard_Real Upper = BRepGProp_EdgeTool::LastParameter (C);
+ Standard_Integer Order = Min(BRepGProp_EdgeTool::IntegrationOrder (C),
+ math::GaussPointsMax());
+
gp_Pnt P; //value on the curve
gp_Vec V1; //first derivative on the curve
Standard_Real ds; //curvilign abscissae
math_Vector GaussP (1, Order);
math_Vector GaussW (1, Order);
-
+
//Recuperation des points de Gauss dans le fichier GaussPoints.
math::GaussPoints (Order,GaussP);
math::GaussWeights (Order,GaussW);
// modified by NIZHNY-MKK Thu Jun 9 12:13:21 2005.BEGIN
- Standard_Integer nbIntervals = Tool::NbIntervals(C, GeomAbs_CN);
+ Standard_Integer nbIntervals = BRepGProp_EdgeTool::NbIntervals(C, GeomAbs_CN);
Standard_Boolean bHasIntervals = (nbIntervals > 1);
TColStd_Array1OfReal TI(1, nbIntervals + 1);
if(bHasIntervals) {
- Tool::Intervals(C, TI, GeomAbs_CN);
+ BRepGProp_EdgeTool::Intervals(C, TI, GeomAbs_CN);
}
else {
nbIntervals = 1;
Standard_Integer nIndex = 0;
Standard_Real UU1 = Min(Lower, Upper);
Standard_Real UU2 = Max(Lower, Upper);
-
+
for(nIndex = 1; nIndex <= nbIntervals; nIndex++) {
if(bHasIntervals) {
Lower = Max(TI(nIndex), UU1);
Standard_Real dimLocal, IxLocal, IyLocal, IzLocal, IxxLocal, IyyLocal, IzzLocal, IxyLocal, IxzLocal, IyzLocal;
dimLocal = IxLocal = IyLocal = IzLocal = IxxLocal = IyyLocal = IzzLocal = IxyLocal = IxzLocal = IyzLocal = 0.0;
- // modified by NIZHNY-MKK Thu Jun 9 12:13:32 2005.END
+ // modified by NIZHNY-MKK Thu Jun 9 12:13:32 2005.END
loc.Coord (xloc, yloc, zloc);
for (i = 1; i <= Order; i++) {
u = um + ur * GaussP (i);
- Tool::D1 (C,u, P, V1);
+ BRepGProp_EdgeTool::D1 (C,u, P, V1);
ds = V1.Magnitude();
P.Coord (x, y, z);
x -= xloc;
// modified by NIZHNY-MKK Thu Jun 9 12:13:55 2005.END
inertia = gp_Mat (gp_XYZ (Ixx, -Ixy, -Ixz),
- gp_XYZ (-Ixy, Iyy, -Iyz),
- gp_XYZ (-Ixz, -Iyz, Izz));
+ gp_XYZ (-Ixy, Iyy, -Iyz),
+ gp_XYZ (-Ixz, -Iyz, Izz));
if (Abs(dim) < gp::Resolution())
g = P;
}
-GProp_CGProps::GProp_CGProps (const Curve& C,
- const gp_Pnt& CLocation)
+BRepGProp_Cinert::BRepGProp_Cinert (const BRepAdaptor_Curve& C,
+ const gp_Pnt& CLocation)
{
SetLocation(CLocation);
Perform(C);
// commercial license or contractual agreement.
#include <BRepGProp_Face.ixx>
-#include <BRep_Tool.hxx>
+
#include <TopoDS.hxx>
-#include <GeomAdaptor_Surface.hxx>
-#include <Geom_Surface.hxx>
-#include <Geom_BezierSurface.hxx>
-#include <Geom_BSplineSurface.hxx>
+
+#include <Geom2d_Line.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
+#include <Geom_BSplineCurve.hxx>
+#include <Geom_BezierSurface.hxx>
+#include <Geom_BSplineSurface.hxx>
+#include <Geom_SurfaceOfLinearExtrusion.hxx>
+
#include <math.hxx>
+
#include <Bnd_Box2d.hxx>
#include <BndLib_Add2dCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
-#include <Geom_BSplineCurve.hxx>
+
#include <Precision.hxx>
-#include <TColStd_SequenceOfReal.hxx>
-#include <Geom_SurfaceOfLinearExtrusion.hxx>
-#include <Geom2d_Line.hxx>
//=======================================================================
//function : UIntegrationOrder
//=======================================================================
Standard_Integer BRepGProp_Face::UIntegrationOrder() const {
-
- Standard_Integer Nu;
- switch (mySurface.GetType()) {
- case GeomAbs_Plane :
- Nu =4;
- break;
+ Standard_Integer Nu;
+ switch (mySurface.GetType())
+ {
- case GeomAbs_BezierSurface :
- {
- Nu = (*((Handle(Geom_BezierSurface)*)&((mySurface.Surface()).Surface())))->UDegree()+1;
- Nu = Max(4,Nu);
- }
- break;
- case GeomAbs_BSplineSurface :
- {
- Standard_Integer a = (*((Handle(Geom_BSplineSurface)*)&((mySurface.Surface()).Surface())))->UDegree()+1;
- Standard_Integer b = (*((Handle(Geom_BSplineSurface)*)&((mySurface.Surface()).Surface())))->NbUKnots()-1;
- Nu = Max(4,a*b);
- }
- break;
+ case GeomAbs_Plane :
+ Nu =4;
+ break;
- default :
- Nu = 9;
- break;
- }
+ case GeomAbs_BezierSurface :
+ {
+ Nu = (*((Handle(Geom_BezierSurface)*)&((mySurface.Surface()).Surface())))->UDegree()+1;
+ Nu = Max(4,Nu);
+ }
+ break;
+ case GeomAbs_BSplineSurface :
+ {
+ Standard_Integer a = (*((Handle(Geom_BSplineSurface)*)&((mySurface.Surface()).Surface())))->UDegree()+1;
+ Standard_Integer b = (*((Handle(Geom_BSplineSurface)*)&((mySurface.Surface()).Surface())))->NbUKnots()-1;
+ Nu = Max(4,a*b);
+ }
+ break;
+
+ default :
+ Nu = 9;
+ break;
+ }
return Max(8,2*Nu);
}
-- Jean-Claude VAUTHIER January 1992
-generic class SGProps from GProp ( Arc as any;
- Face as any;
- Domain as any)
-inherits GProps
+class Sinert from BRepGProp inherits GProps
- --- Purpose :
+ --- Purpose :
-- Computes the global properties of a face in 3D space.
-- The face 's requirements to evaluate the global properties
-- are defined in the template FaceTool from package GProp.
-
-uses Pnt from gp
+
+uses Pnt from gp,
+ Edge from TopoDS,
+ Face from BRepGProp,
+ Domain from BRepGProp
is
- Create returns SGProps;
+ Create returns Sinert;
- Create (S: Face; SLocation: Pnt) returns SGProps;
- Create (S : in out Face; D : in out Domain; SLocation : Pnt) returns SGProps;
+ Create (S: Face; SLocation: Pnt) returns Sinert;
+ Create (S : in out Face; D : in out Domain; SLocation : Pnt) returns Sinert;
--- Purpose :
- -- Builds a SGProps to evaluate the global properties of
+ -- Builds a Sinert to evaluate the global properties of
-- the face <S>. If isNaturalRestriction is true the domain of S is defined
-- with the natural bounds, else it defined with an iterator
- -- of Arc (see DomainTool from GProp)
- Create (S: in out Face; SLocation: Pnt; Eps: Real) returns SGProps;
- Create (S: in out Face; D : in out Domain; SLocation: Pnt; Eps: Real) returns SGProps;
+ -- of Edge from TopoDS (see DomainTool from GProp)
+ Create (S: in out Face; SLocation: Pnt; Eps: Real) returns Sinert;
+ Create (S: in out Face; D : in out Domain; SLocation: Pnt; Eps: Real) returns Sinert;
-- --"--
-- Parameter Eps sets maximal relative error of computed area.
myEpsilon: Real from Standard;
-end SGProps;
+end Sinert;
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
-#include <Standard_NotImplemented.hxx>
-#include <math_Vector.hxx>
-#include <math.hxx>
-#include <gp_Pnt2d.hxx>
-#include <gp_Vec2d.hxx>
-#include <gp_Pnt.hxx>
-#include <gp_Vec.hxx>
+#include <BRepGProp_Sinert.ixx>
+#include <math.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Precision.hxx>
return FillIntervalBounds(A, B, Knots, U1, U2);
}
-static Standard_Real CCompute(Face& S,
- Domain& D,
+static Standard_Real CCompute(BRepGProp_Face& S,
+ BRepGProp_Domain& D,
const gp_Pnt& loc,
Standard_Real& Dim,
gp_Pnt& g,
Standard_Real x, y, z;
//boundary curve parametrization
Standard_Real l1, l2, lm, lr, l;
- //Face parametrization in U and V direction
+ //BRepGProp_Face parametrization in U and V direction
Standard_Real BV1, BV2, v;
Standard_Real BU1, BU2, u1, u2, um, ur, u;
S.Bounds (BU1, BU2, BV1, BV2);
loc.Coord (xloc, yloc, zloc); // use member of parent class
//Jacobien (x, y, z) -> (u, v) = ||n||
Standard_Real ds;
- //On the Face
+ //On the BRepGProp_Face
gp_Pnt Ps;
gp_Vec VNor;
//On the boundary curve u-v
return Eps;
}
-static Standard_Real Compute(Face& S, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
+static Standard_Real Compute(BRepGProp_Face& S, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
Standard_Real EpsDim)
{
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
EpsDim = Abs(EpsDim);
- Domain D;
+ BRepGProp_Domain D;
return CCompute(S,D,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
}
-static Standard_Real Compute(Face& S, Domain& D, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
+static Standard_Real Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
Standard_Real EpsDim)
{
Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
return CCompute(S,D,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
}
-static void Compute(Face& S, Domain& D, const gp_Pnt& loc, Standard_Real& dim, gp_Pnt& g, gp_Mat& inertia)
+static void Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& loc, Standard_Real& dim, gp_Pnt& g, gp_Mat& inertia)
{
Standard_Real (*FuncAdd)(Standard_Real, Standard_Real);
Standard_Real (*FuncMul)(Standard_Real, Standard_Real);
Standard_Integer NbCGaussgp_Pnts = 0;
Standard_Real l1, l2, lm, lr, l; //boundary curve parametrization
- Standard_Real v1, v2, v; //Face parametrization in v direction
+ Standard_Real v1, v2, v; //BRepGProp_Face parametrization in v direction
Standard_Real u1, u2, um, ur, u;
Standard_Real ds; //Jacobien (x, y, z) -> (u, v) = ||n||
- gp_Pnt P; //On the Face
+ gp_Pnt P; //On the BRepGProp_Face
gp_Vec VNor;
gp_Pnt2d Puv; //On the boundary curve u-v
Standard_Integer NbGaussgp_Pnts = Max(NbUGaussgp_Pnts, NbVGaussgp_Pnts);
//Number of Gauss points for the integration
- //on the Face
+ //on the BRepGProp_Face
math_Vector GaussSPV (1, NbGaussgp_Pnts);
math_Vector GaussSWV (1, NbGaussgp_Pnts);
math::GaussPoints (NbGaussgp_Pnts,GaussSPV);
gp_XYZ (-Ixz, -Iyz, Izz));
}
-static void Compute(const Face& S,
+static void Compute(const BRepGProp_Face& S,
const gp_Pnt& loc,
Standard_Real& dim,
gp_Pnt& g,
gp_XYZ (-Ixz, -Iyz, Izz));
}
-GProp_SGProps::GProp_SGProps(){}
+BRepGProp_Sinert::BRepGProp_Sinert(){}
-GProp_SGProps::GProp_SGProps (const Face& S,
+BRepGProp_Sinert::BRepGProp_Sinert (const BRepGProp_Face& S,
const gp_Pnt& SLocation
)
{
Perform(S);
}
-GProp_SGProps::GProp_SGProps (Face& S,
- Domain& D,
+BRepGProp_Sinert::BRepGProp_Sinert (BRepGProp_Face& S,
+ BRepGProp_Domain& D,
const gp_Pnt& SLocation
)
{
Perform(S,D);
}
-GProp_SGProps::GProp_SGProps(Face& S, const gp_Pnt& SLocation, const Standard_Real Eps){
+BRepGProp_Sinert::BRepGProp_Sinert(BRepGProp_Face& S, const gp_Pnt& SLocation, const Standard_Real Eps){
SetLocation(SLocation);
Perform(S, Eps);
}
-GProp_SGProps::GProp_SGProps(Face& S, Domain& D, const gp_Pnt& SLocation, const Standard_Real Eps){
+BRepGProp_Sinert::BRepGProp_Sinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& SLocation, const Standard_Real Eps){
SetLocation(SLocation);
Perform(S, D, Eps);
}
-void GProp_SGProps::SetLocation(const gp_Pnt& SLocation){
+void BRepGProp_Sinert::SetLocation(const gp_Pnt& SLocation){
loc = SLocation;
}
-void GProp_SGProps::Perform(const Face& S){
+void BRepGProp_Sinert::Perform(const BRepGProp_Face& S){
Compute(S,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
-void GProp_SGProps::Perform(Face& S, Domain& D){
+void BRepGProp_Sinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D){
Compute(S,D,loc,dim,g,inertia);
myEpsilon = 1.0;
return;
}
-Standard_Real GProp_SGProps::Perform(Face& S, const Standard_Real Eps){
+Standard_Real BRepGProp_Sinert::Perform(BRepGProp_Face& S, const Standard_Real Eps){
return myEpsilon = Compute(S,loc,dim,g,inertia,Eps);
}
-Standard_Real GProp_SGProps::Perform(Face& S, Domain& D, const Standard_Real Eps){
+Standard_Real BRepGProp_Sinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Real Eps){
return myEpsilon = Compute(S,D,loc,dim,g,inertia,Eps);
}
-Standard_Real GProp_SGProps::GetEpsilon(){
+Standard_Real BRepGProp_Sinert::GetEpsilon(){
return myEpsilon;
}
--- /dev/null
+-- Created on: 2005-12-21
+-- Created by: Sergey KHROMOV
+-- Copyright (c) 2005-2014 OPEN CASCADE SAS
+--
+-- This file is part of Open CASCADE Technology software library.
+--
+-- This library is free software; you can redistribute it and/or modify it under
+-- the terms of the GNU Lesser General Public License version 2.1 as published
+-- by the Free Software Foundation, with special exception defined in the file
+-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+-- distribution for complete text of the license and disclaimer of any warranty.
+--
+-- Alternatively, this file may be used under the terms of Open CASCADE
+-- commercial license or contractual agreement.
+
+class TFunction from BRepGProp inherits Function from math
+
+ ---Purpose: This class represents the integrand function for the outer
+ -- integral computation. The returned value represents the
+ -- integral of UFunction. It depends on the value type and the
+ -- flag IsByPoint.
+
+uses
+
+ Pnt from gp,
+ Address from Standard,
+ Boolean from Standard,
+ Integer from Standard,
+ Real from Standard,
+ ValueType from GProp,
+ UFunction from BRepGProp,
+ Face from BRepGProp
+
+is
+
+ Create(theSurface : Face from BRepGProp;
+ theVertex : Pnt from gp;
+ IsByPoint : Boolean from Standard;
+ theCoeffs : Address from Standard;
+ theUMin : Real from Standard;
+ theTolerance: Real from Standard)
+ ---Purpose: Constructor. Initializes the function with the face, the
+ -- location point, the flag IsByPoint, the coefficients
+ -- theCoeff that have different meaning depending on the value
+ -- of IsByPoint. The last two parameters are theUMin - the
+ -- lower bound of the inner integral. This value is fixed for
+ -- any integral. And the value of tolerance of inner integral
+ -- computation.
+ -- If IsByPoint is equal to Standard_True, the number of the
+ -- coefficients is equal to 3 and they represent X, Y and Z
+ -- coordinates (theCoeff[0], theCoeff[1] and theCoeff[2]
+ -- correspondingly) of the shift if the inertia is computed
+ -- with respect to the point different then the location.
+ -- If IsByPoint is equal to Standard_False, the number of the
+ -- coefficients is 4 and they represent the compbination of
+ -- plane parameters and shift values.
+ returns TFunction from BRepGProp;
+
+ Init(me: in out);
+
+ SetNbKronrodPoints(me: in out; theNbPoints: Integer from Standard);
+ ---Purpose: Setting the expected number of Kronrod points for the outer
+ -- integral computation. This number is required for
+ -- computation of a value of tolerance for inner integral
+ -- computation. After GetStateNumber method call, this number
+ -- is recomputed by the same law as in
+ -- math_KronrodSingleIntegration, i.e. next number of points
+ -- is equal to the current number plus a square root of the
+ -- current number. If the law in math_KronrodSingleIntegration
+ -- is changed, the modification algo should be modified
+ -- accordingly.
+ ---C++: inline
+
+ SetValueType(me: in out; aType: ValueType from GProp);
+ ---Purpose: Setting the type of the value to be returned. This
+ -- parameter is directly passed to the UFunction.
+ ---C++: inline
+
+ SetTolerance(me: in out; aTol: Real from Standard);
+ ---Purpose: Setting the tolerance for inner integration
+ ---C++: inline
+
+ ErrorReached(me)
+ ---Purpose: Returns the relative reached error of all values computation since
+ -- the last call of GetStateNumber method.
+ ---C++: inline
+ returns Real from Standard;
+
+ AbsolutError(me)
+ ---Purpose: Returns the absolut reached error of all values computation since
+ -- the last call of GetStateNumber method.
+ ---C++: inline
+ returns Real from Standard;
+
+ Value(me: in out; X: Real from Standard;
+ F: out Real from Standard)
+ ---Purpose: Returns a value of the function. The value represents an
+ -- integral of UFunction. It is computed with the predefined
+ -- tolerance using the adaptive Gauss-Kronrod method.
+ returns Boolean from Standard
+ is redefined;
+
+ GetStateNumber(me: in out)
+ ---Purpose: Redefined method. Remembers the error reached during
+ -- computation of integral values since the object creation
+ -- or the last call of GetStateNumber. It is invoked in each
+ -- algorithm from the package math. Particularly in the
+ -- algorithm math_KronrodSingleIntegration that is used to
+ -- compute the integral of TFunction.
+ returns Integer
+ is redefined;
+
+fields
+
+ mySurface : Face from BRepGProp;
+ myUFunction : UFunction from BRepGProp;
+ myUMin : Real from Standard;
+ myTolerance : Real from Standard;
+ myTolReached: Real from Standard;
+ myErrReached: Real from Standard;
+ myAbsError : Real from Standard;
+ myValueType : ValueType from GProp;
+ myIsByPoint : Boolean from Standard;
+ myNbPntOuter: Integer from Standard;
+
+end TFunction;
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
+#include <BRepGProp_TFunction.ixx>
+
#include <TColStd_HArray1OfReal.hxx>
#include <math_KronrodSingleIntegration.hxx>
#include <Precision.hxx>
-#include <math.hxx>
//=======================================================================
//function : Constructor.
//purpose :
//=======================================================================
-GProp_TFunction::GProp_TFunction(const Face &theSurface,
- const gp_Pnt &theVertex,
- const Standard_Boolean IsByPoint,
- const Standard_Address theCoeffs,
- const Standard_Real theUMin,
- const Standard_Real theTolerance)
- : mySurface(theSurface),
- myUFunction(mySurface, theVertex, IsByPoint, theCoeffs),
- myUMin(theUMin),
- myTolerance(theTolerance),
- myTolReached(0.),
- myErrReached(0.),
- myAbsError(0.),
- myValueType(GProp_Unknown),
- myIsByPoint(IsByPoint),
- myNbPntOuter(3)
+BRepGProp_TFunction::BRepGProp_TFunction(const BRepGProp_Face &theSurface,
+ const gp_Pnt &theVertex,
+ const Standard_Boolean IsByPoint,
+ const Standard_Address theCoeffs,
+ const Standard_Real theUMin,
+ const Standard_Real theTolerance):
+ mySurface(theSurface),
+ myUFunction(mySurface, theVertex, IsByPoint, theCoeffs),
+ myUMin(theUMin),
+ myTolerance(theTolerance),
+ myTolReached(0.),
+ myErrReached(0.),
+ myAbsError(0.),
+ myValueType(GProp_Unknown),
+ myIsByPoint(IsByPoint),
+ myNbPntOuter(3)
{
}
//purpose :
//=======================================================================
-void GProp_TFunction::Init()
+void BRepGProp_TFunction::Init()
{
myTolReached = 0.;
myErrReached = 0.;
//purpose :
//=======================================================================
-Standard_Boolean GProp_TFunction::Value(const Standard_Real X,
- Standard_Real &F)
+Standard_Boolean BRepGProp_TFunction::Value(const Standard_Real X,
+ Standard_Real &F)
{
-
const Standard_Real tolU = 1.e-9;
gp_Pnt2d aP2d;
mySurface.D12d(X, aP2d, aV2d);
aUMax = aP2d.X();
- if(aUMax - myUMin < tolU) {
+ if(aUMax - myUMin < tolU)
+ {
F = 0.;
return Standard_True;
- }
+ }
mySurface.GetUKnots(myUMin, aUMax, anUKnots);
myUFunction.SetVParam(aP2d.Y());
if (myIsByPoint)
aCoeff /= 3.;
} else if (myValueType == GProp_CenterMassX ||
- myValueType == GProp_CenterMassY ||
- myValueType == GProp_CenterMassZ) {
- if (myIsByPoint)
- aCoeff *= 0.25;
+ myValueType == GProp_CenterMassY ||
+ myValueType == GProp_CenterMassZ) {
+ if (myIsByPoint)
+ aCoeff *= 0.25;
} else if (myValueType == GProp_InertiaXX ||
- myValueType == GProp_InertiaYY ||
- myValueType == GProp_InertiaZZ ||
- myValueType == GProp_InertiaXY ||
- myValueType == GProp_InertiaXZ ||
- myValueType == GProp_InertiaYZ) {
- if (myIsByPoint)
- aCoeff *= 0.2;
+ myValueType == GProp_InertiaYY ||
+ myValueType == GProp_InertiaZZ ||
+ myValueType == GProp_InertiaXY ||
+ myValueType == GProp_InertiaXZ ||
+ myValueType == GProp_InertiaYZ) {
+ if (myIsByPoint)
+ aCoeff *= 0.2;
} else
return Standard_False;
i = anUKnots->Lower();
F = 0.;
-
+
// Epmirical criterion
aNbPntsStart = Min(15, mySurface.UIntegrationOrder()/(anUKnots->Length() - 1)+1);
aNbPntsStart = Max(5, aNbPntsStart);
- while (i < iU) {
+ while (i < iU) {
Standard_Real aU1 = anUKnots->Value(i++);
Standard_Real aU2 = anUKnots->Value(i);
//purpose :
//=======================================================================
-Standard_Integer GProp_TFunction::GetStateNumber()
+Standard_Integer BRepGProp_TFunction::GetStateNumber()
{
//myErrReached = myTolReached;
//myTolReached = 0.;
//myNbPntOuter += RealToInt(0.5*myNbPntOuter);
//if (myNbPntOuter%2 == 0)
- //myNbPntOuter++;
+ //myNbPntOuter++;
return 0;
}
//purpose :
//=======================================================================
-inline void GProp_TFunction::SetNbKronrodPoints
+inline void BRepGProp_TFunction::SetNbKronrodPoints
(const Standard_Integer theNbPoints)
{
myNbPntOuter = (theNbPoints%2 == 0) ? theNbPoints + 1 : theNbPoints;
//purpose :
//=======================================================================
-inline void GProp_TFunction::SetValueType(const GProp_ValueType theType)
+inline void BRepGProp_TFunction::SetValueType(const GProp_ValueType theType)
{
myValueType = theType;
myUFunction.SetValueType(myValueType);
//purpose :
//=======================================================================
-inline void GProp_TFunction::SetTolerance(const Standard_Real theTolerance)
+inline void BRepGProp_TFunction::SetTolerance(const Standard_Real theTolerance)
{
myTolerance = theTolerance;
}
//purpose :
//=======================================================================
-inline Standard_Real GProp_TFunction::ErrorReached() const
+inline Standard_Real BRepGProp_TFunction::ErrorReached() const
{
return myErrReached;
}
//purpose :
//=======================================================================
-inline Standard_Real GProp_TFunction::AbsolutError() const
+inline Standard_Real BRepGProp_TFunction::AbsolutError() const
{
return myAbsError;
}
--- /dev/null
+-- Created on: 2005-12-21
+-- Created by: Sergey KHROMOV
+-- Copyright (c) 2005-2014 OPEN CASCADE SAS
+--
+-- This file is part of Open CASCADE Technology software library.
+--
+-- This library is free software; you can redistribute it and/or modify it under
+-- the terms of the GNU Lesser General Public License version 2.1 as published
+-- by the Free Software Foundation, with special exception defined in the file
+-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+-- distribution for complete text of the license and disclaimer of any warranty.
+--
+-- Alternatively, this file may be used under the terms of Open CASCADE
+-- commercial license or contractual agreement.
+
+class UFunction from BRepGProp inherits Function from math
+
+ ---Purpose: This class represents the integrand function for
+ -- computation of an inner integral. The returned value
+ -- depends on the value type and the flag IsByPoint.
+ --
+ -- The type of returned value is the one of the following
+ -- values:
+ -- - GProp_Mass - volume computation.
+ -- - GProp_CenterMassX, GProp_CenterMassY,
+ -- GProp_CenterMassZ - X, Y and Z coordinates of center
+ -- of mass computation.
+ -- - GProp_InertiaXX, GProp_InertiaYY, GProp_InertiaZZ,
+ -- GProp_InertiaXY, GProp_InertiaXZ, GProp_InertiaYZ
+ -- - moments of inertia computation.
+ --
+ -- If the flag IsByPoint is set to Standard_True, the value is
+ -- returned for the region of space that is delimited by a
+ -- surface and a point. Otherwise all computations are
+ -- performed for the region of space delimited by a surface
+ -- and a plane.
+
+uses
+ Pnt from gp,
+ XYZ from gp,
+ Address from Standard,
+ Boolean from Standard,
+ Real from Standard,
+ ValueType from GProp,
+ Face from BRepGProp
+
+is
+
+ Create(theSurface: Face from BRepGProp;
+ theVertex : Pnt from gp;
+ IsByPoint : Boolean from Standard;
+ theCoeffs : Address from Standard)
+ ---Purpose: Constructor. Initializes the function with the face, the
+ -- location point, the flag IsByPoint and the coefficients
+ -- theCoeff that have different meaning depending on the value
+ -- of IsByPoint.
+ -- If IsByPoint is equal to Standard_True, the number of the
+ -- coefficients is equal to 3 and they represent X, Y and Z
+ -- coordinates (theCoeff[0], theCoeff[1] and theCoeff[2]
+ -- correspondingly) of the shift, if the inertia is computed
+ -- with respect to the point different then the location.
+ -- If IsByPoint is equal to Standard_False, the number of the
+ -- coefficients is 4 and they represent the combination of
+ -- plane parameters and shift values.
+ returns UFunction from BRepGProp;
+
+ SetValueType(me: in out; theType: ValueType from GProp);
+ ---Purpose: Setting the type of the value to be returned.
+ ---C++: inline
+
+ SetVParam(me: in out; theVParam: Real from Standard);
+ ---Purpose: Setting the V parameter that is constant during the
+ -- integral computation.
+ ---C++: inline
+
+ Value(me: in out; X: Real from Standard;
+ F: out Real from Standard)
+ ---Purpose: Returns a value of the function.
+ returns Boolean from Standard
+ is redefined;
+
+ -----------------------
+ -- Private methods --
+ -----------------------
+
+ VolumeValue(me: in out; X : Real from Standard;
+ thePMP0: out XYZ from gp;
+ theS : out Real from Standard;
+ theD1 : out Real from Standard)
+ ---Purpose: Private method. Returns the value for volume computation.
+ -- Other returned values are:
+ -- - thePMP0 - PSurf(X,Y) minus Location.
+ -- - theS and theD1 coeffitients that are computed and used
+ -- for computation of center of mass and inertia values
+ -- by plane.
+ returns Real from Standard
+ is private;
+
+ CenterMassValue(me: in out; X: Real from Standard;
+ F: out Real from Standard)
+ ---Purpose: Private method. Returns a value for the center of mass
+ -- computation. If the value type other then GProp_CenterMassX,
+ -- GProp_CenterMassY or GProp_CenterMassZ this method returns
+ -- Standard_False. Returns Standard_True in case of successful
+ -- computation of a value.
+ returns Boolean from Standard
+ is private;
+
+ InertiaValue(me: in out; X: Real from Standard;
+ F: out Real from Standard)
+ ---Purpose: Private method. Computes the value of intertia. The type of
+ -- a value returned is defined by the value type. If it is
+ -- other then GProp_InertiaXX, GProp_InertiaYY,
+ -- GProp_InertiaZZ, GProp_InertiaXY, GProp_InertiaXZ or
+ -- GProp_InertiaYZ, the method returns Standard_False. Returns
+ -- Standard_True in case of successful computation of a value
+ returns Boolean from Standard
+ is private;
+
+fields
+
+ mySurface : Face from BRepGProp;
+ myVertex : Pnt from gp;
+ myCoeffs : Address from Standard;
+ myVParam : Real from Standard;
+ myValueType: ValueType from GProp;
+ myIsByPoint: Boolean from Standard;
+
+end UFunction;
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
+#include <BRepGProp_UFunction.ixx>
+
//=======================================================================
//function : Constructor.
//purpose :
//=======================================================================
-GProp_UFunction::GProp_UFunction(const Face &theSurface,
- const gp_Pnt &theVertex,
- const Standard_Boolean IsByPoint,
- const Standard_Address theCoeffs)
- : mySurface(theSurface),
- myVertex(theVertex),
- myCoeffs(theCoeffs),
- myVParam(0.),
- myValueType(GProp_Unknown),
- myIsByPoint(IsByPoint)
+BRepGProp_UFunction::BRepGProp_UFunction(const BRepGProp_Face &theSurface,
+ const gp_Pnt &theVertex,
+ const Standard_Boolean IsByPoint,
+ const Standard_Address theCoeffs)
+ : mySurface(theSurface),
+ myVertex(theVertex),
+ myCoeffs(theCoeffs),
+ myVParam(0.),
+ myValueType(GProp_Unknown),
+ myIsByPoint(IsByPoint)
{
}
//purpose : Returns a value of the function.
//=======================================================================
-Standard_Boolean GProp_UFunction::Value(const Standard_Real X,
- Standard_Real &F)
+Standard_Boolean BRepGProp_UFunction::Value(const Standard_Real X,
+ Standard_Real &F)
{
// Volume computation
if (myValueType == GProp_Mass) {
// Center of mass computation
if (myValueType == GProp_CenterMassX ||
- myValueType == GProp_CenterMassY ||
- myValueType == GProp_CenterMassZ)
+ myValueType == GProp_CenterMassY ||
+ myValueType == GProp_CenterMassZ)
return CenterMassValue(X, F);
// Inertia computation
if (myValueType == GProp_InertiaXX ||
- myValueType == GProp_InertiaYY ||
- myValueType == GProp_InertiaZZ ||
- myValueType == GProp_InertiaXY ||
- myValueType == GProp_InertiaXZ ||
- myValueType == GProp_InertiaYZ)
+ myValueType == GProp_InertiaYY ||
+ myValueType == GProp_InertiaZZ ||
+ myValueType == GProp_InertiaXY ||
+ myValueType == GProp_InertiaXZ ||
+ myValueType == GProp_InertiaYZ)
return InertiaValue(X, F);
return Standard_False;
//purpose : Returns the value for volume computation.
//=======================================================================
-Standard_Real GProp_UFunction::VolumeValue(const Standard_Real X,
- gp_XYZ &thePMP0,
- Standard_Real &theS,
- Standard_Real &theD1)
+Standard_Real BRepGProp_UFunction::VolumeValue(const Standard_Real X,
+ gp_XYZ &thePMP0,
+ Standard_Real &theS,
+ Standard_Real &theD1)
{
gp_Pnt aPnt;
gp_Vec aNorm;
theS = aNorm.X()*aCoeff[0] + aNorm.Y()*aCoeff[1] + aNorm.Z()*aCoeff[2];
theD1 = thePMP0.X()*aCoeff[0] + thePMP0.Y()*aCoeff[1]
- + thePMP0.Z()*aCoeff[2] - aCoeff[3];
+ + thePMP0.Z()*aCoeff[2] - aCoeff[3];
return theS*theD1;
}
//purpose : Returns a value for the center of mass computation.
//=======================================================================
-Standard_Boolean GProp_UFunction::CenterMassValue(const Standard_Real X,
- Standard_Real &F)
+Standard_Boolean BRepGProp_UFunction::CenterMassValue(const Standard_Real X,
+ Standard_Real &F)
{
gp_XYZ aPmP0;
Standard_Real aS;
//purpose : Compute the value of intertia.
//=======================================================================
-Standard_Boolean GProp_UFunction::InertiaValue(const Standard_Real X,
- Standard_Real &F)
+Standard_Boolean BRepGProp_UFunction::InertiaValue(const Standard_Real X,
+ Standard_Real &F)
{
gp_XYZ aPmP0;
Standard_Real aS;
}
if (myValueType == GProp_InertiaXX ||
- myValueType == GProp_InertiaYY ||
- myValueType == GProp_InertiaZZ)
+ myValueType == GProp_InertiaYY ||
+ myValueType == GProp_InertiaZZ)
F *= aParam1*aParam1 + aParam2*aParam2;
else
F *= -aParam1*aParam2;
// Inertia computation for XX, YY and ZZ.
if (myValueType == GProp_InertiaXX ||
- myValueType == GProp_InertiaYY ||
- myValueType == GProp_InertiaZZ) {
-
- if (myValueType == GProp_InertiaXX) {
- aPPar1 = aPmP0.Y();
- aPPar2 = aPmP0.Z();
- aCoeff1 = aCoeffs[1];
- aCoeff2 = aCoeffs[2];
- } else if (myValueType == GProp_InertiaYY) {
- aPPar1 = aPmP0.X();
- aPPar2 = aPmP0.Z();
- aCoeff1 = aCoeffs[0];
- aCoeff2 = aCoeffs[2];
- } else { // myValueType == GProp_InertiaZZ
- aPPar1 = aPmP0.X();
- aPPar2 = aPmP0.Y();
- aCoeff1 = aCoeffs[0];
- aCoeff2 = aCoeffs[1];
- }
-
- aPPar1 -= aCoeff1*aD1;
- aPPar2 -= aCoeff2*aD1;
- aParam1 = aPPar1*aPPar1*aD1 + aPPar1*aCoeff1*aD2 + aCoeff1*aCoeff1*aD3;
- aParam2 = aPPar2*aPPar2*aD1 + aPPar2*aCoeff2*aD2 + aCoeff2*aCoeff2*aD3;
-
- F = (aParam1 + aParam2)*aS;
-
- return Standard_True;
+ myValueType == GProp_InertiaYY ||
+ myValueType == GProp_InertiaZZ) {
+
+ if (myValueType == GProp_InertiaXX) {
+ aPPar1 = aPmP0.Y();
+ aPPar2 = aPmP0.Z();
+ aCoeff1 = aCoeffs[1];
+ aCoeff2 = aCoeffs[2];
+ } else if (myValueType == GProp_InertiaYY) {
+ aPPar1 = aPmP0.X();
+ aPPar2 = aPmP0.Z();
+ aCoeff1 = aCoeffs[0];
+ aCoeff2 = aCoeffs[2];
+ } else { // myValueType == GProp_InertiaZZ
+ aPPar1 = aPmP0.X();
+ aPPar2 = aPmP0.Y();
+ aCoeff1 = aCoeffs[0];
+ aCoeff2 = aCoeffs[1];
+ }
+
+ aPPar1 -= aCoeff1*aD1;
+ aPPar2 -= aCoeff2*aD1;
+ aParam1 = aPPar1*aPPar1*aD1 + aPPar1*aCoeff1*aD2 + aCoeff1*aCoeff1*aD3;
+ aParam2 = aPPar2*aPPar2*aD1 + aPPar2*aCoeff2*aD2 + aCoeff2*aCoeff2*aD3;
+
+ F = (aParam1 + aParam2)*aS;
+
+ return Standard_True;
}
// Inertia computation for XY, YZ and XZ.
if (myValueType == GProp_InertiaXY ||
- myValueType == GProp_InertiaYZ ||
- myValueType == GProp_InertiaXZ) {
-
- if (myValueType == GProp_InertiaXY) {
- aPPar1 = aPmP0.X();
- aPPar2 = aPmP0.Y();
- aCoeff1 = aCoeffs[0];
- aCoeff2 = aCoeffs[1];
- } else if (myValueType == GProp_InertiaYZ) {
- aPPar1 = aPmP0.Y();
- aPPar2 = aPmP0.Z();
- aCoeff1 = aCoeffs[1];
- aCoeff2 = aCoeffs[2];
- } else { // myValueType == GProp_InertiaXZ
- aPPar1 = aPmP0.X();
- aPPar2 = aPmP0.Z();
- aCoeff1 = aCoeffs[0];
- aCoeff2 = aCoeffs[2];
- }
-
- aD2 *= 0.5;
- aPPar1 -= aCoeff1*aD1;
- aPPar2 -= aCoeff2*aD1;
- aParam1 = aPPar1*aPPar2*aD1
- + (aPPar1*aCoeff2 + aPPar2*aCoeff1)*aD2 + aCoeff1*aCoeff2*aD3;
-
- F = -aParam1*aS;
-
- return Standard_True;
+ myValueType == GProp_InertiaYZ ||
+ myValueType == GProp_InertiaXZ) {
+
+ if (myValueType == GProp_InertiaXY) {
+ aPPar1 = aPmP0.X();
+ aPPar2 = aPmP0.Y();
+ aCoeff1 = aCoeffs[0];
+ aCoeff2 = aCoeffs[1];
+ } else if (myValueType == GProp_InertiaYZ) {
+ aPPar1 = aPmP0.Y();
+ aPPar2 = aPmP0.Z();
+ aCoeff1 = aCoeffs[1];
+ aCoeff2 = aCoeffs[2];
+ } else { // myValueType == GProp_InertiaXZ
+ aPPar1 = aPmP0.X();
+ aPPar2 = aPmP0.Z();
+ aCoeff1 = aCoeffs[0];
+ aCoeff2 = aCoeffs[2];
+ }
+
+ aD2 *= 0.5;
+ aPPar1 -= aCoeff1*aD1;
+ aPPar2 -= aCoeff2*aD1;
+ aParam1 = aPPar1*aPPar2*aD1
+ + (aPPar1*aCoeff2 + aPPar2*aCoeff1)*aD2 + aCoeff1*aCoeff2*aD3;
+
+ F = -aParam1*aS;
+
+ return Standard_True;
}
return Standard_False;
//purpose : Setting the type of the value to be returned.
//=======================================================================
-inline void GProp_UFunction::SetValueType(const GProp_ValueType theType)
+inline void BRepGProp_UFunction::SetValueType(const GProp_ValueType theType)
{
myValueType = theType;
}
// integral computation.
//=======================================================================
-inline void GProp_UFunction::SetVParam(const Standard_Real theVParam)
+inline void BRepGProp_UFunction::SetVParam(const Standard_Real theVParam)
{
myVParam = theVParam;
}
-- Jean-Claude VAUTHIER January 1992
-generic class VGProps from GProp (Arc as any;
- Face as any;
- Domain as any)
-inherits GProps
+class Vinert from BRepGProp inherits GProps from GProp
--- Purpose :
-- Computes the global properties of a geometric solid
-- are defined in the template SurfaceTool from package GProp.
uses Pnt from gp,
- Pln from gp
+ Pln from gp,
+ Edge from TopoDS,
+ Face from BRepGProp,
+ Domain from BRepGProp
is
- Create returns VGProps;
+ Create returns Vinert;
- Create (S: Face; VLocation: Pnt from gp) returns VGProps;
+ Create (S: Face from BRepGProp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of a region of 3D space
-- delimited with the surface <S> and the point VLocation. S can be closed
-- is used. Numbers of points depend on types of surfaces and curves.
-- Errror of the computation is not calculated.
- Create (S: in out Face; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of a region of 3D space
-- delimited with the surface <S> and the point VLocation. S can be closed
-- Error is calculated as Abs((M(i+1)-M(i))/M(i+1)), M(i+1) and M(i) are values
-- for two successive steps of adaptive integration.
- Create (S: Face; O: Pnt from gp; VLocation: Pnt from gp) returns VGProps;
+ Create (S: Face from BRepGProp; O: Pnt from gp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the point VLocation.
-- is used. Numbers of points depend on types of surfaces and curves.
-- Error of the computation is not calculated.
- Create (S: in out Face; O: Pnt from gp; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; O: Pnt from gp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the point VLocation.
-- for two successive steps of adaptive integration.
-- WARNING: if Eps > 0.001 algorithm performs non-adaptive integration.
- Create (S: Face; Pl: Pln from gp; VLocation: Pnt from gp) returns VGProps;
+ Create (S: Face from BRepGProp; Pl: Pln from gp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the plane Pln.
-- is used. Numbers of points depend on types of surfaces and curves.
-- Error of the computation is not calculated.
- Create (S: in out Face; Pl: Pln from gp; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; Pl: Pln from gp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the plane Pln.
-- for two successive steps of adaptive integration.
-- WARNING: if Eps > 0.001 algorithm performs non-adaptive integration.
- -- With Domain --
+ -- With Domain from BRepGProp --
- Create (S: in out Face; D : in out Domain; VLocation: Pnt from gp) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of a region of 3D space
-- delimited with the surface <S> and the point VLocation. S can be closed
-- is used. Numbers of points depend on types of surfaces and curves.
-- Errror of the computation is not calculated.
- Create (S: in out Face; D : in out Domain; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of a region of 3D space
-- delimited with the surface <S> and the point VLocation. S can be closed
-- Error is calculated as Abs((M(i+1)-M(i))/M(i+1)), M(i+1) and M(i) are values
-- for two successive steps of adaptive integration.
- Create (S: in out Face; D : in out Domain; O: Pnt from gp; VLocation: Pnt from gp) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; O: Pnt from gp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the point VLocation.
-- is used. Numbers of points depend on types of surfaces and curves.
-- Error of the computation is not calculated.
- Create (S: in out Face; D : in out Domain; O: Pnt from gp; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; O: Pnt from gp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the point VLocation.
-- for two successive steps of adaptive integration.
-- WARNING: if Eps > 0.001 algorithm performs non-adaptive integration.
- Create (S: in out Face; D : in out Domain; Pl: Pln from gp; VLocation: Pnt from gp) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; Pl: Pln from gp; VLocation: Pnt from gp) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the plane Pln.
-- is used. Numbers of points depend on types of surfaces and curves.
-- Error of the computation is not calculated.
- Create (S: in out Face; D : in out Domain; Pl: Pln from gp; VLocation: Pnt from gp; Eps: Real) returns VGProps;
+ Create (S: in out Face from BRepGProp; D : in out Domain from BRepGProp; Pl: Pln from gp; VLocation: Pnt from gp; Eps: Real) returns Vinert;
--- Purpose :
-- Computes the global properties of the region of 3D space
-- delimited with the surface <S> and the plane Pln.
SetLocation(me: in out; VLocation: Pnt from gp);
- Perform(me: in out; S: Face);
- Perform(me: in out; S: in out Face; Eps: Real) returns Real;
+ Perform(me: in out; S: Face from BRepGProp);
+ Perform(me: in out; S: in out Face from BRepGProp; Eps: Real) returns Real;
- Perform(me: in out; S: Face; O : Pnt from gp);
- Perform(me: in out; S: in out Face; O : Pnt from gp; Eps: Real) returns Real;
+ Perform(me: in out; S: Face from BRepGProp; O : Pnt from gp);
+ Perform(me: in out; S: in out Face from BRepGProp; O : Pnt from gp; Eps: Real) returns Real;
- Perform(me: in out; S: Face; Pl : Pln from gp);
- Perform(me: in out; S: in out Face; Pl : Pln from gp; Eps: Real) returns Real;
+ Perform(me: in out; S: Face from BRepGProp; Pl : Pln from gp);
+ Perform(me: in out; S: in out Face from BRepGProp; Pl : Pln from gp; Eps: Real) returns Real;
- Perform(me: in out; S: in out Face; D : in out Domain);
- Perform(me: in out; S: in out Face; D : in out Domain; Eps: Real) returns Real;
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp);
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp; Eps: Real) returns Real;
- Perform(me: in out; S: in out Face; D : in out Domain; O : Pnt from gp);
- Perform(me: in out; S: in out Face; D : in out Domain; O : Pnt from gp; Eps: Real) returns Real;
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp; O : Pnt from gp);
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp; O : Pnt from gp; Eps: Real) returns Real;
- Perform(me: in out; S: in out Face; D : in out Domain; Pl : Pln from gp);
- Perform(me: in out; S: in out Face; D : in out Domain; Pl : Pln from gp; Eps: Real) returns Real;
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp; Pl : Pln from gp);
+ Perform(me: in out; S: in out Face from BRepGProp; D : in out Domain from BRepGProp; Pl : Pln from gp; Eps: Real) returns Real;
GetEpsilon(me: out) returns Real;
--- Purpose :
myEpsilon: Real from Standard;
-end VGProps;
+end Vinert;
--- /dev/null
+// Copyright (c) 1995-1999 Matra Datavision
+// Copyright (c) 1999-2014 OPEN CASCADE SAS
+//
+// This file is part of Open CASCADE Technology software library.
+//
+// This library is free software; you can redistribute it and/or modify it under
+// the terms of the GNU Lesser General Public License version 2.1 as published
+// by the Free Software Foundation, with special exception defined in the file
+// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+// distribution for complete text of the license and disclaimer of any warranty.
+//
+// Alternatively, this file may be used under the terms of Open CASCADE
+// commercial license or contractual agreement.
+
+#include <BRepGProp_Vinert.ixx>
+
+#include <math.hxx>
+#include <TColStd_Array1OfReal.hxx>
+
+class HMath_Vector{
+ math_Vector *pvec;
+ void operator=(const math_Vector&){}
+public:
+ HMath_Vector(){ pvec = 0;}
+ HMath_Vector(math_Vector* pv){ pvec = pv;}
+ ~HMath_Vector(){ if(pvec != 0) delete pvec;}
+ void operator=(math_Vector* pv){ if(pvec != pv && pvec != 0) delete pvec; pvec = pv;}
+ Standard_Real& operator()(Standard_Integer i){ return (*pvec).operator()(i);}
+ const Standard_Real& operator()(Standard_Integer i) const{ return (*pvec).operator()(i);}
+ const math_Vector* operator->() const{ return pvec;}
+ math_Vector* operator->(){ return pvec;}
+ math_Vector* Init(Standard_Real v, Standard_Integer i = 0, Standard_Integer iEnd = 0){
+ if(pvec == 0) return pvec;
+ if(iEnd - i == 0) pvec->Init(v);
+ else for(; i <= iEnd; i++) pvec->operator()(i) = v;
+ return pvec;
+ }
+};
+
+//Minimal value of interval's range for computation | minimal value of "dim" | ...
+static Standard_Real EPS_PARAM = Precision::Angular(), EPS_DIM = 1.E-30, ERROR_ALGEBR_RATIO = 2.0/3.0;
+//Maximum of GaussPoints on a subinterval and maximum of subintervals
+static Standard_Integer GPM = math::GaussPointsMax(), SUBS_POWER = 32, SM = SUBS_POWER*GPM + 1;
+static Standard_Boolean IS_MIN_DIM = 1; // if the value equal 0 error of algorithm calculted by static moments
+
+static math_Vector LGaussP0(1,GPM), LGaussW0(1,GPM),
+LGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), LGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
+static HMath_Vector L1 = new math_Vector(1,SM), L2 = new math_Vector(1,SM),
+DimL = new math_Vector(1,SM), ErrL = new math_Vector(1,SM), ErrUL = new math_Vector(1,SM,0.0),
+IxL = new math_Vector(1,SM), IyL = new math_Vector(1,SM), IzL = new math_Vector(1,SM),
+IxxL = new math_Vector(1,SM), IyyL = new math_Vector(1,SM), IzzL = new math_Vector(1,SM),
+IxyL = new math_Vector(1,SM), IxzL = new math_Vector(1,SM), IyzL = new math_Vector(1,SM);
+
+static math_Vector* LGaussP[] = {&LGaussP0,&LGaussP1};
+static math_Vector* LGaussW[] = {&LGaussW0,&LGaussW1};
+
+static math_Vector UGaussP0(1,GPM), UGaussW0(1,GPM),
+UGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), UGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
+static HMath_Vector U1 = new math_Vector(1,SM), U2 = new math_Vector(1,SM),
+DimU = new math_Vector(1,SM), ErrU = new math_Vector(1,SM,0.0),
+IxU = new math_Vector(1,SM), IyU = new math_Vector(1,SM), IzU = new math_Vector(1,SM),
+IxxU = new math_Vector(1,SM), IyyU = new math_Vector(1,SM), IzzU = new math_Vector(1,SM),
+IxyU = new math_Vector(1,SM), IxzU = new math_Vector(1,SM), IyzU = new math_Vector(1,SM);
+
+static math_Vector* UGaussP[] = {&UGaussP0,&UGaussP1};
+static math_Vector* UGaussW[] = {&UGaussW0,&UGaussW1};
+
+static Standard_Integer FillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
+ HMath_Vector& VA, HMath_Vector& VB)
+{
+ Standard_Integer i = 1, iEnd = Knots.Upper(), j = 1, k = 1;
+ VA(j++) = A;
+ for(; i <= iEnd; i++){
+ Standard_Real kn = Knots(i);
+ if(A < kn)
+ {
+ if(kn < B)
+ {
+ VA(j++) = VB(k++) = kn;
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+ VB(k) = B;
+ return k;
+}
+
+static inline Standard_Integer MaxSubs(Standard_Integer n, Standard_Integer coeff = SUBS_POWER){
+ return n = IntegerLast()/coeff < n? IntegerLast(): n*coeff + 1;
+}
+
+static Standard_Integer LFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
+ const Standard_Integer NumSubs)
+{
+ Standard_Integer iEnd = Knots.Upper(), jEnd = L1->Upper();
+
+ // Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
+ iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
+ if(iEnd - 1 > jEnd){
+ // iEnd = MaxSubs(iEnd-1,NumSubs);
+ // Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
+ L1 = new math_Vector(1,iEnd); L2 = new math_Vector(1,iEnd);
+ DimL = new math_Vector(1,iEnd); ErrL = new math_Vector(1,iEnd,0.0); ErrUL = new math_Vector(1,iEnd,0.0);
+ IxL = new math_Vector(1,iEnd); IyL = new math_Vector(1,iEnd); IzL = new math_Vector(1,iEnd);
+ IxxL = new math_Vector(1,iEnd); IyyL = new math_Vector(1,iEnd); IzzL = new math_Vector(1,iEnd);
+ IxyL = new math_Vector(1,iEnd); IxzL = new math_Vector(1,iEnd); IyzL = new math_Vector(1,iEnd);
+ }
+ return FillIntervalBounds(A, B, Knots, L1, L2);
+}
+
+static Standard_Integer UFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
+ const Standard_Integer NumSubs)
+{
+ Standard_Integer iEnd = Knots.Upper(), jEnd = U1->Upper();
+
+ // Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
+ iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
+ if(iEnd - 1 > jEnd){
+ // iEnd = MaxSubs(iEnd-1,NumSubs);
+ // Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
+ U1 = new math_Vector(1,iEnd); U2 = new math_Vector(1,iEnd);
+ DimU = new math_Vector(1,iEnd); ErrU = new math_Vector(1,iEnd,0.0);
+ IxU = new math_Vector(1,iEnd); IyU = new math_Vector(1,iEnd); IzU = new math_Vector(1,iEnd);
+ IxxU = new math_Vector(1,iEnd); IyyU = new math_Vector(1,iEnd); IzzU = new math_Vector(1,iEnd);
+ IxyU = new math_Vector(1,iEnd); IxzU = new math_Vector(1,iEnd); IyzU = new math_Vector(1,iEnd);
+ }
+ return FillIntervalBounds(A, B, Knots, U1, U2);
+}
+
+static Standard_Real CCompute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
+ const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
+ const Standard_Real EpsDim,
+ const Standard_Boolean isErrorCalculation, const Standard_Boolean isVerifyComputation)
+{
+ Standard_Boolean isNaturalRestriction = S.NaturalRestriction();
+
+ Standard_Integer NumSubs = SUBS_POWER;
+ Standard_Boolean isMinDim = IS_MIN_DIM;
+
+ Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
+ Dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
+ //boundary curve parametrization
+ Standard_Real l1, l2, lm, lr, l;
+ //BRepGProp_Face parametrization in U and V direction
+ Standard_Real BV1, BV2, v;
+ Standard_Real BU1, BU2, u1, u2, um, ur, u;
+ S.Bounds (BU1, BU2, BV1, BV2); u1 = BU1;
+ //location point used to compute the inertia
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord (xloc, yloc, zloc);
+ //location point used to compute the inertiard (xloc, yloc, zloc);
+ //Jacobien (x, y, z) -> (u, v) = ||n||
+ Standard_Real xn, yn, zn, s, ds, dDim;
+ Standard_Real x, y, z, xi, px, py, pz, yi, zi, d1, d2, d3;
+ //On the BRepGProp_Face
+ gp_Pnt Ps;
+ gp_Vec VNor;
+ //On the boundary curve u-v
+ gp_Pnt2d Puv;
+ gp_Vec2d Vuv;
+ Standard_Real Dul; // Dul = Du / Dl
+ Standard_Real CDim[2], CIx, CIy, CIz, CIxx[2], CIyy[2], CIzz[2], CIxy, CIxz, CIyz;
+ Standard_Real LocDim[2], LocIx[2], LocIy[2], LocIz[2], LocIxx[2], LocIyy[2], LocIzz[2], LocIxy[2], LocIxz[2], LocIyz[2];
+
+ Standard_Integer iD = 0, NbLSubs, iLS, iLSubEnd, iGL, iGLEnd, NbLGaussP[2], LRange[2], iL, kL, kLEnd, IL, JL;
+ Standard_Integer i, NbUSubs, iUS, iUSubEnd, iGU, iGUEnd, NbUGaussP[2], URange[2], iU, kU, kUEnd, IU, JU;
+ Standard_Integer UMaxSubs, LMaxSubs;
+
+ Standard_Real ErrorU, ErrorL, ErrorLMax = 0.0, Eps=0.0, EpsL=0.0, EpsU=0.0;
+ iGLEnd = isErrorCalculation? 2: 1;
+
+ for(i = 0; i < 2; i++) {
+ LocDim[i] = 0.0;
+ LocIx[i] = 0.0;
+ LocIy[i] = 0.0;
+ LocIz[i] = 0.0;
+ LocIxx[i] = 0.0;
+ LocIyy[i] = 0.0;
+ LocIzz[i] = 0.0;
+ LocIxy[i] = 0.0;
+ LocIyz[i] = 0.0;
+ LocIxz[i] = 0.0;
+ }
+
+ NbUGaussP[0] = S.SIntOrder(EpsDim);
+ NbUGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbUGaussP[0]));
+ math::GaussPoints(NbUGaussP[0],UGaussP0); math::GaussWeights(NbUGaussP[0],UGaussW0);
+ math::GaussPoints(NbUGaussP[1],UGaussP1); math::GaussWeights(NbUGaussP[1],UGaussW1);
+
+ NbUSubs = S.SUIntSubs();
+ TColStd_Array1OfReal UKnots(1,NbUSubs+1);
+ S.UKnots(UKnots);
+
+ while (isNaturalRestriction || D.More()) {
+ if(isNaturalRestriction){
+ NbLGaussP[0] = Min(2*NbUGaussP[0],math::GaussPointsMax());
+ }else{
+ S.Load(D.Value()); ++iD;
+ NbLGaussP[0] = S.LIntOrder(EpsDim);
+ }
+ NbLGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbLGaussP[0]));
+ math::GaussPoints(NbLGaussP[0],LGaussP0); math::GaussWeights(NbLGaussP[0],LGaussW0);
+ math::GaussPoints(NbLGaussP[1],LGaussP1); math::GaussWeights(NbLGaussP[1],LGaussW1);
+
+ NbLSubs = isNaturalRestriction? S.SVIntSubs(): S.LIntSubs();
+ TColStd_Array1OfReal LKnots(1,NbLSubs+1);
+ if(isNaturalRestriction){
+ S.VKnots(LKnots);
+ l1 = BV1; l2 = BV2;
+ }else{
+ S.LKnots(LKnots);
+ l1 = S.FirstParameter(); l2 = S.LastParameter();
+ }
+ ErrorL = 0.0;
+ kLEnd = 1; JL = 0;
+ //OCC503(apo): if(Abs(l2-l1) < EPS_PARAM) continue;
+ if(Abs(l2-l1) > EPS_PARAM) {
+ iLSubEnd = LFillIntervalBounds(l1, l2, LKnots, NumSubs);
+ LMaxSubs = MaxSubs(iLSubEnd);
+ //-- exception avoiding
+ if(LMaxSubs > SM) LMaxSubs = SM;
+ DimL.Init(0.0,1,LMaxSubs); ErrL.Init(0.0,1,LMaxSubs); ErrUL.Init(0.0,1,LMaxSubs);
+ do{// while: L
+ if(++JL > iLSubEnd){
+ LRange[0] = IL = ErrL->Max(); LRange[1] = JL;
+ L1(JL) = (L1(IL) + L2(IL))/2.0; L2(JL) = L2(IL); L2(IL) = L1(JL);
+ }else LRange[0] = IL = JL;
+ if(JL == LMaxSubs || Abs(L2(JL) - L1(JL)) < EPS_PARAM)
+ if(kLEnd == 1){
+ DimL(JL) = ErrL(JL) = IxL(JL) = IyL(JL) = IzL(JL) =
+ IxxL(JL) = IyyL(JL) = IzzL(JL) = IxyL(JL) = IxzL(JL) = IyzL(JL) = 0.0;
+ }else{
+ JL--;
+ EpsL = ErrorL; Eps = EpsL/0.9;
+ break;
+ }
+ else
+ for(kL=0; kL < kLEnd; kL++){
+ iLS = LRange[kL];
+ lm = 0.5*(L2(iLS) + L1(iLS));
+ lr = 0.5*(L2(iLS) - L1(iLS));
+ CIx = CIy = CIz = CIxy = CIxz = CIyz = 0.0;
+ for(iGL=0; iGL < iGLEnd; iGL++){//
+ CDim[iGL] = CIxx[iGL] = CIyy[iGL] = CIzz[iGL] = 0.0;
+ for(iL=1; iL<=NbLGaussP[iGL]; iL++){
+ l = lm + lr*(*LGaussP[iGL])(iL);
+ if(isNaturalRestriction){
+ v = l; u2 = BU2; Dul = (*LGaussW[iGL])(iL);
+ }else{
+ S.D12d (l, Puv, Vuv);
+ Dul = Vuv.Y()*(*LGaussW[iGL])(iL); // Dul = Du / Dl
+ if(Abs(Dul) < EPS_PARAM) continue;
+ v = Puv.Y(); u2 = Puv.X();
+ //Check on cause out off bounds of value current parameter
+ if(v < BV1) v = BV1; else if(v > BV2) v = BV2;
+ if(u2 < BU1) u2 = BU1; else if(u2 > BU2) u2 = BU2;
+ }
+ ErrUL(iLS) = 0.0;
+ kUEnd = 1; JU = 0;
+ if(Abs(u2-u1) < EPS_PARAM) continue;
+ iUSubEnd = UFillIntervalBounds(u1, u2, UKnots, NumSubs);
+ UMaxSubs = MaxSubs(iUSubEnd);
+ //-- exception avoiding
+ if(UMaxSubs > SM) UMaxSubs = SM;
+ DimU.Init(0.0,1,UMaxSubs); ErrU.Init(0.0,1,UMaxSubs); ErrorU = 0.0;
+ do{//while: U
+ if(++JU > iUSubEnd){
+ URange[0] = IU = ErrU->Max(); URange[1] = JU;
+ U1(JU) = (U1(IU)+U2(IU))/2.0; U2(JU) = U2(IU); U2(IU) = U1(JU);
+ }else URange[0] = IU = JU;
+ if(JU == UMaxSubs || Abs(U2(JU) - U1(JU)) < EPS_PARAM)
+ if(kUEnd == 1){
+ DimU(JU) = ErrU(JU) = IxU(JU) = IyU(JU) = IzU(JU) =
+ IxxU(JU) = IyyU(JU) = IzzU(JU) = IxyU(JU) = IxzU(JU) = IyzU(JU) = 0.0;
+ }else{
+ JU--;
+ EpsU = ErrorU; Eps = EpsU*Abs((u2-u1)*Dul)/0.1; EpsL = 0.9*Eps;
+ break;
+ }
+ else
+ for(kU=0; kU < kUEnd; kU++){
+ iUS = URange[kU];
+ um = 0.5*(U2(iUS) + U1(iUS));
+ ur = 0.5*(U2(iUS) - U1(iUS));
+ iGUEnd = iGLEnd - iGL;
+ for(iGU=0; iGU < iGUEnd; iGU++){//
+ LocDim[iGU] =
+ LocIxx[iGU] = LocIyy[iGU] = LocIzz[iGU] =
+ LocIx[iGU] = LocIy[iGU] = LocIz[iGU] =
+ LocIxy[iGU] = LocIxz[iGU] = LocIyz[iGU] = 0.0;
+ for(iU=1; iU<=NbUGaussP[iGU]; iU++){
+ u = um + ur*(*UGaussP[iGU])(iU);
+ S.Normal(u, v, Ps, VNor);
+ VNor.Coord(xn, yn, zn);
+ Ps.Coord(x, y, z);
+ x -= xloc; y -= yloc; z -= zloc;
+ xn *= (*UGaussW[iGU])(iU);
+ yn *= (*UGaussW[iGU])(iU);
+ zn *= (*UGaussW[iGU])(iU);
+ if(ByPoint){
+ //volume of elementary cone
+ dDim = (x*xn+y*yn+z*zn)/3.0;
+ //coordinates of cone's center mass
+ px = 0.75*x; py = 0.75*y; pz = 0.75*z;
+ LocDim[iGU] += dDim;
+ //if(iGU > 0) continue;
+ LocIx[iGU] += px*dDim;
+ LocIy[iGU] += py*dDim;
+ LocIz[iGU] += pz*dDim;
+ x -= Coeff[0]; y -= Coeff[1]; z -= Coeff[2];
+ dDim *= 3.0/5.0;
+ LocIxy[iGU] -= x*y*dDim;
+ LocIyz[iGU] -= y*z*dDim;
+ LocIxz[iGU] -= x*z*dDim;
+ xi = x*x; yi = y*y; zi = z*z;
+ LocIxx[iGU] += (yi+zi)*dDim;
+ LocIyy[iGU] += (xi+zi)*dDim;
+ LocIzz[iGU] += (xi+yi)*dDim;
+ }else{ // by plane
+ s = xn*Coeff[0] + yn*Coeff[1] + zn*Coeff[2];
+ d1 = Coeff[0]*x + Coeff[1]*y + Coeff[2]*z - Coeff[3];
+ d2 = d1*d1;
+ d3 = d1*d2/3.0;
+ ds = s*d1;
+ LocDim[iGU] += ds;
+ //if(iGU > 0) continue;
+ LocIx[iGU] += (x - Coeff[0]*d1/2.0) * ds;
+ LocIy[iGU] += (y - Coeff[1]*d1/2.0) * ds;
+ LocIz[iGU] += (z - Coeff[2]*d1/2.0) * ds;
+ px = x-Coeff[0]*d1; py = y-Coeff[1]*d1; pz = z-Coeff[2]*d1;
+ xi = px*px*d1 + px*Coeff[0]*d2 + Coeff[0]*Coeff[0]*d3;
+ yi = py*py*d1 + py*Coeff[1]*d2 + Coeff[1]*Coeff[1]*d3;
+ zi = pz*pz*d1 + pz*Coeff[2]*d2 + Coeff[2]*Coeff[2]*d3;
+ LocIxx[iGU] += (yi+zi)*s;
+ LocIyy[iGU] += (xi+zi)*s;
+ LocIzz[iGU] += (xi+yi)*s;
+ d2 /= 2.0;
+ xi = py*pz*d1 + py*Coeff[2]*d2 + pz*Coeff[1]*d2 + Coeff[1]*Coeff[2]*d3;
+ yi = px*pz*d1 + pz*Coeff[0]*d2 + px*Coeff[2]*d2 + Coeff[0]*Coeff[2]*d3;
+ zi = px*py*d1 + px*Coeff[1]*d2 + py*Coeff[0]*d2 + Coeff[0]*Coeff[1]*d3;
+ LocIxy[iGU] -= zi*s; LocIyz[iGU] -= xi*s; LocIxz[iGU] -= yi*s;
+ }
+ }//for: iU
+ }//for: iGU
+ DimU(iUS) = LocDim[0]*ur;
+ IxxU(iUS) = LocIxx[0]*ur; IyyU(iUS) = LocIyy[0]*ur; IzzU(iUS) = LocIzz[0]*ur;
+ if(iGL > 0) continue;
+ LocDim[1] = Abs(LocDim[1]-LocDim[0]);
+ LocIxx[1] = Abs(LocIxx[1]-LocIxx[0]);
+ LocIyy[1] = Abs(LocIyy[1]-LocIyy[0]);
+ LocIzz[1] = Abs(LocIzz[1]-LocIzz[0]);
+ ErrU(iUS) = isMinDim? LocDim[1]*ur: (LocIxx[1] + LocIyy[1] + LocIzz[1])*ur;
+ IxU(iUS) = LocIx[0]*ur; IyU(iUS) = LocIy[0]*ur; IzU(iUS) = LocIz[0]*ur;
+ IxyU(iUS) = LocIxy[0]*ur; IxzU(iUS) = LocIxz[0]*ur; IyzU(iUS) = LocIyz[0]*ur;
+ }//for: kU (iUS)
+ if(JU == iUSubEnd) kUEnd = 2;
+ if(kUEnd == 2) {
+ Standard_Integer imax = ErrU->Max();
+ if(imax > 0) ErrorU = ErrU(imax);
+ else ErrorU = 0.0;
+ }
+ }while((ErrorU - EpsU > 0.0 && EpsU != 0.0) || kUEnd == 1);
+ for(i=1; i<=JU; i++) {
+ CDim[iGL] += DimU(i)*Dul;
+ CIxx[iGL] += IxxU(i)*Dul; CIyy[iGL] += IyyU(i)*Dul; CIzz[iGL] += IzzU(i)*Dul;
+ }
+ if(iGL > 0) continue;
+ ErrUL(iLS) = ErrorU*Abs((u2-u1)*Dul);
+ for(i=1; i<=JU; i++){
+ CIx += IxU(i)*Dul; CIy += IyU(i)*Dul; CIz += IzU(i)*Dul;
+ //CIxx += IxxU(i)*Dul; CIyy += IyyU(i)*Dul; CIzz += IzzU(i)*Dul;
+ CIxy += IxyU(i)*Dul; CIxz += IxzU(i)*Dul; CIyz += IyzU(i)*Dul;
+ }
+ }//for: iL
+ }//for: iGL
+ DimL(iLS) = CDim[0]*lr;
+ IxxL(iLS) = CIxx[0]*lr; IyyL(iLS) = CIyy[0]*lr; IzzL(iLS) = CIzz[0]*lr;
+ if(iGLEnd == 2) {
+ //ErrL(iLS) = Abs(CDim[1]-CDim[0])*lr + ErrUL(iLS);
+ CDim[1] = Abs(CDim[1]-CDim[0]);
+ CIxx[1] = Abs(CIxx[1]-CIxx[0]); CIyy[1] = Abs(CIyy[1]-CIyy[0]); CIzz[1] = Abs(CIzz[1]-CIzz[0]);
+ ErrorU = ErrUL(iLS);
+ ErrL(iLS) = (isMinDim? CDim[1]: (CIxx[1] + CIyy[1] + CIzz[1]))*lr + ErrorU;
+ }
+ IxL(iLS) = CIx*lr; IyL(iLS) = CIy*lr; IzL(iLS) = CIz*lr;
+ //IxxL(iLS) = CIxx*lr; IyyL(iLS) = CIyy*lr; IzzL(iLS) = CIzz*lr;
+ IxyL(iLS) = CIxy*lr; IxzL(iLS) = CIxz*lr; IyzL(iLS) = CIyz*lr;
+ }//for: (kL)iLS
+ // Calculate/correct epsilon of computation by current value of Dim
+ //That is need for not spend time for
+ if(JL == iLSubEnd){
+ kLEnd = 2;
+ Standard_Real DDim = 0.0, DIxx = 0.0, DIyy = 0.0, DIzz = 0.0;
+ for(i=1; i<=JL; i++) {
+ DDim += DimL(i);
+ DIxx += IxxL(i); DIyy += IyyL(i); DIzz += IzzL(i);
+ }
+ DDim = isMinDim? Abs(DDim): Abs(DIxx) + Abs(DIyy) + Abs(DIzz);
+ DDim = Abs(DDim*EpsDim);
+ if(DDim > Eps) {
+ Eps = DDim; EpsL = 0.9*Eps;
+ }
+ }
+ if(kLEnd == 2) {
+ Standard_Integer imax = ErrL->Max();
+ if(imax > 0) ErrorL = ErrL(imax);
+ else ErrorL = 0.0;
+ }
+ }while((ErrorL - EpsL > 0.0 && isVerifyComputation) || kLEnd == 1);
+ for(i=1; i<=JL; i++){
+ Dim += DimL(i);
+ Ix += IxL(i); Iy += IyL(i); Iz += IzL(i);
+ Ixx += IxxL(i); Iyy += IyyL(i); Izz += IzzL(i);
+ Ixy += IxyL(i); Ixz += IxzL(i); Iyz += IyzL(i);
+ }
+ ErrorLMax = Max(ErrorLMax, ErrorL);
+ }
+ if(isNaturalRestriction) break;
+ D.Next();
+ }
+ if(Abs(Dim) >= EPS_DIM){
+ if(ByPoint){
+ Ix = Coeff[0] + Ix/Dim;
+ Iy = Coeff[1] + Iy/Dim;
+ Iz = Coeff[2] + Iz/Dim;
+ }else{
+ Ix /= Dim;
+ Iy /= Dim;
+ Iz /= Dim;
+ }
+ g.SetCoord (Ix, Iy, Iz);
+ }else{
+ Dim =0.;
+ g.SetCoord(0.,0.,0.);
+ }
+ inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
+ gp_XYZ (Ixy, Iyy, Iyz),
+ gp_XYZ (Ixz, Iyz, Izz));
+ if(iGLEnd == 2)
+ Eps = Dim != 0.0? ErrorLMax/(isMinDim? Abs(Dim): (Abs(Ixx) + Abs(Iyy) + Abs(Izz))): 0.0;
+ else Eps = EpsDim;
+ return Eps;
+}
+
+static Standard_Real Compute(BRepGProp_Face& S, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
+ const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
+{
+ Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
+ Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
+ EpsDim = Abs(EpsDim);
+ BRepGProp_Domain D;
+ return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
+}
+
+static Standard_Real Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
+ const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
+{
+ Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
+ Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
+ EpsDim = Abs(EpsDim);
+ return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
+}
+
+static void Compute(const BRepGProp_Face& S,
+ const Standard_Boolean ByPoint,
+ const Standard_Real Coeff[],
+ const gp_Pnt& Loc,
+ Standard_Real& Volu,
+ gp_Pnt& G,
+ gp_Mat& Inertia)
+{
+
+ gp_Pnt P;
+ gp_Vec VNor;
+ Standard_Real dvi, dv;
+ Standard_Real ur, um, u, vr, vm, v;
+ Standard_Real x, y, z, xn, yn, zn, xi, yi, zi;
+ // Standard_Real x, y, z, xn, yn, zn, xi, yi, zi, xyz;
+ Standard_Real px,py,pz,s,d1,d2,d3;
+ Standard_Real Ixi, Iyi, Izi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi;
+ Standard_Real xloc, yloc, zloc;
+ Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
+
+ Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
+ Loc.Coord (xloc, yloc, zloc);
+
+ Standard_Real LowerU, UpperU, LowerV, UpperV;
+ S.Bounds ( LowerU, UpperU, LowerV, UpperV);
+ Standard_Integer UOrder = Min(S.UIntegrationOrder (),
+ math::GaussPointsMax());
+ Standard_Integer VOrder = Min(S.VIntegrationOrder (),
+ math::GaussPointsMax());
+
+ Standard_Integer i, j;
+ math_Vector GaussPU (1, UOrder); //gauss points and weights
+ math_Vector GaussWU (1, UOrder);
+ math_Vector GaussPV (1, VOrder);
+ math_Vector GaussWV (1, VOrder);
+
+ math::GaussPoints (UOrder,GaussPU);
+ math::GaussWeights (UOrder,GaussWU);
+ math::GaussPoints (VOrder,GaussPV);
+ math::GaussWeights (VOrder,GaussWV);
+
+ um = 0.5 * (UpperU + LowerU);
+ vm = 0.5 * (UpperV + LowerV);
+ ur = 0.5 * (UpperU - LowerU);
+ vr = 0.5 * (UpperV - LowerV);
+
+ for (j = 1; j <= VOrder; j++) {
+ v = vm + vr * GaussPV (j);
+ dvi = Ixi = Iyi = Izi = Ixxi = Iyyi = Izzi = Ixyi = Ixzi = Iyzi = 0.0;
+
+ for (i = 1; i <= UOrder; i++) {
+ u = um + ur * GaussPU (i);
+ S.Normal (u, v, P, VNor);
+ VNor.Coord (xn, yn, zn);
+ P.Coord (x, y, z);
+ x -= xloc; y -= yloc; z -= zloc;
+ xn *= GaussWU (i); yn *= GaussWU (i); zn *= GaussWU (i);
+ if (ByPoint) {
+ ///////////////////// ///////////////////////
+ // OFV code // // Initial code //
+ ///////////////////// ///////////////////////
+ // modified by APO
+ dv = (x*xn+y*yn+z*zn)/3.0; //xyz = x * y * z;
+ dvi += dv; //Ixyi += zn * xyz;
+ Ixi += 0.75*x*dv; //Iyzi += xn * xyz;
+ Iyi += 0.75*y*dv; //Ixzi += yn * xyz;
+ Izi += 0.75*z*dv; //xi = x * x * x * xn / 3.0;
+ x -= Coeff[0]; //yi = y * y * y * yn / 3.0;
+ y -= Coeff[1]; //zi = z * z * z * zn / 3.0;
+ z -= Coeff[2]; //Ixxi += (yi + zi);
+ dv *= 3.0/5.0; //Iyyi += (xi + zi);
+ Ixyi -= x*y*dv; //Izzi += (xi + yi);
+ Iyzi -= y*z*dv; //x -= Coeff[0];
+ Ixzi -= x*z*dv; //y -= Coeff[1];
+ xi = x*x; //z -= Coeff[2];
+ yi = y*y; //dv = x * xn + y * yn + z * zn;
+ zi = z*z; //dvi += dv;
+ Ixxi += (yi + zi)*dv; //Ixi += x * dv;
+ Iyyi += (xi + zi)*dv; //Iyi += y * dv;
+ Izzi += (xi + yi)*dv; //Izi += z * dv;
+ }
+ else { // by plane
+ s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
+ d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z - Coeff[3];
+ d2 = d1 * d1;
+ d3 = d1 * d2 / 3.0;
+ dv = s * d1;
+ dvi += dv;
+ Ixi += (x - (Coeff[0] * d1 / 2.0)) * dv;
+ Iyi += (y - (Coeff[1] * d1 / 2.0)) * dv;
+ Izi += (z - (Coeff[2] * d1 / 2.0)) * dv;
+ px = x - Coeff[0] * d1;
+ py = y - Coeff[1] * d1;
+ pz = z - Coeff[2] * d1;
+ xi = px * px * d1 + px * Coeff[0]* d2 + Coeff[0] * Coeff[0] * d3;
+ yi = py * py * d1 + py * Coeff[1] * d2 + Coeff[1] * Coeff[1] * d3;
+ zi = pz * pz * d1 + pz * Coeff[2] * d2 + Coeff[2] * Coeff[2] * d3;
+ Ixxi += (yi + zi) * s;
+ Iyyi += (xi + zi) * s;
+ Izzi += (xi + yi) * s;
+ d2 /= 2.0;
+ xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
+ yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
+ zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
+ Ixyi -= zi * s;
+ Iyzi -= xi * s;
+ Ixzi -= yi * s;
+ }
+ }
+ Volu += dvi * GaussWV (j);
+ Ix += Ixi * GaussWV (j);
+ Iy += Iyi * GaussWV (j);
+ Iz += Izi * GaussWV (j);
+ Ixx += Ixxi * GaussWV (j);
+ Iyy += Iyyi * GaussWV (j);
+ Izz += Izzi * GaussWV (j);
+ Ixy += Ixyi * GaussWV (j);
+ Ixz += Ixzi * GaussWV (j);
+ Iyz += Iyzi * GaussWV (j);
+ }
+ vr *= ur;
+ Ixx *= vr;
+ Iyy *= vr;
+ Izz *= vr;
+ Ixy *= vr;
+ Ixz *= vr;
+ Iyz *= vr;
+ if (Abs(Volu) >= EPS_DIM ) {
+ if (ByPoint) {
+ Ix = Coeff[0] + Ix/Volu;
+ Iy = Coeff[1] + Iy/Volu;
+ Iz = Coeff[2] + Iz/Volu;
+ Volu *= vr;
+ }
+ else { //by plane
+ Ix /= Volu;
+ Iy /= Volu;
+ Iz /= Volu;
+ Volu *= vr;
+ }
+ G.SetCoord (Ix, Iy, Iz);
+ }
+ else {
+ G.SetCoord(0.,0.,0.);
+ Volu =0.;
+ }
+ Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
+ gp_XYZ (Ixy, Iyy, Iyz),
+ gp_XYZ (Ixz, Iyz, Izz));
+
+}
+
+// Last modified by OFV 5.2001:
+// 1). surface and edge integration order is equal now
+// 2). "by point" works now rathre correctly (it looks so...)
+static void Compute(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
+ const gp_Pnt& Loc, Standard_Real& Volu, gp_Pnt& G, gp_Mat& Inertia)
+
+{
+ Standard_Real x, y, z, xi, yi, zi, l1, l2, lm, lr, l, v1, v2, v, u1, u2, um, ur, u, ds, Dul, xloc, yloc, zloc;
+ Standard_Real LocVolu, LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz;
+ Standard_Real CVolu, CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz, Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
+ Standard_Real xn, yn, zn, px, py, pz, s, d1, d2, d3, dSigma;
+ Standard_Integer i, j, vio, sio, max, NbGaussgp_Pnts;
+
+ gp_Pnt Ps;
+ gp_Vec VNor;
+ gp_Pnt2d Puv;
+ gp_Vec2d Vuv;
+
+ Loc.Coord (xloc, yloc, zloc);
+ Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
+ S.Bounds (u1, u2, v1, v2);
+ Standard_Real _u2 = u2; //OCC104
+ vio = S.VIntegrationOrder ();
+
+ while (D.More())
+ {
+ S.Load(D.Value());
+ sio = S.IntegrationOrder ();
+ max = Max(vio,sio);
+ NbGaussgp_Pnts = Min(max,math::GaussPointsMax());
+
+ math_Vector GaussP (1, NbGaussgp_Pnts);
+ math_Vector GaussW (1, NbGaussgp_Pnts);
+ math::GaussPoints (NbGaussgp_Pnts,GaussP);
+ math::GaussWeights (NbGaussgp_Pnts,GaussW);
+
+ CVolu = CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0;
+ l1 = S.FirstParameter();
+ l2 = S.LastParameter();
+ lm = 0.5 * (l2 + l1);
+ lr = 0.5 * (l2 - l1);
+
+ for (i=1; i<=NbGaussgp_Pnts; i++)
+ {
+ l = lm + lr * GaussP(i);
+ S.D12d (l, Puv, Vuv);
+ v = Puv.Y();
+ u2 = Puv.X();
+
+ //OCC104
+ v = v < v1? v1: v;
+ v = v > v2? v2: v;
+ u2 = u2 < u1? u1: u2;
+ u2 = u2 > _u2? _u2: u2;
+
+ Dul = Vuv.Y() * GaussW(i);
+ um = 0.5 * (u2 + u1);
+ ur = 0.5 * (u2 - u1);
+ LocVolu = LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0;
+
+ for (j=1; j<=NbGaussgp_Pnts; j++)
+ {
+ u = um + ur * GaussP(j);
+ S.Normal (u, v, Ps, VNor);
+ VNor.Coord (xn, yn, zn);
+ Ps.Coord (x, y, z);
+ x -= xloc;
+ y -= yloc;
+ z -= zloc;
+ xn = xn * Dul * GaussW(j);
+ yn = yn * Dul * GaussW(j);
+ zn = zn * Dul * GaussW(j);
+ if(ByPoint)
+ {
+ dSigma = (x*xn+y*yn+z*zn)/3.0;
+ LocVolu += dSigma;
+ LocIx += 0.75*x*dSigma;
+ LocIy += 0.75*y*dSigma;
+ LocIz += 0.75*z*dSigma;
+ x -= Coeff[0];
+ y -= Coeff[1];
+ z -= Coeff[2];
+ dSigma *= 3.0/5.0;
+ LocIxy -= x*y*dSigma;
+ LocIyz -= y*z*dSigma;
+ LocIxz -= x*z*dSigma;
+ xi = x*x;
+ yi = y*y;
+ zi = z*z;
+ LocIxx += (yi + zi)*dSigma;
+ LocIyy += (xi + zi)*dSigma;
+ LocIzz += (xi + yi)*dSigma;
+ }
+ else
+ {
+ s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
+ d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z;
+ d2 = d1 * d1;
+ d3 = d1 * d2 / 3.0;
+ ds = s * d1;
+ LocVolu += ds;
+ LocIx += (x - Coeff[0] * d1 / 2.0) * ds;
+ LocIy += (y - Coeff[1] * d1 / 2.0) * ds;
+ LocIz += (z - Coeff[2] * d1 / 2.0) * ds;
+ px = x - Coeff[0] * d1;
+ py = y - Coeff[1] * d1;
+ pz = z - Coeff[2] * d1;
+ xi = (px * px * d1) + (px * Coeff[0]* d2) + (Coeff[0] * Coeff[0] * d3);
+ yi = (py * py * d1) + (py * Coeff[1] * d2) + (Coeff[1] * Coeff[1] * d3);
+ zi = pz * pz * d1 + pz * Coeff[2] * d2 + (Coeff[2] * Coeff[2] * d3);
+ LocIxx += (yi + zi) * s;
+ LocIyy += (xi + zi) * s;
+ LocIzz += (xi + yi) * s;
+ d2 /= 2.0;
+ xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
+ yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
+ zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
+ LocIxy -= zi * s;
+ LocIyz -= xi * s;
+ LocIxz -= yi * s;
+ }
+ }
+ CVolu += LocVolu * ur;
+ CIx += LocIx * ur;
+ CIy += LocIy * ur;
+ CIz += LocIz * ur;
+ CIxx += LocIxx * ur;
+ CIyy += LocIyy * ur;
+ CIzz += LocIzz * ur;
+ CIxy += LocIxy * ur;
+ CIxz += LocIxz * ur;
+ CIyz += LocIyz * ur;
+ }
+ Volu += CVolu * lr;
+ Ix += CIx * lr;
+ Iy += CIy * lr;
+ Iz += CIz * lr;
+ Ixx += CIxx * lr;
+ Iyy += CIyy * lr;
+ Izz += CIzz * lr;
+ Ixy += CIxy * lr;
+ Ixz += CIxz * lr;
+ Iyz += CIyz * lr;
+ D.Next();
+ }
+
+ if(Abs(Volu) >= EPS_DIM)
+ {
+ if(ByPoint)
+ {
+ Ix = Coeff[0] + Ix/Volu;
+ Iy = Coeff[1] + Iy/Volu;
+ Iz = Coeff[2] + Iz/Volu;
+ }
+ else
+ {
+ Ix /= Volu;
+ Iy /= Volu;
+ Iz /= Volu;
+ }
+ G.SetCoord (Ix, Iy, Iz);
+ }
+ else
+ {
+ Volu =0.;
+ G.SetCoord(0.,0.,0.);
+ }
+
+ Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
+ gp_XYZ (Ixy, Iyy, Iyz),
+ gp_XYZ (Ixz, Iyz, Izz));
+
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(){}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,D,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S,D);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,O,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,D,O,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pnt& O, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S,O);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S,D,O);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,Pl,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
+ SetLocation(VLocation);
+ Perform(S,D,Pl,Eps);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(const BRepGProp_Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S,Pl);
+}
+
+BRepGProp_Vinert::BRepGProp_Vinert(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation){
+ SetLocation(VLocation);
+ Perform(S,D,Pl);
+}
+
+void BRepGProp_Vinert::SetLocation(const gp_Pnt& VLocation){
+ loc = VLocation;
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const Standard_Real Eps){
+ Standard_Real Coeff[] = {0., 0., 0.};
+ return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const Standard_Real Eps){
+ Standard_Real Coeff[] = {0., 0., 0.};
+ return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
+}
+
+void BRepGProp_Vinert::Perform(const BRepGProp_Face& S){
+ Standard_Real Coeff[] = {0., 0., 0.};
+ Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D){
+ Standard_Real Coeff[] = {0., 0., 0.};
+ Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pnt& O, const Standard_Real Eps){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord(xloc, yloc, zloc);
+ Standard_Real Coeff[3];
+ O.Coord (Coeff[0], Coeff[1], Coeff[2]);
+ Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
+ return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O, const Standard_Real Eps){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord(xloc, yloc, zloc);
+ Standard_Real Coeff[3];
+ O.Coord (Coeff[0], Coeff[1], Coeff[2]);
+ Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
+ return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
+}
+
+void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pnt& O){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord(xloc, yloc, zloc);
+ Standard_Real Coeff[3];
+ O.Coord (Coeff[0], Coeff[1], Coeff[2]);
+ Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
+ Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pnt& O){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord(xloc, yloc, zloc);
+ Standard_Real Coeff[3];
+ O.Coord (Coeff[0], Coeff[1], Coeff[2]);
+ Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
+ Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, const gp_Pln& Pl, const Standard_Real Eps){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord (xloc, yloc, zloc);
+ Standard_Real Coeff[4];
+ Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
+ Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
+ return myEpsilon = Compute(S,Standard_False,Coeff,loc,dim,g,inertia,Eps);
+}
+
+Standard_Real BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl, const Standard_Real Eps){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord (xloc, yloc, zloc);
+ Standard_Real Coeff[4];
+ Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
+ Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
+ return myEpsilon = Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia,Eps);
+}
+
+void BRepGProp_Vinert::Perform(const BRepGProp_Face& S, const gp_Pln& Pl){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord (xloc, yloc, zloc);
+ Standard_Real Coeff[4];
+ Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
+ Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
+ Compute(S,Standard_False,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+void BRepGProp_Vinert::Perform(BRepGProp_Face& S, BRepGProp_Domain& D, const gp_Pln& Pl){
+ Standard_Real xloc, yloc, zloc;
+ loc.Coord (xloc, yloc, zloc);
+ Standard_Real Coeff[4];
+ Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
+ Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
+ Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia);
+ myEpsilon = 1.0;
+ return;
+}
+
+Standard_Real BRepGProp_Vinert::GetEpsilon(){
+ return myEpsilon;
+}
--- /dev/null
+-- Created on: 2005-12-21
+-- Created by: Sergey KHROMOV
+-- Copyright (c) 2005-2014 OPEN CASCADE SAS
+--
+-- This file is part of Open CASCADE Technology software library.
+--
+-- This library is free software; you can redistribute it and/or modify it under
+-- the terms of the GNU Lesser General Public License version 2.1 as published
+-- by the Free Software Foundation, with special exception defined in the file
+-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+-- distribution for complete text of the license and disclaimer of any warranty.
+--
+-- Alternatively, this file may be used under the terms of Open CASCADE
+-- commercial license or contractual agreement.
+
+class VinertGK from BRepGProp inherits GProps from GProp
+
+ ---Purpose: Computes the global properties of a geometric solid
+ -- (3D closed region of space) delimited with :
+ -- - a point and a surface
+ -- - a plane and a surface
+ --
+ -- The surface can be :
+ -- - a surface limited with its parametric values U-V,
+ -- (naturally restricted)
+ -- - a surface limited in U-V space with its boundary
+ -- curves.
+ --
+ -- The surface's requirements to evaluate the global
+ -- properties are defined in the template FaceTool class from
+ -- the package GProp.
+ --
+ -- The adaptive 2D algorithm of Gauss-Kronrod integration of
+ -- double integral is used.
+ --
+ -- The inner integral is computed along U parameter of
+ -- surface. The integrand function is encapsulated in the
+ -- support class UFunction that is defined below.
+ --
+ -- The outer integral is computed along T parameter of a
+ -- bounding curve. The integrand function is encapsulated in
+ -- the support class TFunction that is defined below.
+
+uses
+
+ Pnt from gp,
+ XYZ from gp,
+ Pln from gp,
+ Address from Standard,
+ Boolean from Standard,
+ Real from Standard,
+ Edge from TopoDS,
+ Face from BRepGProp,
+ Domain from BRepGProp
+
+
+-- Template class functions. Used for integration. Begin
+
+is
+
+ Create
+ ---Purpose: Empty constructor.
+ ---C++: inline
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the naturally restricted surface
+ -- and the point VLocation.
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ thePoint : Pnt from gp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the naturally restricted surface
+ -- and the point VLocation. The inertia is computed with
+ -- respect to thePoint.
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the surface bounded by the domain
+ -- and the point VLocation.
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ thePoint : Pnt from gp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the surface bounded by the domain
+ -- and the point VLocation. The inertia is computed with
+ -- respect to thePoint.
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ thePlane : Pln from gp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the naturally restricted surface
+ -- and the plane.
+ returns VinertGK;
+
+ Create(theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ thePlane : Pln from gp;
+ theLocation : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Constructor. Computes the global properties of a region of
+ -- 3D space delimited with the surface bounded by the domain
+ -- and the plane.
+ returns VinertGK;
+
+ SetLocation(me: in out; theLocation: Pnt from gp);
+ ---Purpose: Sets the vertex that delimit 3D closed region of space.
+ ---C++: inline
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the naturally restricted surface and the
+ -- point VLocation.
+ returns Real from Standard;
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ thePoint : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the naturally restricted surface and the
+ -- point VLocation. The inertia is computed with respect to
+ -- thePoint.
+ returns Real from Standard;
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the surface bounded by the domain and the
+ -- point VLocation.
+ returns Real from Standard;
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ thePoint : Pnt from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the surface bounded by the domain and the
+ -- point VLocation. The inertia is computed with respect to
+ -- thePoint.
+ returns Real from Standard;
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ thePlane : Pln from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the naturally restricted surface and the
+ -- plane.
+ returns Real from Standard;
+
+ Perform(me: in out; theSurface : in out Face from BRepGProp;
+ theDomain : in out Domain from BRepGProp;
+ thePlane : Pln from gp;
+ theTolerance: Real from Standard = 0.001;
+ theCGFlag: Boolean from Standard = Standard_False;
+ theIFlag: Boolean from Standard = Standard_False)
+
+ ---Purpose: Computes the global properties of a region of 3D space
+ -- delimited with the surface bounded by the domain and the
+ -- plane.
+ returns Real from Standard;
+
+ GetErrorReached(me)
+ ---Purpose: Returns the relative reached computation error.
+ ---C++: inline
+ returns Real from Standard;
+
+ GetAbsolutError(me)
+ ---Purpose: Returns the absolut reached computation error.
+ ---C++: inline
+ returns Real from Standard;
+
+-----------------------
+-- Private methods --
+-----------------------
+
+ PrivatePerform(me: in out;
+ theSurface : in out Face from BRepGProp;
+ thePtrDomain: Address from Standard; -- pointer to Domain from BRepGProp.
+ IsByPoint : Boolean from Standard;
+ theCoeffs : Address from Standard;
+ theTolerance: Real from Standard;
+ theCGFlag : Boolean from Standard;
+ theIFlag : Boolean from Standard)
+
+ ---Purpose: Main method for computation of the global properties that
+ -- is invoked by each Perform method.
+ returns Real from Standard
+ is private;
+
+fields
+
+ myErrorReached: Real from Standard;
+ myAbsolutError: Real from Standard;
+
+end VinertGK;
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
+#include <BRepGProp_VinertGK.ixx>
+
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <math_KronrodSingleIntegration.hxx>
-#include <math_Vector.hxx>
-#include <math.hxx>
+
+#include <BRepGProp_TFunction.hxx>
//==========================================================================
//function : Constructor
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK(BRepGProp_Face &theSurface,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, theTolerance, theCGFlag, theIFlag);
//
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- const gp_Pnt &thePoint,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
-
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK( BRepGProp_Face &theSurface,
+ const gp_Pnt &thePoint,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, thePoint, theTolerance, theCGFlag, theIFlag);
//
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- Domain &theDomain,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
-
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, theDomain, theTolerance, theCGFlag, theIFlag);
//
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- Domain &theDomain,
- const gp_Pnt &thePoint,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
-
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const gp_Pnt &thePoint,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, theDomain, thePoint, theTolerance, theCGFlag, theIFlag);
//
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- const gp_Pln &thePlane,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
-
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK(BRepGProp_Face &theSurface,
+ const gp_Pln &thePlane,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, thePlane, theTolerance, theCGFlag, theIFlag);
//
//==========================================================================
-GProp_VGPropsGK::GProp_VGPropsGK( Face &theSurface,
- Domain &theDomain,
- const gp_Pln &thePlane,
- const gp_Pnt &theLocation,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
-
- : myErrorReached(0.)
+BRepGProp_VinertGK::BRepGProp_VinertGK(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const gp_Pln &thePlane,
+ const gp_Pnt &theLocation,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag):
+ myErrorReached(0.)
{
SetLocation(theLocation);
Perform(theSurface, theDomain, thePlane, theTolerance, theCGFlag, theIFlag);
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
Standard_Real aShift[] = { 0., 0., 0. };
return PrivatePerform(theSurface, NULL, Standard_True, &aShift, theTolerance,
- theCGFlag, theIFlag);
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- const gp_Pnt &thePoint,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ const gp_Pnt &thePoint,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
gp_XYZ aXYZ(thePoint.XYZ().Subtracted(loc.XYZ()));
aXYZ.Coord(aShift[0], aShift[1], aShift[2]);
return PrivatePerform(theSurface, NULL, Standard_True, &aShift, theTolerance,
- theCGFlag, theIFlag);
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- Domain &theDomain,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
Standard_Real aShift[] = { 0., 0., 0. };
return PrivatePerform(theSurface, &theDomain,
- Standard_True, &aShift, theTolerance,
- theCGFlag, theIFlag);
+ Standard_True, &aShift, theTolerance,
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- Domain &theDomain,
- const gp_Pnt &thePoint,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const gp_Pnt &thePoint,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
gp_XYZ aXYZ(thePoint.XYZ().Subtracted(loc.XYZ()));
aXYZ.Coord(aShift[0], aShift[1], aShift[2]);
return PrivatePerform(theSurface, &theDomain,
- Standard_True, &aShift, theTolerance,
- theCGFlag, theIFlag);
+ Standard_True, &aShift, theTolerance,
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- const gp_Pln &thePlane,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ const gp_Pln &thePlane,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
Standard_Real aCoeff[4];
aCoeff[3] = aCoeff[3] - aCoeff[0]*aXLoc - aCoeff[1]*aYLoc - aCoeff[2]*aZLoc;
return PrivatePerform(theSurface, NULL,
- Standard_False, &aCoeff, theTolerance,
- theCGFlag, theIFlag);
+ Standard_False, &aCoeff, theTolerance,
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::Perform( Face &theSurface,
- Domain &theDomain,
- const gp_Pln &thePlane,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::Perform(BRepGProp_Face &theSurface,
+ BRepGProp_Domain &theDomain,
+ const gp_Pln &thePlane,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
Standard_Real aCoeff[4];
aCoeff[3] = aCoeff[3] - aCoeff[0]*aXLoc - aCoeff[1]*aYLoc - aCoeff[2]*aZLoc;
return PrivatePerform(theSurface, &theDomain,
- Standard_False, &aCoeff, theTolerance,
- theCGFlag, theIFlag);
+ Standard_False, &aCoeff, theTolerance,
+ theCGFlag, theIFlag);
}
//==========================================================================
// Compute the properties.
//==========================================================================
-Standard_Real GProp_VGPropsGK::PrivatePerform
- ( Face &theSurface,
- const Standard_Address thePtrDomain,
- const Standard_Boolean IsByPoint,
- const Standard_Address theCoeffs,
- const Standard_Real theTolerance,
- const Standard_Boolean theCGFlag,
- const Standard_Boolean theIFlag)
+Standard_Real BRepGProp_VinertGK::PrivatePerform
+(BRepGProp_Face &theSurface,
+ const Standard_Address thePtrDomain,
+ const Standard_Boolean IsByPoint,
+ const Standard_Address theCoeffs,
+ const Standard_Real theTolerance,
+ const Standard_Boolean theCGFlag,
+ const Standard_Boolean theIFlag)
{
Standard_Real *aCoeffs = (Standard_Real *)theCoeffs;
// Compute the number of 2d bounding curves of the face.
- Domain *aPDomain = NULL;
+ BRepGProp_Domain *aPDomain = NULL;
Standard_Integer aNbCurves = 0;
// If the pointer to the domain is NULL, there is only one curve to treat:
if (thePtrDomain == NULL)
aNbCurves = 1;
else {
- aPDomain = (Domain *)thePtrDomain;
+ aPDomain = (BRepGProp_Domain *)thePtrDomain;
for (aPDomain->Init(); aPDomain->More(); aPDomain->Next())
aNbCurves++;
// Get the spans on the curve.
Handle(TColStd_HArray1OfReal) aTKnots;
- GProp_TFunction aTFunc(theSurface, loc, IsByPoint, theCoeffs,
- aUMin, aCrvTol);
+ BRepGProp_TFunction aTFunc(theSurface, loc, IsByPoint, theCoeffs,
+ aUMin, aCrvTol);
theSurface.GetTKnots(aTMin, aTMax, aTKnots);
// Empirical criterion.
aNbPnts = Min(15, theSurface.IntegrationOrder()/aNbTIntervals + 1);
aNbPnts = Max(5, aNbPnts);
-// aNbPnts = theSurface.IntegrationOrder();
+ // aNbPnts = theSurface.IntegrationOrder();
aLocalValue.Init(0.);
aLocalTolReached.Init(0.);
Standard_Real err1 = 0.;
while (i < iU) {
- //cout << "-------------- Span " << i << " nbp: " << aNbPnts << endl;
- Standard_Real aT1 = aTKnots->Value(i++);
- Standard_Real aT2 = aTKnots->Value(i);
+ //cout << "-------------- Span " << i << " nbp: " << aNbPnts << endl;
+ Standard_Real aT1 = aTKnots->Value(i++);
+ Standard_Real aT2 = aTKnots->Value(i);
- if(aT2 - aT1 < aTTol) continue;
+ if(aT2 - aT1 < aTTol) continue;
- aTFunc.SetNbKronrodPoints(aNbPnts);
- aTFunc.Init();
- aTFunc.SetTolerance(aCrvTol/(aT2-aT1));
- anIntegral.Perform(aTFunc, aT1, aT2, aNbPnts, aTolSpan, aNbMaxIter);
+ aTFunc.SetNbKronrodPoints(aNbPnts);
+ aTFunc.Init();
+ aTFunc.SetTolerance(aCrvTol/(aT2-aT1));
+ anIntegral.Perform(aTFunc, aT1, aT2, aNbPnts, aTolSpan, aNbMaxIter);
- if (!anIntegral.IsDone()) {
- myErrorReached = -1.;
+ if (!anIntegral.IsDone()) {
+ myErrorReached = -1.;
- return myErrorReached;
- }
+ return myErrorReached;
+ }
- aLocalValue(k) += anIntegral.Value();
- err1 = aTFunc.AbsolutError()*(aT2 - aT1);
- //cout << "Errors: " << anIntegral.NbIterReached() << " " << anIntegral.AbsolutError() << " " << err1 << endl;
- aLocalTolReached(k) += anIntegral.AbsolutError() + err1;
- //cout << "--- Errors: " << anIntegral.NbIterReached() << " " << anIntegral.AbsolutError() << " " << err1 << endl;
+ aLocalValue(k) += anIntegral.Value();
+ err1 = aTFunc.AbsolutError()*(aT2 - aT1);
+ //cout << "Errors: " << anIntegral.NbIterReached() << " " << anIntegral.AbsolutError() << " " << err1 << endl;
+ aLocalTolReached(k) += anIntegral.AbsolutError() + err1;
+ //cout << "--- Errors: " << anIntegral.NbIterReached() << " " << anIntegral.AbsolutError() << " " << err1 << endl;
}
aValue(k) += aLocalValue(k);
// Compute values of center of mass.
if(anAbsDim >= aVolTol) {
if (IsByPoint) {
- aValue(2) = aCoeffs[0] + aValue(2)/dim;
- aValue(3) = aCoeffs[1] + aValue(3)/dim;
- aValue(4) = aCoeffs[2] + aValue(4)/dim;
+ aValue(2) = aCoeffs[0] + aValue(2)/dim;
+ aValue(3) = aCoeffs[1] + aValue(3)/dim;
+ aValue(4) = aCoeffs[2] + aValue(4)/dim;
} else {
- aValue(2) /= dim;
- aValue(3) /= dim;
- aValue(4) /= dim;
+ aValue(2) /= dim;
+ aValue(3) /= dim;
+ aValue(4) /= dim;
}
} else {
aValue(2) = 0.;
if(theIFlag) {
// Fill the matrix of inertia.
inertia.SetCols (gp_XYZ (aValue(5), aValue(8), aValue(9)),
- gp_XYZ (aValue(8), aValue(6), aValue(10)),
- gp_XYZ (aValue(9), aValue(10), aValue(7)));
+ gp_XYZ (aValue(8), aValue(6), aValue(10)),
+ gp_XYZ (aValue(9), aValue(10), aValue(7)));
}
//return myErrorReached;
return myAbsolutError;
}
-
+
// Empty constructor.
//==========================================================================
-inline GProp_VGPropsGK::GProp_VGPropsGK()
+inline BRepGProp_VinertGK::BRepGProp_VinertGK()
: myErrorReached(0.),
myAbsolutError(0.)
{
// Sets the vertex that delimit 3D closed region of space.
//==========================================================================
-inline void GProp_VGPropsGK::SetLocation(const gp_Pnt &theVertex)
+inline void BRepGProp_VinertGK::SetLocation(const gp_Pnt &theVertex)
{
loc = theVertex;
}
// Returns the reached Error.
//==========================================================================
-inline Standard_Real GProp_VGPropsGK::GetErrorReached() const
+inline Standard_Real BRepGProp_VinertGK::GetErrorReached() const
{
return myErrorReached;
}
--- Purpose :
-- Computes the global properties of a set of points in 3d.
-- This class inherits GProps.
-
-
- generic class CGProps;
- ---Purpose :
- -- Computes the global properties of a bounded
- -- curve in 3d. This class inherits GProps.
class CelGProps;
---Purpose :
-- Computes the global properties of a gp curve in 3d
-- This class inherits GProps.
- generic class SGProps;
- ---Purpose :
- -- Computes the global properties and the area of a bounded
- -- surface in 3d. This class inherits GProps.
-
-
class SelGProps;
---Purpose :
-- Computes the global properties and the area of a bounded
-- elementary surface in 3d. This class inherits GProps.
-
- generic class VGProps;
- ---Purpose :
- -- Computes the global properties and the volume of a region
- -- of space. This class inherits GProps.
-
- generic class VGPropsGK, UFunction, TFunction;
- ---Purpose :
- -- Computes the global properties and the volume of a region
- -- of space by adaptive Gauss-Kronrod integration.
- -- This class inherits GProps.
-
class VelGProps;
---Purpose :
+++ /dev/null
-// Copyright (c) 1995-1999 Matra Datavision
-// Copyright (c) 1999-2014 OPEN CASCADE SAS
-//
-// This file is part of Open CASCADE Technology software library.
-//
-// This library is free software; you can redistribute it and/or modify it under
-// the terms of the GNU Lesser General Public License version 2.1 as published
-// by the Free Software Foundation, with special exception defined in the file
-// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-// distribution for complete text of the license and disclaimer of any warranty.
-//
-// Alternatively, this file may be used under the terms of Open CASCADE
-// commercial license or contractual agreement.
-
-#include <Standard_NotImplemented.hxx>
-#include <math_Vector.hxx>
-#include <math.hxx>
-#include <gp_Pnt2d.hxx>
-#include <gp_Vec2d.hxx>
-#include <gp_Pnt.hxx>
-#include <gp_Vec.hxx>
-
-#include <TColStd_Array1OfReal.hxx>
-#include <Precision.hxx>
-class HMath_Vector{
- math_Vector *pvec;
- void operator=(const math_Vector&){}
- public:
- HMath_Vector(){ pvec = 0;}
- HMath_Vector(math_Vector* pv){ pvec = pv;}
- ~HMath_Vector(){ if(pvec != 0) delete pvec;}
- void operator=(math_Vector* pv){ if(pvec != pv && pvec != 0) delete pvec; pvec = pv;}
- Standard_Real& operator()(Standard_Integer i){ return (*pvec).operator()(i);}
- const Standard_Real& operator()(Standard_Integer i) const{ return (*pvec).operator()(i);}
- const math_Vector* operator->() const{ return pvec;}
- math_Vector* operator->(){ return pvec;}
- math_Vector* Init(Standard_Real v, Standard_Integer i = 0, Standard_Integer iEnd = 0){
- if(pvec == 0) return pvec;
- if(iEnd - i == 0) pvec->Init(v);
- else for(; i <= iEnd; i++) pvec->operator()(i) = v;
- return pvec;
- }
-};
-
-//Minimal value of interval's range for computation | minimal value of "dim" | ...
-static Standard_Real EPS_PARAM = Precision::Angular(), EPS_DIM = 1.E-30, ERROR_ALGEBR_RATIO = 2.0/3.0;
-//Maximum of GaussPoints on a subinterval and maximum of subintervals
-static Standard_Integer GPM = math::GaussPointsMax(), SUBS_POWER = 32, SM = SUBS_POWER*GPM + 1;
-static Standard_Boolean IS_MIN_DIM = 1; // if the value equal 0 error of algorithm calculted by static moments
-
-static math_Vector LGaussP0(1,GPM), LGaussW0(1,GPM),
- LGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), LGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
-static HMath_Vector L1 = new math_Vector(1,SM), L2 = new math_Vector(1,SM),
- DimL = new math_Vector(1,SM), ErrL = new math_Vector(1,SM), ErrUL = new math_Vector(1,SM,0.0),
- IxL = new math_Vector(1,SM), IyL = new math_Vector(1,SM), IzL = new math_Vector(1,SM),
- IxxL = new math_Vector(1,SM), IyyL = new math_Vector(1,SM), IzzL = new math_Vector(1,SM),
- IxyL = new math_Vector(1,SM), IxzL = new math_Vector(1,SM), IyzL = new math_Vector(1,SM);
-
-static math_Vector* LGaussP[] = {&LGaussP0,&LGaussP1};
-static math_Vector* LGaussW[] = {&LGaussW0,&LGaussW1};
-
-static math_Vector UGaussP0(1,GPM), UGaussW0(1,GPM),
- UGaussP1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM))), UGaussW1(1,RealToInt(Ceiling(ERROR_ALGEBR_RATIO*GPM)));
-static HMath_Vector U1 = new math_Vector(1,SM), U2 = new math_Vector(1,SM),
- DimU = new math_Vector(1,SM), ErrU = new math_Vector(1,SM,0.0),
- IxU = new math_Vector(1,SM), IyU = new math_Vector(1,SM), IzU = new math_Vector(1,SM),
- IxxU = new math_Vector(1,SM), IyyU = new math_Vector(1,SM), IzzU = new math_Vector(1,SM),
- IxyU = new math_Vector(1,SM), IxzU = new math_Vector(1,SM), IyzU = new math_Vector(1,SM);
-
-static math_Vector* UGaussP[] = {&UGaussP0,&UGaussP1};
-static math_Vector* UGaussW[] = {&UGaussW0,&UGaussW1};
-
-static Standard_Integer FillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
- HMath_Vector& VA, HMath_Vector& VB)
-{
- Standard_Integer i = 1, iEnd = Knots.Upper(), j = 1, k = 1;
- VA(j++) = A;
- for(; i <= iEnd; i++){
- Standard_Real kn = Knots(i);
- if(A < kn)
- {
- if(kn < B)
- {
- VA(j++) = VB(k++) = kn;
- }
- else
- {
- break;
- }
- }
- }
- VB(k) = B;
- return k;
-}
-
-static inline Standard_Integer MaxSubs(Standard_Integer n, Standard_Integer coeff = SUBS_POWER){
- return n = IntegerLast()/coeff < n? IntegerLast(): n*coeff + 1;
-}
-
-static Standard_Integer LFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
- const Standard_Integer NumSubs)
-{
- Standard_Integer iEnd = Knots.Upper(), jEnd = L1->Upper();
-
-// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
- iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
- if(iEnd - 1 > jEnd){
-// iEnd = MaxSubs(iEnd-1,NumSubs);
-// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
- L1 = new math_Vector(1,iEnd); L2 = new math_Vector(1,iEnd);
- DimL = new math_Vector(1,iEnd); ErrL = new math_Vector(1,iEnd,0.0); ErrUL = new math_Vector(1,iEnd,0.0);
- IxL = new math_Vector(1,iEnd); IyL = new math_Vector(1,iEnd); IzL = new math_Vector(1,iEnd);
- IxxL = new math_Vector(1,iEnd); IyyL = new math_Vector(1,iEnd); IzzL = new math_Vector(1,iEnd);
- IxyL = new math_Vector(1,iEnd); IxzL = new math_Vector(1,iEnd); IyzL = new math_Vector(1,iEnd);
- }
- return FillIntervalBounds(A, B, Knots, L1, L2);
-}
-
-static Standard_Integer UFillIntervalBounds(Standard_Real A, Standard_Real B, const TColStd_Array1OfReal& Knots,
- const Standard_Integer NumSubs)
-{
- Standard_Integer iEnd = Knots.Upper(), jEnd = U1->Upper();
-
-// Modified by Sergey KHROMOV - Wed Mar 26 11:22:50 2003
- iEnd = Max(iEnd, MaxSubs(iEnd-1,NumSubs));
- if(iEnd - 1 > jEnd){
-// iEnd = MaxSubs(iEnd-1,NumSubs);
-// Modified by Sergey KHROMOV - Wed Mar 26 11:22:51 2003
- U1 = new math_Vector(1,iEnd); U2 = new math_Vector(1,iEnd);
- DimU = new math_Vector(1,iEnd); ErrU = new math_Vector(1,iEnd,0.0);
- IxU = new math_Vector(1,iEnd); IyU = new math_Vector(1,iEnd); IzU = new math_Vector(1,iEnd);
- IxxU = new math_Vector(1,iEnd); IyyU = new math_Vector(1,iEnd); IzzU = new math_Vector(1,iEnd);
- IxyU = new math_Vector(1,iEnd); IxzU = new math_Vector(1,iEnd); IyzU = new math_Vector(1,iEnd);
- }
- return FillIntervalBounds(A, B, Knots, U1, U2);
-}
-
-static Standard_Real CCompute(Face& S, Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
- const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia,
- const Standard_Real EpsDim,
- const Standard_Boolean isErrorCalculation, const Standard_Boolean isVerifyComputation)
-{
- Standard_Boolean isNaturalRestriction = S.NaturalRestriction();
-
- Standard_Integer NumSubs = SUBS_POWER;
- Standard_Boolean isMinDim = IS_MIN_DIM;
-
- Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
- Dim = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
- //boundary curve parametrization
- Standard_Real l1, l2, lm, lr, l;
- //Face parametrization in U and V direction
- Standard_Real BV1, BV2, v;
- Standard_Real BU1, BU2, u1, u2, um, ur, u;
- S.Bounds (BU1, BU2, BV1, BV2); u1 = BU1;
- //location point used to compute the inertia
- Standard_Real xloc, yloc, zloc;
- loc.Coord (xloc, yloc, zloc);
- //location point used to compute the inertiard (xloc, yloc, zloc);
- //Jacobien (x, y, z) -> (u, v) = ||n||
- Standard_Real xn, yn, zn, s, ds, dDim;
- Standard_Real x, y, z, xi, px, py, pz, yi, zi, d1, d2, d3;
- //On the Face
- gp_Pnt Ps;
- gp_Vec VNor;
- //On the boundary curve u-v
- gp_Pnt2d Puv;
- gp_Vec2d Vuv;
- Standard_Real Dul; // Dul = Du / Dl
- Standard_Real CDim[2], CIx, CIy, CIz, CIxx[2], CIyy[2], CIzz[2], CIxy, CIxz, CIyz;
- Standard_Real LocDim[2], LocIx[2], LocIy[2], LocIz[2], LocIxx[2], LocIyy[2], LocIzz[2], LocIxy[2], LocIxz[2], LocIyz[2];
-
- Standard_Integer iD = 0, NbLSubs, iLS, iLSubEnd, iGL, iGLEnd, NbLGaussP[2], LRange[2], iL, kL, kLEnd, IL, JL;
- Standard_Integer i, NbUSubs, iUS, iUSubEnd, iGU, iGUEnd, NbUGaussP[2], URange[2], iU, kU, kUEnd, IU, JU;
- Standard_Integer UMaxSubs, LMaxSubs;
-
- Standard_Real ErrorU, ErrorL, ErrorLMax = 0.0, Eps=0.0, EpsL=0.0, EpsU=0.0;
- iGLEnd = isErrorCalculation? 2: 1;
-
- for(i = 0; i < 2; i++) {
- LocDim[i] = 0.0;
- LocIx[i] = 0.0;
- LocIy[i] = 0.0;
- LocIz[i] = 0.0;
- LocIxx[i] = 0.0;
- LocIyy[i] = 0.0;
- LocIzz[i] = 0.0;
- LocIxy[i] = 0.0;
- LocIyz[i] = 0.0;
- LocIxz[i] = 0.0;
- }
-
- NbUGaussP[0] = S.SIntOrder(EpsDim);
- NbUGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbUGaussP[0]));
- math::GaussPoints(NbUGaussP[0],UGaussP0); math::GaussWeights(NbUGaussP[0],UGaussW0);
- math::GaussPoints(NbUGaussP[1],UGaussP1); math::GaussWeights(NbUGaussP[1],UGaussW1);
-
- NbUSubs = S.SUIntSubs();
- TColStd_Array1OfReal UKnots(1,NbUSubs+1);
- S.UKnots(UKnots);
-
- while (isNaturalRestriction || D.More()) {
- if(isNaturalRestriction){
- NbLGaussP[0] = Min(2*NbUGaussP[0],math::GaussPointsMax());
- }else{
- S.Load(D.Value()); ++iD;
- NbLGaussP[0] = S.LIntOrder(EpsDim);
- }
- NbLGaussP[1] = RealToInt(Ceiling(ERROR_ALGEBR_RATIO*NbLGaussP[0]));
- math::GaussPoints(NbLGaussP[0],LGaussP0); math::GaussWeights(NbLGaussP[0],LGaussW0);
- math::GaussPoints(NbLGaussP[1],LGaussP1); math::GaussWeights(NbLGaussP[1],LGaussW1);
-
- NbLSubs = isNaturalRestriction? S.SVIntSubs(): S.LIntSubs();
- TColStd_Array1OfReal LKnots(1,NbLSubs+1);
- if(isNaturalRestriction){
- S.VKnots(LKnots);
- l1 = BV1; l2 = BV2;
- }else{
- S.LKnots(LKnots);
- l1 = S.FirstParameter(); l2 = S.LastParameter();
- }
- ErrorL = 0.0;
- kLEnd = 1; JL = 0;
- //OCC503(apo): if(Abs(l2-l1) < EPS_PARAM) continue;
- if(Abs(l2-l1) > EPS_PARAM) {
- iLSubEnd = LFillIntervalBounds(l1, l2, LKnots, NumSubs);
- LMaxSubs = MaxSubs(iLSubEnd);
- //-- exception avoiding
- if(LMaxSubs > SM) LMaxSubs = SM;
- DimL.Init(0.0,1,LMaxSubs); ErrL.Init(0.0,1,LMaxSubs); ErrUL.Init(0.0,1,LMaxSubs);
- do{// while: L
- if(++JL > iLSubEnd){
- LRange[0] = IL = ErrL->Max(); LRange[1] = JL;
- L1(JL) = (L1(IL) + L2(IL))/2.0; L2(JL) = L2(IL); L2(IL) = L1(JL);
- }else LRange[0] = IL = JL;
- if(JL == LMaxSubs || Abs(L2(JL) - L1(JL)) < EPS_PARAM)
- if(kLEnd == 1){
- DimL(JL) = ErrL(JL) = IxL(JL) = IyL(JL) = IzL(JL) =
- IxxL(JL) = IyyL(JL) = IzzL(JL) = IxyL(JL) = IxzL(JL) = IyzL(JL) = 0.0;
- }else{
- JL--;
- EpsL = ErrorL; Eps = EpsL/0.9;
- break;
- }
- else
- for(kL=0; kL < kLEnd; kL++){
- iLS = LRange[kL];
- lm = 0.5*(L2(iLS) + L1(iLS));
- lr = 0.5*(L2(iLS) - L1(iLS));
- CIx = CIy = CIz = CIxy = CIxz = CIyz = 0.0;
- for(iGL=0; iGL < iGLEnd; iGL++){//
- CDim[iGL] = CIxx[iGL] = CIyy[iGL] = CIzz[iGL] = 0.0;
- for(iL=1; iL<=NbLGaussP[iGL]; iL++){
- l = lm + lr*(*LGaussP[iGL])(iL);
- if(isNaturalRestriction){
- v = l; u2 = BU2; Dul = (*LGaussW[iGL])(iL);
- }else{
- S.D12d (l, Puv, Vuv);
- Dul = Vuv.Y()*(*LGaussW[iGL])(iL); // Dul = Du / Dl
- if(Abs(Dul) < EPS_PARAM) continue;
- v = Puv.Y(); u2 = Puv.X();
- //Check on cause out off bounds of value current parameter
- if(v < BV1) v = BV1; else if(v > BV2) v = BV2;
- if(u2 < BU1) u2 = BU1; else if(u2 > BU2) u2 = BU2;
- }
- ErrUL(iLS) = 0.0;
- kUEnd = 1; JU = 0;
- if(Abs(u2-u1) < EPS_PARAM) continue;
- iUSubEnd = UFillIntervalBounds(u1, u2, UKnots, NumSubs);
- UMaxSubs = MaxSubs(iUSubEnd);
- //-- exception avoiding
- if(UMaxSubs > SM) UMaxSubs = SM;
- DimU.Init(0.0,1,UMaxSubs); ErrU.Init(0.0,1,UMaxSubs); ErrorU = 0.0;
- do{//while: U
- if(++JU > iUSubEnd){
- URange[0] = IU = ErrU->Max(); URange[1] = JU;
- U1(JU) = (U1(IU)+U2(IU))/2.0; U2(JU) = U2(IU); U2(IU) = U1(JU);
- }else URange[0] = IU = JU;
- if(JU == UMaxSubs || Abs(U2(JU) - U1(JU)) < EPS_PARAM)
- if(kUEnd == 1){
- DimU(JU) = ErrU(JU) = IxU(JU) = IyU(JU) = IzU(JU) =
- IxxU(JU) = IyyU(JU) = IzzU(JU) = IxyU(JU) = IxzU(JU) = IyzU(JU) = 0.0;
- }else{
- JU--;
- EpsU = ErrorU; Eps = EpsU*Abs((u2-u1)*Dul)/0.1; EpsL = 0.9*Eps;
- break;
- }
- else
- for(kU=0; kU < kUEnd; kU++){
- iUS = URange[kU];
- um = 0.5*(U2(iUS) + U1(iUS));
- ur = 0.5*(U2(iUS) - U1(iUS));
- iGUEnd = iGLEnd - iGL;
- for(iGU=0; iGU < iGUEnd; iGU++){//
- LocDim[iGU] =
- LocIxx[iGU] = LocIyy[iGU] = LocIzz[iGU] =
- LocIx[iGU] = LocIy[iGU] = LocIz[iGU] =
- LocIxy[iGU] = LocIxz[iGU] = LocIyz[iGU] = 0.0;
- for(iU=1; iU<=NbUGaussP[iGU]; iU++){
- u = um + ur*(*UGaussP[iGU])(iU);
- S.Normal(u, v, Ps, VNor);
- VNor.Coord(xn, yn, zn);
- Ps.Coord(x, y, z);
- x -= xloc; y -= yloc; z -= zloc;
- xn *= (*UGaussW[iGU])(iU);
- yn *= (*UGaussW[iGU])(iU);
- zn *= (*UGaussW[iGU])(iU);
- if(ByPoint){
- //volume of elementary cone
- dDim = (x*xn+y*yn+z*zn)/3.0;
- //coordinates of cone's center mass
- px = 0.75*x; py = 0.75*y; pz = 0.75*z;
- LocDim[iGU] += dDim;
- //if(iGU > 0) continue;
- LocIx[iGU] += px*dDim;
- LocIy[iGU] += py*dDim;
- LocIz[iGU] += pz*dDim;
- x -= Coeff[0]; y -= Coeff[1]; z -= Coeff[2];
- dDim *= 3.0/5.0;
- LocIxy[iGU] -= x*y*dDim;
- LocIyz[iGU] -= y*z*dDim;
- LocIxz[iGU] -= x*z*dDim;
- xi = x*x; yi = y*y; zi = z*z;
- LocIxx[iGU] += (yi+zi)*dDim;
- LocIyy[iGU] += (xi+zi)*dDim;
- LocIzz[iGU] += (xi+yi)*dDim;
- }else{ // by plane
- s = xn*Coeff[0] + yn*Coeff[1] + zn*Coeff[2];
- d1 = Coeff[0]*x + Coeff[1]*y + Coeff[2]*z - Coeff[3];
- d2 = d1*d1;
- d3 = d1*d2/3.0;
- ds = s*d1;
- LocDim[iGU] += ds;
- //if(iGU > 0) continue;
- LocIx[iGU] += (x - Coeff[0]*d1/2.0) * ds;
- LocIy[iGU] += (y - Coeff[1]*d1/2.0) * ds;
- LocIz[iGU] += (z - Coeff[2]*d1/2.0) * ds;
- px = x-Coeff[0]*d1; py = y-Coeff[1]*d1; pz = z-Coeff[2]*d1;
- xi = px*px*d1 + px*Coeff[0]*d2 + Coeff[0]*Coeff[0]*d3;
- yi = py*py*d1 + py*Coeff[1]*d2 + Coeff[1]*Coeff[1]*d3;
- zi = pz*pz*d1 + pz*Coeff[2]*d2 + Coeff[2]*Coeff[2]*d3;
- LocIxx[iGU] += (yi+zi)*s;
- LocIyy[iGU] += (xi+zi)*s;
- LocIzz[iGU] += (xi+yi)*s;
- d2 /= 2.0;
- xi = py*pz*d1 + py*Coeff[2]*d2 + pz*Coeff[1]*d2 + Coeff[1]*Coeff[2]*d3;
- yi = px*pz*d1 + pz*Coeff[0]*d2 + px*Coeff[2]*d2 + Coeff[0]*Coeff[2]*d3;
- zi = px*py*d1 + px*Coeff[1]*d2 + py*Coeff[0]*d2 + Coeff[0]*Coeff[1]*d3;
- LocIxy[iGU] -= zi*s; LocIyz[iGU] -= xi*s; LocIxz[iGU] -= yi*s;
- }
- }//for: iU
- }//for: iGU
- DimU(iUS) = LocDim[0]*ur;
- IxxU(iUS) = LocIxx[0]*ur; IyyU(iUS) = LocIyy[0]*ur; IzzU(iUS) = LocIzz[0]*ur;
- if(iGL > 0) continue;
- LocDim[1] = Abs(LocDim[1]-LocDim[0]);
- LocIxx[1] = Abs(LocIxx[1]-LocIxx[0]);
- LocIyy[1] = Abs(LocIyy[1]-LocIyy[0]);
- LocIzz[1] = Abs(LocIzz[1]-LocIzz[0]);
- ErrU(iUS) = isMinDim? LocDim[1]*ur: (LocIxx[1] + LocIyy[1] + LocIzz[1])*ur;
- IxU(iUS) = LocIx[0]*ur; IyU(iUS) = LocIy[0]*ur; IzU(iUS) = LocIz[0]*ur;
- IxyU(iUS) = LocIxy[0]*ur; IxzU(iUS) = LocIxz[0]*ur; IyzU(iUS) = LocIyz[0]*ur;
- }//for: kU (iUS)
- if(JU == iUSubEnd) kUEnd = 2;
- if(kUEnd == 2) {
- Standard_Integer imax = ErrU->Max();
- if(imax > 0) ErrorU = ErrU(imax);
- else ErrorU = 0.0;
- }
- }while((ErrorU - EpsU > 0.0 && EpsU != 0.0) || kUEnd == 1);
- for(i=1; i<=JU; i++) {
- CDim[iGL] += DimU(i)*Dul;
- CIxx[iGL] += IxxU(i)*Dul; CIyy[iGL] += IyyU(i)*Dul; CIzz[iGL] += IzzU(i)*Dul;
- }
- if(iGL > 0) continue;
- ErrUL(iLS) = ErrorU*Abs((u2-u1)*Dul);
- for(i=1; i<=JU; i++){
- CIx += IxU(i)*Dul; CIy += IyU(i)*Dul; CIz += IzU(i)*Dul;
- //CIxx += IxxU(i)*Dul; CIyy += IyyU(i)*Dul; CIzz += IzzU(i)*Dul;
- CIxy += IxyU(i)*Dul; CIxz += IxzU(i)*Dul; CIyz += IyzU(i)*Dul;
- }
- }//for: iL
- }//for: iGL
- DimL(iLS) = CDim[0]*lr;
- IxxL(iLS) = CIxx[0]*lr; IyyL(iLS) = CIyy[0]*lr; IzzL(iLS) = CIzz[0]*lr;
- if(iGLEnd == 2) {
- //ErrL(iLS) = Abs(CDim[1]-CDim[0])*lr + ErrUL(iLS);
- CDim[1] = Abs(CDim[1]-CDim[0]);
- CIxx[1] = Abs(CIxx[1]-CIxx[0]); CIyy[1] = Abs(CIyy[1]-CIyy[0]); CIzz[1] = Abs(CIzz[1]-CIzz[0]);
- ErrorU = ErrUL(iLS);
- ErrL(iLS) = (isMinDim? CDim[1]: (CIxx[1] + CIyy[1] + CIzz[1]))*lr + ErrorU;
- }
- IxL(iLS) = CIx*lr; IyL(iLS) = CIy*lr; IzL(iLS) = CIz*lr;
- //IxxL(iLS) = CIxx*lr; IyyL(iLS) = CIyy*lr; IzzL(iLS) = CIzz*lr;
- IxyL(iLS) = CIxy*lr; IxzL(iLS) = CIxz*lr; IyzL(iLS) = CIyz*lr;
- }//for: (kL)iLS
- // Calculate/correct epsilon of computation by current value of Dim
- //That is need for not spend time for
- if(JL == iLSubEnd){
- kLEnd = 2;
- Standard_Real DDim = 0.0, DIxx = 0.0, DIyy = 0.0, DIzz = 0.0;
- for(i=1; i<=JL; i++) {
- DDim += DimL(i);
- DIxx += IxxL(i); DIyy += IyyL(i); DIzz += IzzL(i);
- }
- DDim = isMinDim? Abs(DDim): Abs(DIxx) + Abs(DIyy) + Abs(DIzz);
- DDim = Abs(DDim*EpsDim);
- if(DDim > Eps) {
- Eps = DDim; EpsL = 0.9*Eps;
- }
- }
- if(kLEnd == 2) {
- Standard_Integer imax = ErrL->Max();
- if(imax > 0) ErrorL = ErrL(imax);
- else ErrorL = 0.0;
- }
- }while((ErrorL - EpsL > 0.0 && isVerifyComputation) || kLEnd == 1);
- for(i=1; i<=JL; i++){
- Dim += DimL(i);
- Ix += IxL(i); Iy += IyL(i); Iz += IzL(i);
- Ixx += IxxL(i); Iyy += IyyL(i); Izz += IzzL(i);
- Ixy += IxyL(i); Ixz += IxzL(i); Iyz += IyzL(i);
- }
- ErrorLMax = Max(ErrorLMax, ErrorL);
- }
- if(isNaturalRestriction) break;
- D.Next();
- }
- if(Abs(Dim) >= EPS_DIM){
- if(ByPoint){
- Ix = Coeff[0] + Ix/Dim;
- Iy = Coeff[1] + Iy/Dim;
- Iz = Coeff[2] + Iz/Dim;
- }else{
- Ix /= Dim;
- Iy /= Dim;
- Iz /= Dim;
- }
- g.SetCoord (Ix, Iy, Iz);
- }else{
- Dim =0.;
- g.SetCoord(0.,0.,0.);
- }
- inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
- gp_XYZ (Ixy, Iyy, Iyz),
- gp_XYZ (Ixz, Iyz, Izz));
- if(iGLEnd == 2)
- Eps = Dim != 0.0? ErrorLMax/(isMinDim? Abs(Dim): (Abs(Ixx) + Abs(Iyy) + Abs(Izz))): 0.0;
- else Eps = EpsDim;
- return Eps;
-}
-
-static Standard_Real Compute(Face& S, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
- const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
-{
- Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
- Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
- EpsDim = Abs(EpsDim);
- Domain D;
- return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
-}
-
-static Standard_Real Compute(Face& S, Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
- const gp_Pnt& loc, Standard_Real& Dim, gp_Pnt& g, gp_Mat& inertia, Standard_Real EpsDim)
-{
- Standard_Boolean isErrorCalculation = 0.0 > EpsDim || EpsDim < 0.001? 1: 0;
- Standard_Boolean isVerifyComputation = 0.0 < EpsDim && EpsDim < 0.001? 1: 0;
- EpsDim = Abs(EpsDim);
- return CCompute(S,D,ByPoint,Coeff,loc,Dim,g,inertia,EpsDim,isErrorCalculation,isVerifyComputation);
-}
-
-static void Compute(const Face& S,
- const Standard_Boolean ByPoint,
- const Standard_Real Coeff[],
- const gp_Pnt& Loc,
- Standard_Real& Volu,
- gp_Pnt& G,
- gp_Mat& Inertia)
-{
-
- gp_Pnt P;
- gp_Vec VNor;
- Standard_Real dvi, dv;
- Standard_Real ur, um, u, vr, vm, v;
- Standard_Real x, y, z, xn, yn, zn, xi, yi, zi;
-// Standard_Real x, y, z, xn, yn, zn, xi, yi, zi, xyz;
- Standard_Real px,py,pz,s,d1,d2,d3;
- Standard_Real Ixi, Iyi, Izi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, Iyzi;
- Standard_Real xloc, yloc, zloc;
- Standard_Real Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
-
- Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
- Loc.Coord (xloc, yloc, zloc);
-
- Standard_Real LowerU, UpperU, LowerV, UpperV;
- S.Bounds ( LowerU, UpperU, LowerV, UpperV);
- Standard_Integer UOrder = Min(S.UIntegrationOrder (),
- math::GaussPointsMax());
- Standard_Integer VOrder = Min(S.VIntegrationOrder (),
- math::GaussPointsMax());
-
- Standard_Integer i, j;
- math_Vector GaussPU (1, UOrder); //gauss points and weights
- math_Vector GaussWU (1, UOrder);
- math_Vector GaussPV (1, VOrder);
- math_Vector GaussWV (1, VOrder);
-
- math::GaussPoints (UOrder,GaussPU);
- math::GaussWeights (UOrder,GaussWU);
- math::GaussPoints (VOrder,GaussPV);
- math::GaussWeights (VOrder,GaussWV);
-
- um = 0.5 * (UpperU + LowerU);
- vm = 0.5 * (UpperV + LowerV);
- ur = 0.5 * (UpperU - LowerU);
- vr = 0.5 * (UpperV - LowerV);
-
- for (j = 1; j <= VOrder; j++) {
- v = vm + vr * GaussPV (j);
- dvi = Ixi = Iyi = Izi = Ixxi = Iyyi = Izzi = Ixyi = Ixzi = Iyzi = 0.0;
-
- for (i = 1; i <= UOrder; i++) {
- u = um + ur * GaussPU (i);
- S.Normal (u, v, P, VNor);
- VNor.Coord (xn, yn, zn);
- P.Coord (x, y, z);
- x -= xloc; y -= yloc; z -= zloc;
- xn *= GaussWU (i); yn *= GaussWU (i); zn *= GaussWU (i);
- if (ByPoint) {
- ///////////////////// ///////////////////////
- // OFV code // // Initial code //
- ///////////////////// ///////////////////////
- // modified by APO
- dv = (x*xn+y*yn+z*zn)/3.0; //xyz = x * y * z;
- dvi += dv; //Ixyi += zn * xyz;
- Ixi += 0.75*x*dv; //Iyzi += xn * xyz;
- Iyi += 0.75*y*dv; //Ixzi += yn * xyz;
- Izi += 0.75*z*dv; //xi = x * x * x * xn / 3.0;
- x -= Coeff[0]; //yi = y * y * y * yn / 3.0;
- y -= Coeff[1]; //zi = z * z * z * zn / 3.0;
- z -= Coeff[2]; //Ixxi += (yi + zi);
- dv *= 3.0/5.0; //Iyyi += (xi + zi);
- Ixyi -= x*y*dv; //Izzi += (xi + yi);
- Iyzi -= y*z*dv; //x -= Coeff[0];
- Ixzi -= x*z*dv; //y -= Coeff[1];
- xi = x*x; //z -= Coeff[2];
- yi = y*y; //dv = x * xn + y * yn + z * zn;
- zi = z*z; //dvi += dv;
- Ixxi += (yi + zi)*dv; //Ixi += x * dv;
- Iyyi += (xi + zi)*dv; //Iyi += y * dv;
- Izzi += (xi + yi)*dv; //Izi += z * dv;
- }
- else { // by plane
- s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
- d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z - Coeff[3];
- d2 = d1 * d1;
- d3 = d1 * d2 / 3.0;
- dv = s * d1;
- dvi += dv;
- Ixi += (x - (Coeff[0] * d1 / 2.0)) * dv;
- Iyi += (y - (Coeff[1] * d1 / 2.0)) * dv;
- Izi += (z - (Coeff[2] * d1 / 2.0)) * dv;
- px = x - Coeff[0] * d1;
- py = y - Coeff[1] * d1;
- pz = z - Coeff[2] * d1;
- xi = px * px * d1 + px * Coeff[0]* d2 + Coeff[0] * Coeff[0] * d3;
- yi = py * py * d1 + py * Coeff[1] * d2 + Coeff[1] * Coeff[1] * d3;
- zi = pz * pz * d1 + pz * Coeff[2] * d2 + Coeff[2] * Coeff[2] * d3;
- Ixxi += (yi + zi) * s;
- Iyyi += (xi + zi) * s;
- Izzi += (xi + yi) * s;
- d2 /= 2.0;
- xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
- yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
- zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
- Ixyi -= zi * s;
- Iyzi -= xi * s;
- Ixzi -= yi * s;
- }
- }
- Volu += dvi * GaussWV (j);
- Ix += Ixi * GaussWV (j);
- Iy += Iyi * GaussWV (j);
- Iz += Izi * GaussWV (j);
- Ixx += Ixxi * GaussWV (j);
- Iyy += Iyyi * GaussWV (j);
- Izz += Izzi * GaussWV (j);
- Ixy += Ixyi * GaussWV (j);
- Ixz += Ixzi * GaussWV (j);
- Iyz += Iyzi * GaussWV (j);
- }
- vr *= ur;
- Ixx *= vr;
- Iyy *= vr;
- Izz *= vr;
- Ixy *= vr;
- Ixz *= vr;
- Iyz *= vr;
- if (Abs(Volu) >= EPS_DIM ) {
- if (ByPoint) {
- Ix = Coeff[0] + Ix/Volu;
- Iy = Coeff[1] + Iy/Volu;
- Iz = Coeff[2] + Iz/Volu;
- Volu *= vr;
- }
- else { //by plane
- Ix /= Volu;
- Iy /= Volu;
- Iz /= Volu;
- Volu *= vr;
- }
- G.SetCoord (Ix, Iy, Iz);
- }
- else {
- G.SetCoord(0.,0.,0.);
- Volu =0.;
- }
- Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
- gp_XYZ (Ixy, Iyy, Iyz),
- gp_XYZ (Ixz, Iyz, Izz));
-
-}
-
-// Last modified by OFV 5.2001:
-// 1). surface and edge integration order is equal now
-// 2). "by point" works now rathre correctly (it looks so...)
-static void Compute(Face& S, Domain& D, const Standard_Boolean ByPoint, const Standard_Real Coeff[],
- const gp_Pnt& Loc, Standard_Real& Volu, gp_Pnt& G, gp_Mat& Inertia)
-
-{
- Standard_Real x, y, z, xi, yi, zi, l1, l2, lm, lr, l, v1, v2, v, u1, u2, um, ur, u, ds, Dul, xloc, yloc, zloc;
- Standard_Real LocVolu, LocIx, LocIy, LocIz, LocIxx, LocIyy, LocIzz, LocIxy, LocIxz, LocIyz;
- Standard_Real CVolu, CIx, CIy, CIz, CIxx, CIyy, CIzz, CIxy, CIxz, CIyz, Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz;
- Standard_Real xn, yn, zn, px, py, pz, s, d1, d2, d3, dSigma;
- Standard_Integer i, j, vio, sio, max, NbGaussgp_Pnts;
-
- gp_Pnt Ps;
- gp_Vec VNor;
- gp_Pnt2d Puv;
- gp_Vec2d Vuv;
-
- Loc.Coord (xloc, yloc, zloc);
- Volu = Ix = Iy = Iz = Ixx = Iyy = Izz = Ixy = Ixz = Iyz = 0.0;
- S.Bounds (u1, u2, v1, v2);
- Standard_Real _u2 = u2; //OCC104
- vio = S.VIntegrationOrder ();
-
- while (D.More())
- {
- S.Load(D.Value());
- sio = S.IntegrationOrder ();
- max = Max(vio,sio);
- NbGaussgp_Pnts = Min(max,math::GaussPointsMax());
-
- math_Vector GaussP (1, NbGaussgp_Pnts);
- math_Vector GaussW (1, NbGaussgp_Pnts);
- math::GaussPoints (NbGaussgp_Pnts,GaussP);
- math::GaussWeights (NbGaussgp_Pnts,GaussW);
-
- CVolu = CIx = CIy = CIz = CIxx = CIyy = CIzz = CIxy = CIxz = CIyz = 0.0;
- l1 = S.FirstParameter();
- l2 = S.LastParameter();
- lm = 0.5 * (l2 + l1);
- lr = 0.5 * (l2 - l1);
-
- for (i=1; i<=NbGaussgp_Pnts; i++)
- {
- l = lm + lr * GaussP(i);
- S.D12d (l, Puv, Vuv);
- v = Puv.Y();
- u2 = Puv.X();
-
- //OCC104
- v = v < v1? v1: v;
- v = v > v2? v2: v;
- u2 = u2 < u1? u1: u2;
- u2 = u2 > _u2? _u2: u2;
-
- Dul = Vuv.Y() * GaussW(i);
- um = 0.5 * (u2 + u1);
- ur = 0.5 * (u2 - u1);
- LocVolu = LocIx = LocIy = LocIz = LocIxx = LocIyy = LocIzz = LocIxy = LocIxz = LocIyz = 0.0;
-
- for (j=1; j<=NbGaussgp_Pnts; j++)
- {
- u = um + ur * GaussP(j);
- S.Normal (u, v, Ps, VNor);
- VNor.Coord (xn, yn, zn);
- Ps.Coord (x, y, z);
- x -= xloc;
- y -= yloc;
- z -= zloc;
- xn = xn * Dul * GaussW(j);
- yn = yn * Dul * GaussW(j);
- zn = zn * Dul * GaussW(j);
- if(ByPoint)
- {
- dSigma = (x*xn+y*yn+z*zn)/3.0;
- LocVolu += dSigma;
- LocIx += 0.75*x*dSigma;
- LocIy += 0.75*y*dSigma;
- LocIz += 0.75*z*dSigma;
- x -= Coeff[0];
- y -= Coeff[1];
- z -= Coeff[2];
- dSigma *= 3.0/5.0;
- LocIxy -= x*y*dSigma;
- LocIyz -= y*z*dSigma;
- LocIxz -= x*z*dSigma;
- xi = x*x;
- yi = y*y;
- zi = z*z;
- LocIxx += (yi + zi)*dSigma;
- LocIyy += (xi + zi)*dSigma;
- LocIzz += (xi + yi)*dSigma;
- }
- else
- {
- s = xn * Coeff[0] + yn * Coeff[1] + zn * Coeff[2];
- d1 = Coeff[0] * x + Coeff[1] * y + Coeff[2] * z;
- d2 = d1 * d1;
- d3 = d1 * d2 / 3.0;
- ds = s * d1;
- LocVolu += ds;
- LocIx += (x - Coeff[0] * d1 / 2.0) * ds;
- LocIy += (y - Coeff[1] * d1 / 2.0) * ds;
- LocIz += (z - Coeff[2] * d1 / 2.0) * ds;
- px = x - Coeff[0] * d1;
- py = y - Coeff[1] * d1;
- pz = z - Coeff[2] * d1;
- xi = (px * px * d1) + (px * Coeff[0]* d2) + (Coeff[0] * Coeff[0] * d3);
- yi = (py * py * d1) + (py * Coeff[1] * d2) + (Coeff[1] * Coeff[1] * d3);
- zi = pz * pz * d1 + pz * Coeff[2] * d2 + (Coeff[2] * Coeff[2] * d3);
- LocIxx += (yi + zi) * s;
- LocIyy += (xi + zi) * s;
- LocIzz += (xi + yi) * s;
- d2 /= 2.0;
- xi = (py * pz * d1) + (py * Coeff[2] * d2) + (pz * Coeff[1] * d2) + (Coeff[1] * Coeff[2] * d3);
- yi = (px * pz * d1) + (pz * Coeff[0] * d2) + (px * Coeff[2] * d2) + (Coeff[0] * Coeff[2] * d3);
- zi = (px * py * d1) + (px * Coeff[1] * d2) + (py * Coeff[0] * d2) + (Coeff[0] * Coeff[1] * d3);
- LocIxy -= zi * s;
- LocIyz -= xi * s;
- LocIxz -= yi * s;
- }
- }
- CVolu += LocVolu * ur;
- CIx += LocIx * ur;
- CIy += LocIy * ur;
- CIz += LocIz * ur;
- CIxx += LocIxx * ur;
- CIyy += LocIyy * ur;
- CIzz += LocIzz * ur;
- CIxy += LocIxy * ur;
- CIxz += LocIxz * ur;
- CIyz += LocIyz * ur;
- }
- Volu += CVolu * lr;
- Ix += CIx * lr;
- Iy += CIy * lr;
- Iz += CIz * lr;
- Ixx += CIxx * lr;
- Iyy += CIyy * lr;
- Izz += CIzz * lr;
- Ixy += CIxy * lr;
- Ixz += CIxz * lr;
- Iyz += CIyz * lr;
- D.Next();
- }
-
- if(Abs(Volu) >= EPS_DIM)
- {
- if(ByPoint)
- {
- Ix = Coeff[0] + Ix/Volu;
- Iy = Coeff[1] + Iy/Volu;
- Iz = Coeff[2] + Iz/Volu;
- }
- else
- {
- Ix /= Volu;
- Iy /= Volu;
- Iz /= Volu;
- }
- G.SetCoord (Ix, Iy, Iz);
- }
- else
- {
- Volu =0.;
- G.SetCoord(0.,0.,0.);
- }
-
- Inertia.SetCols (gp_XYZ (Ixx, Ixy, Ixz),
- gp_XYZ (Ixy, Iyy, Iyz),
- gp_XYZ (Ixz, Iyz, Izz));
-
-}
-
-GProp_VGProps::GProp_VGProps(){}
-
-GProp_VGProps::GProp_VGProps(Face& S, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,D,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S,D);
-}
-
-GProp_VGProps::GProp_VGProps(const Face& S, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,O,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,D,O,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(const Face& S, const gp_Pnt& O, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S,O);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pnt& O, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S,D,O);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,Pl,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation, const Standard_Real Eps){
- SetLocation(VLocation);
- Perform(S,D,Pl,Eps);
-}
-
-GProp_VGProps::GProp_VGProps(const Face& S, const gp_Pln& Pl, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S,Pl);
-}
-
-GProp_VGProps::GProp_VGProps(Face& S, Domain& D, const gp_Pln& Pl, const gp_Pnt& VLocation){
- SetLocation(VLocation);
- Perform(S,D,Pl);
-}
-
-void GProp_VGProps::SetLocation(const gp_Pnt& VLocation){
- loc = VLocation;
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, const Standard_Real Eps){
- Standard_Real Coeff[] = {0., 0., 0.};
- return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, Domain& D, const Standard_Real Eps){
- Standard_Real Coeff[] = {0., 0., 0.};
- return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
-}
-
-void GProp_VGProps::Perform(const Face& S){
- Standard_Real Coeff[] = {0., 0., 0.};
- Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-void GProp_VGProps::Perform(Face& S, Domain& D){
- Standard_Real Coeff[] = {0., 0., 0.};
- Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, const gp_Pnt& O, const Standard_Real Eps){
- Standard_Real xloc, yloc, zloc;
- loc.Coord(xloc, yloc, zloc);
- Standard_Real Coeff[3];
- O.Coord (Coeff[0], Coeff[1], Coeff[2]);
- Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
- return myEpsilon = Compute(S,Standard_True,Coeff,loc,dim,g,inertia,Eps);
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, Domain& D, const gp_Pnt& O, const Standard_Real Eps){
- Standard_Real xloc, yloc, zloc;
- loc.Coord(xloc, yloc, zloc);
- Standard_Real Coeff[3];
- O.Coord (Coeff[0], Coeff[1], Coeff[2]);
- Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
- return myEpsilon = Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia,Eps);
-}
-
-void GProp_VGProps::Perform(const Face& S, const gp_Pnt& O){
- Standard_Real xloc, yloc, zloc;
- loc.Coord(xloc, yloc, zloc);
- Standard_Real Coeff[3];
- O.Coord (Coeff[0], Coeff[1], Coeff[2]);
- Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
- Compute(S,Standard_True,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-void GProp_VGProps::Perform(Face& S, Domain& D, const gp_Pnt& O){
- Standard_Real xloc, yloc, zloc;
- loc.Coord(xloc, yloc, zloc);
- Standard_Real Coeff[3];
- O.Coord (Coeff[0], Coeff[1], Coeff[2]);
- Coeff[0] -= xloc; Coeff[1] -= yloc; Coeff[2] -= zloc;
- Compute(S,D,Standard_True,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, const gp_Pln& Pl, const Standard_Real Eps){
- Standard_Real xloc, yloc, zloc;
- loc.Coord (xloc, yloc, zloc);
- Standard_Real Coeff[4];
- Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
- Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
- return myEpsilon = Compute(S,Standard_False,Coeff,loc,dim,g,inertia,Eps);
-}
-
-Standard_Real GProp_VGProps::Perform(Face& S, Domain& D, const gp_Pln& Pl, const Standard_Real Eps){
- Standard_Real xloc, yloc, zloc;
- loc.Coord (xloc, yloc, zloc);
- Standard_Real Coeff[4];
- Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
- Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
- return myEpsilon = Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia,Eps);
-}
-
-void GProp_VGProps::Perform(const Face& S, const gp_Pln& Pl){
- Standard_Real xloc, yloc, zloc;
- loc.Coord (xloc, yloc, zloc);
- Standard_Real Coeff[4];
- Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
- Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
- Compute(S,Standard_False,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-void GProp_VGProps::Perform(Face& S, Domain& D, const gp_Pln& Pl){
- Standard_Real xloc, yloc, zloc;
- loc.Coord (xloc, yloc, zloc);
- Standard_Real Coeff[4];
- Pl.Coefficients (Coeff[0], Coeff[1],Coeff[2],Coeff[3]);
- Coeff[3] = Coeff[3] - Coeff[0]*xloc - Coeff[1]*yloc - Coeff[2]*zloc;
- Compute(S,D,Standard_False,Coeff,loc,dim,g,inertia);
- myEpsilon = 1.0;
- return;
-}
-
-Standard_Real GProp_VGProps::GetEpsilon(){
- return myEpsilon;
-}
+++ /dev/null
--- Created on: 2005-12-21
--- Created by: Sergey KHROMOV
--- Copyright (c) 2005-2014 OPEN CASCADE SAS
---
--- This file is part of Open CASCADE Technology software library.
---
--- This library is free software; you can redistribute it and/or modify it under
--- the terms of the GNU Lesser General Public License version 2.1 as published
--- by the Free Software Foundation, with special exception defined in the file
--- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
--- distribution for complete text of the license and disclaimer of any warranty.
---
--- Alternatively, this file may be used under the terms of Open CASCADE
--- commercial license or contractual agreement.
-
-generic class VGPropsGK from GProp (Arc as any;
- Face as any;
- Domain as any)
-inherits GProps from GProp
-
- ---Purpose: Computes the global properties of a geometric solid
- -- (3D closed region of space) delimited with :
- -- - a point and a surface
- -- - a plane and a surface
- --
- -- The surface can be :
- -- - a surface limited with its parametric values U-V,
- -- (naturally restricted)
- -- - a surface limited in U-V space with its boundary
- -- curves.
- --
- -- The surface's requirements to evaluate the global
- -- properties are defined in the template FaceTool class from
- -- the package GProp.
- --
- -- The adaptive 2D algorithm of Gauss-Kronrod integration of
- -- double integral is used.
- --
- -- The inner integral is computed along U parameter of
- -- surface. The integrand function is encapsulated in the
- -- support class UFunction that is defined below.
- --
- -- The outer integral is computed along T parameter of a
- -- bounding curve. The integrand function is encapsulated in
- -- the support class TFunction that is defined below.
-
-uses
-
- Pnt from gp,
- XYZ from gp,
- Pln from gp,
- Address from Standard,
- Boolean from Standard,
- Real from Standard
-
-
--- Template class functions. Used for integration. Begin
-
- class UFunction from GProp inherits Function from math
- ---Purpose: This class represents the integrand function for
- -- computation of an inner integral. The returned value
- -- depends on the value type and the flag IsByPoint.
- --
- -- The type of returned value is the one of the following
- -- values:
- -- - GProp_Mass - volume computation.
- -- - GProp_CenterMassX, GProp_CenterMassY,
- -- GProp_CenterMassZ - X, Y and Z coordinates of center
- -- of mass computation.
- -- - GProp_InertiaXX, GProp_InertiaYY, GProp_InertiaZZ,
- -- GProp_InertiaXY, GProp_InertiaXZ, GProp_InertiaYZ
- -- - moments of inertia computation.
- --
- -- If the flag IsByPoint is set to Standard_True, the value is
- -- returned for the region of space that is delimited by a
- -- surface and a point. Otherwise all computations are
- -- performed for the region of space delimited by a surface
- -- and a plane.
-
- uses
-
- Pnt from gp,
- XYZ from gp,
- Address from Standard,
- Boolean from Standard,
- Real from Standard,
- ValueType from GProp
-
- is
-
- Create(theSurface: Face;
- theVertex : Pnt from gp;
- IsByPoint : Boolean from Standard;
- theCoeffs : Address from Standard)
- ---Purpose: Constructor. Initializes the function with the face, the
- -- location point, the flag IsByPoint and the coefficients
- -- theCoeff that have different meaning depending on the value
- -- of IsByPoint.
- -- If IsByPoint is equal to Standard_True, the number of the
- -- coefficients is equal to 3 and they represent X, Y and Z
- -- coordinates (theCoeff[0], theCoeff[1] and theCoeff[2]
- -- correspondingly) of the shift, if the inertia is computed
- -- with respect to the point different then the location.
- -- If IsByPoint is equal to Standard_False, the number of the
- -- coefficients is 4 and they represent the combination of
- -- plane parameters and shift values.
- returns UFunction from GProp;
-
- SetValueType(me: in out; theType: ValueType from GProp);
- ---Purpose: Setting the type of the value to be returned.
- ---C++: inline
-
- SetVParam(me: in out; theVParam: Real from Standard);
- ---Purpose: Setting the V parameter that is constant during the
- -- integral computation.
- ---C++: inline
-
- Value(me: in out; X: Real from Standard;
- F: out Real from Standard)
- ---Purpose: Returns a value of the function.
- returns Boolean from Standard
- is redefined;
-
- -----------------------
- -- Private methods --
- -----------------------
-
- VolumeValue(me: in out; X : Real from Standard;
- thePMP0: out XYZ from gp;
- theS : out Real from Standard;
- theD1 : out Real from Standard)
- ---Purpose: Private method. Returns the value for volume computation.
- -- Other returned values are:
- -- - thePMP0 - PSurf(X,Y) minus Location.
- -- - theS and theD1 coeffitients that are computed and used
- -- for computation of center of mass and inertia values
- -- by plane.
- returns Real from Standard
- is private;
-
- CenterMassValue(me: in out; X: Real from Standard;
- F: out Real from Standard)
- ---Purpose: Private method. Returns a value for the center of mass
- -- computation. If the value type other then GProp_CenterMassX,
- -- GProp_CenterMassY or GProp_CenterMassZ this method returns
- -- Standard_False. Returns Standard_True in case of successful
- -- computation of a value.
- returns Boolean from Standard
- is private;
-
- InertiaValue(me: in out; X: Real from Standard;
- F: out Real from Standard)
- ---Purpose: Private method. Computes the value of intertia. The type of
- -- a value returned is defined by the value type. If it is
- -- other then GProp_InertiaXX, GProp_InertiaYY,
- -- GProp_InertiaZZ, GProp_InertiaXY, GProp_InertiaXZ or
- -- GProp_InertiaYZ, the method returns Standard_False. Returns
- -- Standard_True in case of successful computation of a value.
- returns Boolean from Standard
- is private;
-
- fields
-
- mySurface : Face;
- myVertex : Pnt from gp;
- myCoeffs : Address from Standard;
- myVParam : Real from Standard;
- myValueType: ValueType from GProp;
- myIsByPoint: Boolean from Standard;
-
- end UFunction;
-
-
- -- Class TFunction.
-
- class TFunction from GProp inherits Function from math
- ---Purpose: This class represents the integrand function for the outer
- -- integral computation. The returned value represents the
- -- integral of UFunction. It depends on the value type and the
- -- flag IsByPoint.
-
- uses
-
- Pnt from gp,
- Address from Standard,
- Boolean from Standard,
- Integer from Standard,
- Real from Standard,
- ValueType from GProp
-
- is
-
- Create(theSurface : Face;
- theVertex : Pnt from gp;
- IsByPoint : Boolean from Standard;
- theCoeffs : Address from Standard;
- theUMin : Real from Standard;
- theTolerance: Real from Standard)
- ---Purpose: Constructor. Initializes the function with the face, the
- -- location point, the flag IsByPoint, the coefficients
- -- theCoeff that have different meaning depending on the value
- -- of IsByPoint. The last two parameters are theUMin - the
- -- lower bound of the inner integral. This value is fixed for
- -- any integral. And the value of tolerance of inner integral
- -- computation.
- -- If IsByPoint is equal to Standard_True, the number of the
- -- coefficients is equal to 3 and they represent X, Y and Z
- -- coordinates (theCoeff[0], theCoeff[1] and theCoeff[2]
- -- correspondingly) of the shift if the inertia is computed
- -- with respect to the point different then the location.
- -- If IsByPoint is equal to Standard_False, the number of the
- -- coefficients is 4 and they represent the compbination of
- -- plane parameters and shift values.
- returns TFunction from GProp;
-
- Init(me: in out);
-
- SetNbKronrodPoints(me: in out; theNbPoints: Integer from Standard);
- ---Purpose: Setting the expected number of Kronrod points for the outer
- -- integral computation. This number is required for
- -- computation of a value of tolerance for inner integral
- -- computation. After GetStateNumber method call, this number
- -- is recomputed by the same law as in
- -- math_KronrodSingleIntegration, i.e. next number of points
- -- is equal to the current number plus a square root of the
- -- current number. If the law in math_KronrodSingleIntegration
- -- is changed, the modification algo should be modified
- -- accordingly.
- ---C++: inline
-
- SetValueType(me: in out; aType: ValueType from GProp);
- ---Purpose: Setting the type of the value to be returned. This
- -- parameter is directly passed to the UFunction.
- ---C++: inline
-
- SetTolerance(me: in out; aTol: Real from Standard);
- ---Purpose: Setting the tolerance for inner integration
- ---C++: inline
-
- ErrorReached(me)
- ---Purpose: Returns the relative reached error of all values computation since
- -- the last call of GetStateNumber method.
- ---C++: inline
- returns Real from Standard;
-
- AbsolutError(me)
- ---Purpose: Returns the absolut reached error of all values computation since
- -- the last call of GetStateNumber method.
- ---C++: inline
- returns Real from Standard;
-
- Value(me: in out; X: Real from Standard;
- F: out Real from Standard)
- ---Purpose: Returns a value of the function. The value represents an
- -- integral of UFunction. It is computed with the predefined
- -- tolerance using the adaptive Gauss-Kronrod method.
- returns Boolean from Standard
- is redefined;
-
- GetStateNumber(me: in out)
- ---Purpose: Redefined method. Remembers the error reached during
- -- computation of integral values since the object creation
- -- or the last call of GetStateNumber. It is invoked in each
- -- algorithm from the package math. Particularly in the
- -- algorithm math_KronrodSingleIntegration that is used to
- -- compute the integral of TFunction.
- returns Integer
- is redefined;
-
- fields
-
- mySurface : Face;
- myUFunction : UFunction;
- myUMin : Real from Standard;
- myTolerance : Real from Standard;
- myTolReached: Real from Standard;
- myErrReached: Real from Standard;
- myAbsError : Real from Standard;
- myValueType : ValueType from GProp;
- myIsByPoint : Boolean from Standard;
- myNbPntOuter: Integer from Standard;
-
- end TFunction;
-
--- Template class functions. Used for integration. End
-
-is
-
- Create
- ---Purpose: Empty constructor.
- ---C++: inline
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the naturally restricted surface
- -- and the point VLocation.
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- thePoint : Pnt from gp;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the naturally restricted surface
- -- and the point VLocation. The inertia is computed with
- -- respect to thePoint.
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- theDomain : in out Domain;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the surface bounded by the domain
- -- and the point VLocation.
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- theDomain : in out Domain;
- thePoint : Pnt from gp;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the surface bounded by the domain
- -- and the point VLocation. The inertia is computed with
- -- respect to thePoint.
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- thePlane : Pln from gp;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the naturally restricted surface
- -- and the plane.
- returns VGPropsGK;
-
- Create(theSurface : in out Face;
- theDomain : in out Domain;
- thePlane : Pln from gp;
- theLocation : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Constructor. Computes the global properties of a region of
- -- 3D space delimited with the surface bounded by the domain
- -- and the plane.
- returns VGPropsGK;
-
- SetLocation(me: in out; theLocation: Pnt from gp);
- ---Purpose: Sets the vertex that delimit 3D closed region of space.
- ---C++: inline
-
- Perform(me: in out; theSurface : in out Face;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the naturally restricted surface and the
- -- point VLocation.
- returns Real from Standard;
-
- Perform(me: in out; theSurface : in out Face;
- thePoint : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the naturally restricted surface and the
- -- point VLocation. The inertia is computed with respect to
- -- thePoint.
- returns Real from Standard;
-
- Perform(me: in out; theSurface : in out Face;
- theDomain : in out Domain;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the surface bounded by the domain and the
- -- point VLocation.
- returns Real from Standard;
-
- Perform(me: in out; theSurface : in out Face;
- theDomain : in out Domain;
- thePoint : Pnt from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the surface bounded by the domain and the
- -- point VLocation. The inertia is computed with respect to
- -- thePoint.
- returns Real from Standard;
-
- Perform(me: in out; theSurface : in out Face;
- thePlane : Pln from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the naturally restricted surface and the
- -- plane.
- returns Real from Standard;
-
- Perform(me: in out; theSurface : in out Face;
- theDomain : in out Domain;
- thePlane : Pln from gp;
- theTolerance: Real from Standard = 0.001;
- theCGFlag: Boolean from Standard = Standard_False;
- theIFlag: Boolean from Standard = Standard_False)
-
- ---Purpose: Computes the global properties of a region of 3D space
- -- delimited with the surface bounded by the domain and the
- -- plane.
- returns Real from Standard;
-
- GetErrorReached(me)
- ---Purpose: Returns the relative reached computation error.
- ---C++: inline
- returns Real from Standard;
-
- GetAbsolutError(me)
- ---Purpose: Returns the absolut reached computation error.
- ---C++: inline
- returns Real from Standard;
-
------------------------
--- Private methods --
------------------------
-
- PrivatePerform(me: in out;
- theSurface : in out Face;
- thePtrDomain: Address from Standard; -- pointer to Domain.
- IsByPoint : Boolean from Standard;
- theCoeffs : Address from Standard;
- theTolerance: Real from Standard;
- theCGFlag : Boolean from Standard;
- theIFlag : Boolean from Standard)
-
- ---Purpose: Main method for computation of the global properties that
- -- is invoked by each Perform method.
- returns Real from Standard
- is private;
-
-fields
-
- myErrorReached: Real from Standard;
- myAbsolutError: Real from Standard;
-
-end VGPropsGK;