--- /dev/null
+// Created on: 1991-12-13
+// Created by: Remi GILET
+// Copyright (c) 1991-1999 Matra Datavision
+// Copyright (c) 1999-2014 OPEN CASCADE SAS
+//
+// This file is part of Open CASCADE Technology software library.
+//
+// This library is free software; you can redistribute it and/or modify it under
+// the terms of the GNU Lesser General Public License version 2.1 as published
+// by the Free Software Foundation, with special exception defined in the file
+// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+// distribution for complete text of the license and disclaimer of any warranty.
+//
+// Alternatively, this file may be used under the terms of Open CASCADE
+// commercial license or contractual agreement.
+
+//=========================================================================
+// Creation d un cercle tangent a deux elements : Droite. +
+// Cercle. +
+// Point. +
+// Courbes. +
+// centre sur un troisieme : Droite. +
+// Cercle. +
+// Courbes. +
+//=========================================================================
+
+#include <Geom2dGcc_Circ2d2TanOnGeo.ixx>
+
+#include <ElCLib.hxx>
+#include <GccAna_Circ2dBisec.hxx>
+#include <GccAna_CircLin2dBisec.hxx>
+#include <GccAna_Lin2dBisec.hxx>
+#include <GccAna_CircPnt2dBisec.hxx>
+#include <GccAna_LinPnt2dBisec.hxx>
+#include <GccAna_Pnt2dBisec.hxx>
+
+#include <GccInt_BHyper.hxx>
+#include <IntRes2d_IntersectionPoint.hxx>
+
+#include <Standard_OutOfRange.hxx>
+#include <StdFail_NotDone.hxx>
+
+#include <Adaptor3d_OffsetCurve.hxx>
+#include <Geom2dAdaptor_HCurve.hxx>
+#include <Geom2dGcc_CurveToolGeo.hxx>
+#include <Geom2dInt_TheIntConicCurveOfGInter.hxx>
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
+ const GccEnt_QualifiedCirc& Qualified2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+ cirsol(1,8) ,
+ qualifier1(1,8),
+ qualifier2(1,8),
+ TheSame1(1,8) ,
+ TheSame2(1,8) ,
+ pnttg1sol(1,8) ,
+ pnttg2sol(1,8) ,
+ pntcen(1,8) ,
+ par1sol(1,8) ,
+ par2sol(1,8) ,
+ pararg1(1,8) ,
+ pararg2(1,8) ,
+ parcen3(1,8)
+{
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ Standard_Real Tol = Abs(Tolerance);
+ NbrSol = 0;
+ TColStd_Array1OfReal Rbid(1,2);
+ TColStd_Array1OfReal RBid(1,2);
+ TColStd_Array1OfReal Radius(1,2);
+ if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
+ Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+ !(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
+ Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+ GccEnt_BadQualifier::Raise();
+ return;
+ }
+ gp_Circ2d C1 = Qualified1.Qualified();
+ gp_Circ2d C2 = Qualified2.Qualified();
+ Standard_Real R1 = C1.Radius();
+ Standard_Real R2 = C2.Radius();
+ gp_Dir2d dirx(1.,0.);
+ gp_Pnt2d center1(C1.Location());
+ gp_Pnt2d center2(C2.Location());
+ GccAna_Circ2dBisec Bis(C1,C2);
+ if (Bis.IsDone()) {
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Standard_Integer nbsolution = Bis.NbSolutions();
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve Cu2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(Cu2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(Cu2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(Cu2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(Cu2,lastparam),lastparam,Tol);
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
+ Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+ GccInt_IType type = Sol->ArcType();
+ switch (type) {
+ case GccInt_Cir:
+ {
+ gp_Circ2d Circ(Sol->Circle());
+ IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
+ ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
+ D1.SetEquivalentParameters(0.,2.*M_PI);
+ Intp.Perform(Circ,D1,Cu2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Ell:
+ {
+ gp_Elips2d Elips(Sol->Ellipse());
+ IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
+ ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
+ D1.SetEquivalentParameters(0.,2.*M_PI);
+ Intp.Perform(Elips,D1,Cu2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Hpr:
+ {
+ gp_Hypr2d Hypr(Sol->Hyperbola());
+ IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
+ ElCLib::Value(4.,Hypr),4.,Tol2);
+ Intp.Perform(Hypr,D1,Cu2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Lin:
+ {
+ gp_Lin2d Line(Sol->Line());
+ IntRes2d_Domain D1;
+ Intp.Perform(Line,D1,Cu2,D2,Tol1,Tol2);
+ }
+ break;
+ default:
+ {
+ Standard_ConstructionError::Raise();
+ }
+ }
+ if (Intp.IsDone()) {
+ if ((!Intp.IsEmpty())) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Standard_Real dist1 = Center.Distance(C1.Location());
+ Standard_Real dist2 = Center.Distance(C2.Location());
+ Standard_Integer nbsol = 0;
+ Standard_Integer nnsol = 0;
+ R1 = C1.Radius();
+ R2 = C2.Radius();
+ if (Qualified1.IsEnclosed()) {
+ if (dist1-R1 < Tol) {
+ nbsol = 1;
+ Rbid(1) = Abs(R1-dist1);
+ }
+ }
+ else if (Qualified1.IsOutside()) {
+ if (R1-dist1 < Tol) {
+ nbsol = 1;
+ Rbid(1) = Abs(dist1-R1);
+ }
+ }
+ else if (Qualified1.IsEnclosing()) {
+ nbsol = 1;
+ Rbid(1) = dist1+R1;
+ }
+ else if (Qualified1.IsUnqualified()) {
+ nbsol = 2;
+ Rbid(1) = dist1+R1;
+ Rbid(1) = Abs(dist1-R1);
+ }
+ if (Qualified2.IsEnclosed() && nbsol != 0) {
+ if (dist2-R2 < Tol) {
+ RBid(1) = Abs(R2-dist2);
+ }
+ }
+ else if (Qualified2.IsOutside() && nbsol != 0) {
+ if (R2-dist2 < Tol) {
+ RBid(1) = Abs(R2-dist2);
+ }
+ }
+ else if (Qualified2.IsEnclosing() && nbsol != 0) {
+ RBid(1) = dist2+R2;
+ }
+ else if (Qualified2.IsUnqualified() && nbsol != 0) {
+ RBid(1) = dist2+R2;
+ RBid(2) = Abs(R2-dist2);
+ }
+ for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
+ for (Standard_Integer jsol = 1; jsol <= nbsol ; jsol++) {
+ if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
+ nnsol++;
+ Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
+ }
+ }
+ }
+ if (nnsol > 0) {
+ for (Standard_Integer k = 1 ; k <= nnsol ; k++) {
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
+ // ==========================================================
+ Standard_Real distcc1 = Center.Distance(center1);
+ Standard_Real distcc2 = Center.Distance(center2);
+ if (!Qualified1.IsUnqualified()) {
+ qualifier1(NbrSol) = Qualified1.Qualifier();
+ }
+ else if (Abs(distcc1+Radius(i)-R1) < Tol) {
+ qualifier1(NbrSol) = GccEnt_enclosed;
+ }
+ else if (Abs(distcc1-R1-Radius(i)) < Tol) {
+ qualifier1(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier1(NbrSol) = GccEnt_enclosing; }
+ if (!Qualified2.IsUnqualified()) {
+ qualifier2(NbrSol) = Qualified2.Qualifier();
+ }
+ else if (Abs(distcc2+Radius(i)-R2) < Tol) {
+ qualifier2(NbrSol) = GccEnt_enclosed;
+ }
+ else if (Abs(distcc2-R2-Radius(i)) < Tol) {
+ qualifier2(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier2(NbrSol) = GccEnt_enclosing; }
+ if (dist1 <= Tol && Abs(Radius(k)-C1.Radius()) <= Tol) {
+ TheSame1(NbrSol) = 1;
+ }
+ else {
+ TheSame1(NbrSol) = 0;
+ gp_Dir2d dc1(C1.Location().XY()-Center.XY());
+ pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+ }
+ if (dist2 <= Tol && Abs(Radius(k)-C2.Radius()) <= Tol) {
+ TheSame2(NbrSol) = 1;
+ }
+ else {
+ TheSame2(NbrSol) = 0;
+ gp_Dir2d dc2(C2.Location().XY()-Center.XY());
+ pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
+ }
+ pntcen(NbrSol) = Center;
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ }
+ WellDone = Standard_True;
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+//=========================================================================
+// Creation d un cercle tangent a un Cercle C1 et a une Droite L2. +
+// centre sur une courbe OnCurv. +
+// Nous calculons les bissectrices a C1 et L2 qui nous donnent +
+// l ensemble des lieux possibles des centres de tous les cercles +
+// tangents a C1 et L2. +
+// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
+// donne les points parmis lesquels nous allons choisir les solutions. +
+// Les choix s effectuent a partir des Qualifieurs qualifiant C1 et L2. +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
+ const GccEnt_QualifiedLin& Qualified2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+cirsol(1,8) ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8) ,
+TheSame2(1,8) ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8) ,
+par1sol(1,8) ,
+par2sol(1,8) ,
+pararg1(1,8) ,
+pararg2(1,8) ,
+parcen3(1,8)
+{
+
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ NbrSol = 0;
+ Standard_Real Tol = Abs(Tolerance);
+ Standard_Real Radius;
+ if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
+ Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+ !(Qualified2.IsEnclosed() ||
+ Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+ GccEnt_BadQualifier::Raise();
+ return;
+ }
+ gp_Dir2d dirx(1.,0.);
+ gp_Circ2d C1 = Qualified1.Qualified();
+ gp_Lin2d L2 = Qualified2.Qualified();
+ Standard_Real R1 = C1.Radius();
+ gp_Pnt2d center1(C1.Location());
+ gp_Pnt2d origin2(L2.Location());
+ gp_Dir2d dir2(L2.Direction());
+ gp_Dir2d normL2(-dir2.Y(),dir2.X());
+
+ GccAna_CircLin2dBisec Bis(C1,L2);
+ if (Bis.IsDone()) {
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Standard_Integer nbsolution = Bis.NbSolutions();
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve C2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+ for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
+ Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+ GccInt_IType type = Sol->ArcType();
+ switch (type) {
+ case GccInt_Lin:
+ {
+ gp_Lin2d Line(Sol->Line());
+ IntRes2d_Domain D1;
+ Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Par:
+ {
+ gp_Parab2d Parab(Sol->Parabola());
+ IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
+ ElCLib::Value(40,Parab),40,Tol1);
+ Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ default:
+ {
+ Standard_ConstructionError::Raise();
+ }
+ }
+ if (Intp.IsDone()) {
+ if (!Intp.IsEmpty()) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Standard_Real dist1 = Center.Distance(center1);
+ // Standard_Integer nbsol = 1;
+ Standard_Boolean ok = Standard_False;
+ if (Qualified1.IsEnclosed()) {
+ if (dist1-R1 < Tol) { ok = Standard_True; }
+ }
+ else if (Qualified1.IsOutside()) {
+ if (R1-dist1 < Tol) { ok = Standard_True; }
+ }
+ else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
+ ok = Standard_True;
+ }
+ Radius = L2.Distance(Center);
+ if (Qualified2.IsEnclosed() && ok) {
+ ok = Standard_False;
+ if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+ ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
+ ok = Standard_True;
+ }
+ }
+ else if (Qualified2.IsOutside() && ok) {
+ ok = Standard_False;
+ if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+ ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
+ ok = Standard_True;
+ }
+ }
+ if (Qualified1.IsEnclosing()&&dist1>Radius) { ok=Standard_False; }
+ if (ok) {
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+ // =======================================================
+#ifdef DEB
+ gp_Dir2d dc1(center1.XY()-Center.XY());
+#endif
+ gp_Dir2d dc2(origin2.XY()-Center.XY());
+ Standard_Real distcc1 = Center.Distance(center1);
+ if (!Qualified1.IsUnqualified()) {
+ qualifier1(NbrSol) = Qualified1.Qualifier();
+ }
+ else if (Abs(distcc1+Radius-R1) < Tol) {
+ qualifier1(NbrSol) = GccEnt_enclosed;
+ }
+ else if (Abs(distcc1-R1-Radius) < Tol) {
+ qualifier1(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier1(NbrSol) = GccEnt_enclosing; }
+ if (!Qualified2.IsUnqualified()) {
+ qualifier2(NbrSol) = Qualified2.Qualifier();
+ }
+ else if (dc2.Dot(normL2) > 0.0) {
+ qualifier2(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier2(NbrSol) = GccEnt_enclosed; }
+ if (dist1 <= Tol && Abs(Radius-C1.Radius()) <= Tol) {
+ TheSame1(NbrSol) = 1;
+ }
+ else {
+ TheSame1(NbrSol) = 0;
+ gp_Dir2d dc1(center1.XY()-Center.XY());
+ pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+ }
+ TheSame2(NbrSol) = 0;
+ Standard_Real sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
+ dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
+ pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
+ pntcen(NbrSol) = Center;
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ }
+ }
+ }
+ WellDone = Standard_True;
+ }
+ }
+ }
+}
+
+//=========================================================================
+// Creation d un cercle tant a deux Droites L1 et L2. +
+// centre sur une courbe OnCurv. +
+// Nous calculons les bissectrices a L1 et L2 qui nous donnent +
+// l ensemble des lieux possibles des centres de tous les cercles +
+// tants a L1 et L2. +
+// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
+// donne les points parmis lesquels nous allons choisir les solutions. +
+// Les choix s effectuent a partir des Qualifieurs qualifiant L1 et L2. +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin& Qualified1 ,
+ const GccEnt_QualifiedLin& Qualified2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+cirsol(1,8) ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8) ,
+TheSame2(1,8) ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8) ,
+par1sol(1,8) ,
+par2sol(1,8) ,
+pararg1(1,8) ,
+pararg2(1,8) ,
+parcen3(1,8)
+{
+
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ NbrSol = 0;
+ if (!(Qualified1.IsEnclosed() ||
+ Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+ !(Qualified2.IsEnclosed() ||
+ Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+ GccEnt_BadQualifier::Raise();
+ return;
+ }
+ Standard_Real Tol = Abs(Tolerance);
+ Standard_Real Radius=0;
+ gp_Dir2d dirx(1.,0.);
+ gp_Lin2d L1 = Qualified1.Qualified();
+ gp_Lin2d L2 = Qualified2.Qualified();
+ gp_Dir2d dir1(L1.Direction());
+ gp_Dir2d dir2(L2.Direction());
+ gp_Dir2d Dnor1(-dir1.Y(),dir1.X());
+ gp_Dir2d Dnor2(-dir2.Y(),dir2.X());
+ gp_Pnt2d origin1(L1.Location());
+ gp_Pnt2d origin2(L2.Location());
+ GccAna_Lin2dBisec Bis(L1,L2);
+ if (Bis.IsDone()) {
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Standard_Integer nbsolution = Bis.NbSolutions();
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve C2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+ IntRes2d_Domain D1;
+ for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
+ Intp.Perform(Bis.ThisSolution(i),D1,C2,D2,Tol1,Tol2);
+ if (Intp.IsDone()) {
+ if ((!Intp.IsEmpty())) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Standard_Real dist1 = L1.Distance(Center);
+ Standard_Real dist2 = L2.Distance(Center);
+ // Standard_Integer nbsol = 1;
+ Standard_Boolean ok = Standard_False;
+ if (Qualified1.IsEnclosed()) {
+ if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+ ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
+ ok = Standard_True;
+ }
+ }
+ else if (Qualified1.IsOutside()) {
+ if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+ ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
+ ok = Standard_True;
+ }
+ }
+ else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+ if (Qualified2.IsEnclosed() && ok) {
+ ok = Standard_False;
+ if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+ ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
+ ok = Standard_True;
+ Radius = (dist1+dist2)/2.;
+ }
+ }
+ else if (Qualified2.IsOutside() && ok) {
+ ok = Standard_False;
+ if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+ ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
+ ok = Standard_True;
+ Radius = (dist1+dist2)/2.;
+ }
+ }
+ else if (Qualified2.IsUnqualified() && ok) {
+ Radius = (dist1+dist2)/2.;
+ }
+ if (ok) {
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+ // =======================================================
+ gp_Dir2d dc1(origin1.XY()-Center.XY());
+ gp_Dir2d dc2(origin2.XY()-Center.XY());
+ if (!Qualified1.IsUnqualified()) {
+ qualifier1(NbrSol) = Qualified1.Qualifier();
+ }
+ else if (dc1.Dot(Dnor1) > 0.0) {
+ qualifier1(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier1(NbrSol) = GccEnt_enclosed; }
+ if (!Qualified2.IsUnqualified()) {
+ qualifier2(NbrSol) = Qualified2.Qualifier();
+ }
+ else if (dc2.Dot(Dnor2) > 0.0) {
+ qualifier2(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier2(NbrSol) = GccEnt_enclosed; }
+ TheSame1(NbrSol) = 0;
+ TheSame2(NbrSol) = 0;
+ Standard_Real sign = dc1.Dot(Dnor1);
+ dc1 = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
+ pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
+ sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
+ dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
+ pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
+ pntcen(NbrSol) = Center;
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ }
+ }
+ }
+ WellDone = Standard_True;
+ }
+ }
+ }
+}
+
+//=========================================================================
+// Creation d un cercle tant a un Cercle C1, passant par un point P2 +
+// centre sur une courbe OnCurv. +
+// Nous calculons les bissectrices a C1 et Point2 qui nous donnent +
+// l ensemble des lieux possibles des centres de tous les cercles +
+// tants a C1 et Point2. +
+// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
+// donne les points parmis lesquels nous allons choisir les solutions. +
+// Les choix s effectuent a partir des Qualifieurs qualifiant C1. +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc& Qualified1 ,
+ const gp_Pnt2d& Point2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+cirsol(1,8) ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8) ,
+TheSame2(1,8) ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8) ,
+par1sol(1,8) ,
+par2sol(1,8) ,
+pararg1(1,8) ,
+pararg2(1,8) ,
+parcen3(1,8)
+{
+
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ NbrSol = 0;
+ if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
+ Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
+ GccEnt_BadQualifier::Raise();
+ return;
+ }
+ Standard_Real Tol = Abs(Tolerance);
+ Standard_Real Radius;
+ gp_Dir2d dirx(1.,0.);
+ gp_Circ2d C1 = Qualified1.Qualified();
+ Standard_Real R1 = C1.Radius();
+ gp_Pnt2d center1(C1.Location());
+ GccAna_CircPnt2dBisec Bis(C1,Point2);
+ if (Bis.IsDone()) {
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Standard_Integer nbsolution = Bis.NbSolutions();
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve C2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+ for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
+ Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+ GccInt_IType type = Sol->ArcType();
+ switch (type) {
+ case GccInt_Cir:
+ {
+ gp_Circ2d Circ(Sol->Circle());
+ IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
+ ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
+ D1.SetEquivalentParameters(0.,2.*M_PI);
+ Intp.Perform(Circ,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Lin:
+ {
+ gp_Lin2d Line(Sol->Line());
+ IntRes2d_Domain D1;
+ Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Ell:
+ {
+ gp_Elips2d Elips(Sol->Ellipse());
+ IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
+ ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
+ D1.SetEquivalentParameters(0.,2.*M_PI);
+ Intp.Perform(Elips,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Hpr:
+ {
+ gp_Hypr2d Hypr(Sol->Hyperbola());
+ IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
+ ElCLib::Value(4.,Hypr),4.,Tol2);
+ Intp.Perform(Hypr,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ default:
+ {
+ Standard_ConstructionError::Raise();
+ }
+ }
+ if (Intp.IsDone()) {
+ if ((!Intp.IsEmpty())) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Radius = Center.Distance(Point2);
+ Standard_Real dist1 = center1.Distance(Center);
+ // Standard_Integer nbsol = 1;
+ Standard_Boolean ok = Standard_False;
+ if (Qualified1.IsEnclosed()) {
+ if (dist1-R1 <= Tol) { ok = Standard_True; }
+ }
+ else if (Qualified1.IsOutside()) {
+ if (R1-dist1 <= Tol) { ok = Standard_True; }
+ }
+ else if (Qualified1.IsEnclosing()) { ok = Standard_True; }
+ else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+ if (ok) {
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+ // =======================================================
+ Standard_Real distcc1 = Center.Distance(center1);
+ if (!Qualified1.IsUnqualified()) {
+ qualifier1(NbrSol) = Qualified1.Qualifier();
+ }
+ else if (Abs(distcc1+Radius-R1) < Tol) {
+ qualifier1(NbrSol) = GccEnt_enclosed;
+ }
+ else if (Abs(distcc1-R1-Radius) < Tol) {
+ qualifier1(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier1(NbrSol) = GccEnt_enclosing; }
+ qualifier2(NbrSol) = GccEnt_noqualifier;
+ if (dist1 <= Tol && Abs(Radius-R1) <= Tol) {
+ TheSame1(NbrSol) = 1;
+ }
+ else {
+ TheSame1(NbrSol) = 0;
+ gp_Dir2d dc1(center1.XY()-Center.XY());
+ pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+ par1sol(NbrSol) = 0.;
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+ }
+ TheSame2(NbrSol) = 0;
+ pnttg2sol(NbrSol) = Point2;
+ pntcen(NbrSol) = Center;
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ pararg2(NbrSol) = 0.;
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ }
+ }
+ }
+ WellDone = Standard_True;
+ }
+ }
+ }
+}
+
+//=========================================================================
+// Creation d un cercle tant a une ligne L1, passant par un point P2 +
+// centre sur une courbe OnCurv. +
+// Nous calculons les bissectrices a L1 et Point2 qui nous donnent +
+// l ensemble des lieux possibles des centres de tous les cercles +
+// tants a L1 et passant par Point2. +
+// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
+// donne les points parmis lesquels nous allons choisir les solutions. +
+// Les choix s effectuent a partir des Qualifieurs qualifiant L1. +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin& Qualified1 ,
+ const gp_Pnt2d& Point2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+cirsol(1,8) ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8) ,
+TheSame2(1,8) ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8) ,
+par1sol(1,8) ,
+par2sol(1,8) ,
+pararg1(1,8) ,
+pararg2(1,8) ,
+parcen3(1,8)
+{
+
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ Standard_Real Tol = Abs(Tolerance);
+ NbrSol = 0;
+ if (!(Qualified1.IsEnclosed() ||
+ Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
+ GccEnt_BadQualifier::Raise();
+ return;
+ }
+ gp_Dir2d dirx(1.,0.);
+ gp_Lin2d L1 = Qualified1.Qualified();
+ gp_Pnt2d origin1(L1.Location());
+ gp_Dir2d dir1(L1.Direction());
+ gp_Dir2d normal(-dir1.Y(),dir1.X());
+ GccAna_LinPnt2dBisec Bis(L1,Point2);
+ if (Bis.IsDone()) {
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve C2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+ Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
+ GccInt_IType type = Sol->ArcType();
+ switch (type) {
+ case GccInt_Lin:
+ {
+ gp_Lin2d Line(Sol->Line());
+ IntRes2d_Domain D1;
+ Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ case GccInt_Par:
+ {
+ gp_Parab2d Parab(Sol->Parabola());
+ IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
+ ElCLib::Value(40,Parab),40,Tol1);
+ Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
+ }
+ break;
+ default:
+ {
+ Standard_ConstructionError::Raise();
+ }
+ }
+ if (Intp.IsDone()) {
+ if ((!Intp.IsEmpty())) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Standard_Real Radius = L1.Distance(Center);
+ // Standard_Integer nbsol = 1;
+ Standard_Boolean ok = Standard_False;
+ if (Qualified1.IsEnclosed()) {
+ if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+ ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
+ ok = Standard_True;
+ }
+ }
+ else if (Qualified1.IsOutside()) {
+ if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+ ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
+ ok = Standard_True;
+ }
+ }
+ else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+ if (ok) {
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+ // =======================================================
+ qualifier2(NbrSol) = GccEnt_noqualifier;
+ gp_Dir2d dc2(origin1.XY()-Center.XY());
+ if (!Qualified1.IsUnqualified()) {
+ qualifier1(NbrSol) = Qualified1.Qualifier();
+ }
+ else if (dc2.Dot(normal) > 0.0) {
+ qualifier1(NbrSol) = GccEnt_outside;
+ }
+ else { qualifier1(NbrSol) = GccEnt_enclosed; }
+ TheSame1(NbrSol) = 0;
+ TheSame2(NbrSol) = 0;
+ gp_Dir2d dc1(origin1.XY()-Center.XY());
+ Standard_Real sign = dc1.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
+ dc1=gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
+ pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
+ pnttg2sol(NbrSol) = Point2;
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ pararg2(NbrSol) = 0.;
+ pntcen(NbrSol) = Center;
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ }
+ }
+ }
+ WellDone = Standard_True;
+ }
+ }
+}
+
+//=========================================================================
+// Creation d un cercle passant par deux point Point1 et Point2 +
+// centre sur une courbe OnCurv. +
+// Nous calculons les bissectrices a Point1 et Point2 qui nous donnent +
+// l ensemble des lieux possibles des centres de tous les cercles +
+// passant par Point1 et Point2. +
+// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
+// donne les points parmis lesquels nous allons choisir les solutions. +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const gp_Pnt2d& Point1 ,
+ const gp_Pnt2d& Point2 ,
+ const Geom2dAdaptor_Curve& OnCurv ,
+ const Standard_Real Tolerance ):
+cirsol(1,8) ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8) ,
+TheSame2(1,8) ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8) ,
+par1sol(1,8) ,
+par2sol(1,8) ,
+pararg1(1,8) ,
+pararg2(1,8) ,
+parcen3(1,8)
+{
+
+ WellDone = Standard_False;
+ Standard_Real thefirst = -100000.;
+ Standard_Real thelast = 100000.;
+ Standard_Real firstparam;
+ Standard_Real lastparam;
+ Standard_Real Tol = Abs(Tolerance);
+ NbrSol = 0;
+ gp_Dir2d dirx(1.,0.);
+ GccAna_Pnt2dBisec Bis(Point1,Point2);
+ if (Bis.IsDone()) {
+ Standard_Real Tol1 = Abs(Tolerance);
+ Standard_Real Tol2 = Tol1;
+ Geom2dInt_TheIntConicCurveOfGInter Intp;
+ Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv);
+ Adaptor3d_OffsetCurve Cu2(HCu2,0.);
+ firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(Cu2),thefirst);
+ lastparam = Min(Geom2dGcc_CurveToolGeo::LastParameter(Cu2),thelast);
+ IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(Cu2,firstparam),firstparam,Tol,
+ Geom2dGcc_CurveToolGeo::Value(Cu2,lastparam),lastparam,Tol);
+ IntRes2d_Domain D1;
+ if (Bis.HasSolution()) {
+ Intp.Perform(Bis.ThisSolution(),D1,Cu2,D2,Tol1,Tol2);
+ if (Intp.IsDone()) {
+ if ((!Intp.IsEmpty())) {
+ for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+ gp_Pnt2d Center(Intp.Point(j).Value());
+ Standard_Real Radius = Point2.Distance(Center);
+ NbrSol++;
+ cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+ // =======================================================
+ qualifier1(NbrSol) = GccEnt_noqualifier;
+ qualifier2(NbrSol) = GccEnt_noqualifier;
+ TheSame1(NbrSol) = 0;
+ TheSame2(NbrSol) = 0;
+ pntcen(NbrSol) = Center;
+ pnttg1sol(NbrSol) = Point1;
+ pnttg2sol(NbrSol) = Point2;
+ pararg1(NbrSol) = 0.;
+ pararg2(NbrSol) = 0.;
+ par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg1sol(NbrSol));
+ par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+ pnttg2sol(NbrSol));
+ parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+ }
+ }
+ WellDone = Standard_True;
+ }
+ }
+ }
+}
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsDone () const { return WellDone; }
+
+Standard_Integer Geom2dGcc_Circ2d2TanOnGeo::
+NbSolutions () const{ return NbrSol; }
+
+gp_Circ2d Geom2dGcc_Circ2d2TanOnGeo::
+ThisSolution (const Standard_Integer Index) const
+{
+ if (!WellDone) { StdFail_NotDone::Raise(); }
+ if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+
+ return cirsol(Index);
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+WhichQualifier(const Standard_Integer Index ,
+ GccEnt_Position& Qualif1 ,
+ GccEnt_Position& Qualif2 ) const
+{
+ if (!WellDone) { StdFail_NotDone::Raise(); }
+ else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+ else {
+ Qualif1 = qualifier1(Index);
+ Qualif2 = qualifier2(Index);
+ }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+Tangency1 (const Standard_Integer Index ,
+ Standard_Real& ParSol ,
+ Standard_Real& ParArg ,
+ gp_Pnt2d& PntSol ) const{
+ if (!WellDone) { StdFail_NotDone::Raise(); }
+ else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+ else {
+ if (TheSame1(Index) == 0) {
+ ParSol = par1sol(Index);
+ ParArg = pararg1(Index);
+ PntSol = gp_Pnt2d(pnttg1sol(Index));
+ }
+ else { StdFail_NotDone::Raise(); }
+ }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+Tangency2 (const Standard_Integer Index ,
+ Standard_Real& ParSol ,
+ Standard_Real& ParArg ,
+ gp_Pnt2d& PntSol ) const{
+ if (!WellDone) { StdFail_NotDone::Raise(); }
+ else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+ else {
+ if (TheSame2(Index) == 0) {
+ ParSol = par2sol(Index);
+ ParArg = pararg2(Index);
+ PntSol = gp_Pnt2d(pnttg2sol(Index));
+ }
+ else { StdFail_NotDone::Raise(); }
+ }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+CenterOn3 (const Standard_Integer Index ,
+ Standard_Real& ParArg ,
+ gp_Pnt2d& PntSol ) const{
+ if (!WellDone) { StdFail_NotDone::Raise(); }
+ else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+ else {
+ ParArg = parcen3(Index);
+ PntSol = gp_Pnt2d(pntcen(Index));
+ }
+}
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsTheSame1 (const Standard_Integer Index) const
+{
+ if (!WellDone) StdFail_NotDone::Raise();
+ if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
+
+ if (TheSame1(Index) == 0)
+ return Standard_False;
+
+ return Standard_True;
+}
+
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsTheSame2 (const Standard_Integer Index) const
+{
+ if (!WellDone) StdFail_NotDone::Raise();
+ if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
+
+ if (TheSame2(Index) == 0)
+ return Standard_False;
+
+ return Standard_True;
+}