0024773: Convertation of the generic classes to the non-generic. Part 7
[occt.git] / src / Geom2dGcc / Geom2dGcc_Circ2d2TanOnGeo.cxx
diff --git a/src/Geom2dGcc/Geom2dGcc_Circ2d2TanOnGeo.cxx b/src/Geom2dGcc/Geom2dGcc_Circ2d2TanOnGeo.cxx
new file mode 100644 (file)
index 0000000..902abd3
--- /dev/null
@@ -0,0 +1,1074 @@
+// Created on: 1991-12-13
+// Created by: Remi GILET
+// Copyright (c) 1991-1999 Matra Datavision
+// Copyright (c) 1999-2014 OPEN CASCADE SAS
+//
+// This file is part of Open CASCADE Technology software library.
+//
+// This library is free software; you can redistribute it and/or modify it under
+// the terms of the GNU Lesser General Public License version 2.1 as published
+// by the Free Software Foundation, with special exception defined in the file
+// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+// distribution for complete text of the license and disclaimer of any warranty.
+//
+// Alternatively, this file may be used under the terms of Open CASCADE
+// commercial license or contractual agreement.
+
+//=========================================================================
+//   Creation d un cercle tangent a deux elements : Droite.               +
+//                                                  Cercle.               +
+//                                                  Point.                +
+//                                                  Courbes.              +
+//                        centre sur un troisieme : Droite.               +
+//                                                  Cercle.               +
+//                                                  Courbes.              +
+//=========================================================================
+
+#include <Geom2dGcc_Circ2d2TanOnGeo.ixx>
+
+#include <ElCLib.hxx>
+#include <GccAna_Circ2dBisec.hxx>
+#include <GccAna_CircLin2dBisec.hxx>
+#include <GccAna_Lin2dBisec.hxx>
+#include <GccAna_CircPnt2dBisec.hxx>
+#include <GccAna_LinPnt2dBisec.hxx>
+#include <GccAna_Pnt2dBisec.hxx>
+
+#include <GccInt_BHyper.hxx>
+#include <IntRes2d_IntersectionPoint.hxx>
+
+#include <Standard_OutOfRange.hxx>
+#include <StdFail_NotDone.hxx>
+
+#include <Adaptor3d_OffsetCurve.hxx>
+#include <Geom2dAdaptor_HCurve.hxx>
+#include <Geom2dGcc_CurveToolGeo.hxx>
+#include <Geom2dInt_TheIntConicCurveOfGInter.hxx>
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc&     Qualified1 ,
+                           const GccEnt_QualifiedCirc&     Qualified2 ,
+                           const Geom2dAdaptor_Curve&      OnCurv     ,
+                           const Standard_Real             Tolerance  ):
+  cirsol(1,8)    ,
+  qualifier1(1,8),
+  qualifier2(1,8),
+  TheSame1(1,8)  ,
+  TheSame2(1,8)  ,
+  pnttg1sol(1,8) ,
+  pnttg2sol(1,8) ,
+  pntcen(1,8)    ,
+  par1sol(1,8)   ,
+  par2sol(1,8)   ,
+  pararg1(1,8)   ,
+  pararg2(1,8)   ,
+  parcen3(1,8)   
+{
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  Standard_Real Tol = Abs(Tolerance);
+  NbrSol = 0;
+  TColStd_Array1OfReal Rbid(1,2);
+  TColStd_Array1OfReal RBid(1,2);
+  TColStd_Array1OfReal Radius(1,2);
+  if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || 
+    Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+    !(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() || 
+    Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+      GccEnt_BadQualifier::Raise();
+      return;
+  }
+  gp_Circ2d C1 = Qualified1.Qualified();
+  gp_Circ2d C2 = Qualified2.Qualified();
+  Standard_Real R1 = C1.Radius();
+  Standard_Real R2 = C2.Radius();
+  gp_Dir2d dirx(1.,0.);
+  gp_Pnt2d center1(C1.Location());
+  gp_Pnt2d center2(C2.Location());
+  GccAna_Circ2dBisec Bis(C1,C2);
+  if (Bis.IsDone()) {
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Standard_Integer nbsolution = Bis.NbSolutions();
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve Cu2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(Cu2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(Cu2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(Cu2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(Cu2,lastparam),lastparam,Tol);
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    for (Standard_Integer i = 1 ; i <=  nbsolution; i++) {
+      Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+      GccInt_IType type = Sol->ArcType();
+      switch (type) {
+      case GccInt_Cir:
+        {
+          gp_Circ2d Circ(Sol->Circle());
+          IntRes2d_Domain D1(ElCLib::Value(0.,Circ),   0.,Tol1,
+            ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
+          D1.SetEquivalentParameters(0.,2.*M_PI);
+          Intp.Perform(Circ,D1,Cu2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Ell:
+        {
+          gp_Elips2d Elips(Sol->Ellipse());
+          IntRes2d_Domain D1(ElCLib::Value(0.,Elips),   0.,Tol1,
+            ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
+          D1.SetEquivalentParameters(0.,2.*M_PI);
+          Intp.Perform(Elips,D1,Cu2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Hpr:
+        {
+          gp_Hypr2d Hypr(Sol->Hyperbola());
+          IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
+            ElCLib::Value(4.,Hypr),4.,Tol2);
+          Intp.Perform(Hypr,D1,Cu2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Lin:
+        {
+          gp_Lin2d Line(Sol->Line());
+          IntRes2d_Domain D1;
+          Intp.Perform(Line,D1,Cu2,D2,Tol1,Tol2);
+        }
+        break;
+      default:
+        {
+          Standard_ConstructionError::Raise();
+        }
+      }
+      if (Intp.IsDone()) {
+        if ((!Intp.IsEmpty())) {
+          for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+            gp_Pnt2d Center(Intp.Point(j).Value());
+            Standard_Real dist1 = Center.Distance(C1.Location());
+            Standard_Real dist2 = Center.Distance(C2.Location());
+            Standard_Integer nbsol = 0;
+            Standard_Integer nnsol = 0;
+            R1 = C1.Radius();
+            R2 = C2.Radius();
+            if (Qualified1.IsEnclosed()) {
+              if (dist1-R1 < Tol) { 
+                nbsol = 1;
+                Rbid(1) = Abs(R1-dist1);
+              }
+            }
+            else if (Qualified1.IsOutside()) {
+              if (R1-dist1 < Tol) { 
+                nbsol = 1;
+                Rbid(1) = Abs(dist1-R1);
+              }
+            }
+            else if (Qualified1.IsEnclosing()) {
+              nbsol = 1;
+              Rbid(1) = dist1+R1;
+            }
+            else if (Qualified1.IsUnqualified()) {
+              nbsol = 2;
+              Rbid(1) = dist1+R1;
+              Rbid(1) = Abs(dist1-R1);
+            }
+            if (Qualified2.IsEnclosed() && nbsol != 0) {
+              if (dist2-R2 < Tol) {
+                RBid(1) = Abs(R2-dist2);
+              }
+            }
+            else if (Qualified2.IsOutside() && nbsol != 0) {
+              if (R2-dist2 < Tol) {
+                RBid(1) = Abs(R2-dist2);
+              }
+            }
+            else if (Qualified2.IsEnclosing() && nbsol != 0) {
+              RBid(1) = dist2+R2;
+            }
+            else if (Qualified2.IsUnqualified() && nbsol != 0) {
+              RBid(1) = dist2+R2;
+              RBid(2) = Abs(R2-dist2);
+            }
+            for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
+              for (Standard_Integer jsol = 1; jsol <= nbsol ; jsol++) {
+                if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
+                  nnsol++;
+                  Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
+                }
+              }
+            }
+            if (nnsol > 0) {
+              for (Standard_Integer k = 1 ; k <= nnsol ; k++) {
+                NbrSol++;
+                cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
+                //              ==========================================================
+                Standard_Real distcc1 = Center.Distance(center1);
+                Standard_Real distcc2 = Center.Distance(center2);
+                if (!Qualified1.IsUnqualified()) { 
+                  qualifier1(NbrSol) = Qualified1.Qualifier();
+                }
+                else if (Abs(distcc1+Radius(i)-R1) < Tol) {
+                  qualifier1(NbrSol) = GccEnt_enclosed;
+                }
+                else if (Abs(distcc1-R1-Radius(i)) < Tol) {
+                  qualifier1(NbrSol) = GccEnt_outside;
+                }
+                else { qualifier1(NbrSol) = GccEnt_enclosing; }
+                if (!Qualified2.IsUnqualified()) { 
+                  qualifier2(NbrSol) = Qualified2.Qualifier();
+                }
+                else if (Abs(distcc2+Radius(i)-R2) < Tol) {
+                  qualifier2(NbrSol) = GccEnt_enclosed;
+                }
+                else if (Abs(distcc2-R2-Radius(i)) < Tol) {
+                  qualifier2(NbrSol) = GccEnt_outside;
+                }
+                else { qualifier2(NbrSol) = GccEnt_enclosing; }
+                if (dist1 <= Tol && Abs(Radius(k)-C1.Radius()) <= Tol) {
+                  TheSame1(NbrSol) = 1;
+                }
+                else {
+                  TheSame1(NbrSol) = 0;
+                  gp_Dir2d dc1(C1.Location().XY()-Center.XY());
+                  pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
+                  par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                    pnttg1sol(NbrSol));
+                  pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+                }
+                if (dist2 <= Tol && Abs(Radius(k)-C2.Radius()) <= Tol) {
+                  TheSame2(NbrSol) = 1;
+                }
+                else {
+                  TheSame2(NbrSol) = 0;
+                  gp_Dir2d dc2(C2.Location().XY()-Center.XY());
+                  pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
+                  par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                    pnttg2sol(NbrSol));
+                  pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
+                }
+                pntcen(NbrSol) = Center;
+                parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+              }
+              WellDone = Standard_True;
+            }
+          }
+        }
+      }
+    }
+  }
+}
+
+//=========================================================================
+//   Creation d un cercle tangent a un Cercle C1 et a une Droite L2.      +
+//                        centre sur une courbe OnCurv.                   +
+//  Nous calculons les bissectrices a C1 et L2 qui nous donnent           +
+//  l ensemble des lieux possibles des centres de tous les cercles        +
+//  tangents a C1 et L2.                                                  +
+//  Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous  +
+//  donne les points parmis lesquels nous allons choisir les solutions.   +
+//  Les choix s effectuent a partir des Qualifieurs qualifiant C1 et L2.  +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc&     Qualified1 , 
+                           const GccEnt_QualifiedLin&      Qualified2 , 
+                           const Geom2dAdaptor_Curve&                 OnCurv     ,
+                           const Standard_Real             Tolerance  ):
+cirsol(1,8)    ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8)  ,
+TheSame2(1,8)  ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8)    ,
+par1sol(1,8)   ,
+par2sol(1,8)   ,
+pararg1(1,8)   ,
+pararg2(1,8)   ,
+parcen3(1,8)   
+{
+
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  NbrSol = 0;
+  Standard_Real Tol = Abs(Tolerance);
+  Standard_Real Radius;
+  if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || 
+    Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+    !(Qualified2.IsEnclosed() ||
+    Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+      GccEnt_BadQualifier::Raise();
+      return;
+  }
+  gp_Dir2d dirx(1.,0.);
+  gp_Circ2d C1 = Qualified1.Qualified();
+  gp_Lin2d L2 = Qualified2.Qualified();
+  Standard_Real R1 = C1.Radius();
+  gp_Pnt2d center1(C1.Location());
+  gp_Pnt2d origin2(L2.Location());
+  gp_Dir2d dir2(L2.Direction());
+  gp_Dir2d normL2(-dir2.Y(),dir2.X());
+
+  GccAna_CircLin2dBisec Bis(C1,L2);
+  if (Bis.IsDone()) {
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Standard_Integer nbsolution = Bis.NbSolutions();
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve C2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+    for (Standard_Integer i = 1 ; i <=  nbsolution; i++) {
+      Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+      GccInt_IType type = Sol->ArcType();
+      switch (type) {
+      case GccInt_Lin:
+        {
+          gp_Lin2d Line(Sol->Line());
+          IntRes2d_Domain D1;
+          Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Par:
+        {
+          gp_Parab2d Parab(Sol->Parabola());
+          IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
+            ElCLib::Value(40,Parab),40,Tol1);
+          Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      default:
+        {
+          Standard_ConstructionError::Raise();
+        }
+      }
+      if (Intp.IsDone()) {
+        if (!Intp.IsEmpty()) {
+          for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+            gp_Pnt2d Center(Intp.Point(j).Value());
+            Standard_Real dist1 = Center.Distance(center1);
+            //     Standard_Integer nbsol = 1;
+            Standard_Boolean ok = Standard_False;
+            if (Qualified1.IsEnclosed()) {
+              if (dist1-R1 < Tol) { ok = Standard_True; }
+            }
+            else if (Qualified1.IsOutside()) {
+              if (R1-dist1 < Tol) { ok = Standard_True; }
+            }
+            else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
+              ok = Standard_True;
+            }
+            Radius = L2.Distance(Center);
+            if (Qualified2.IsEnclosed() && ok) {
+              ok = Standard_False;
+              if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+                ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
+                  ok = Standard_True;
+              }
+            }
+            else if (Qualified2.IsOutside() && ok) {
+              ok = Standard_False;
+              if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+                ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
+                  ok = Standard_True;
+              }
+            }
+            if (Qualified1.IsEnclosing()&&dist1>Radius) { ok=Standard_False; }
+            if (ok) {
+              NbrSol++;
+              cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+              //            =======================================================
+#ifdef DEB
+              gp_Dir2d dc1(center1.XY()-Center.XY());
+#endif
+              gp_Dir2d dc2(origin2.XY()-Center.XY());
+              Standard_Real distcc1 = Center.Distance(center1);
+              if (!Qualified1.IsUnqualified()) { 
+                qualifier1(NbrSol) = Qualified1.Qualifier();
+              }
+              else if (Abs(distcc1+Radius-R1) < Tol) {
+                qualifier1(NbrSol) = GccEnt_enclosed;
+              }
+              else if (Abs(distcc1-R1-Radius) < Tol) {
+                qualifier1(NbrSol) = GccEnt_outside;
+              }
+              else { qualifier1(NbrSol) = GccEnt_enclosing; }
+              if (!Qualified2.IsUnqualified()) { 
+                qualifier2(NbrSol) = Qualified2.Qualifier();
+              }
+              else if (dc2.Dot(normL2) > 0.0) {
+                qualifier2(NbrSol) = GccEnt_outside;
+              }
+              else { qualifier2(NbrSol) = GccEnt_enclosed; }
+              if (dist1 <= Tol && Abs(Radius-C1.Radius()) <= Tol) {
+                TheSame1(NbrSol) = 1;
+              }
+              else {
+                TheSame1(NbrSol) = 0;
+                gp_Dir2d dc1(center1.XY()-Center.XY());
+                pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+                par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                  pnttg1sol(NbrSol));
+                pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+              }
+              TheSame2(NbrSol) = 0;
+              Standard_Real sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
+              dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
+              pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
+              par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                pnttg2sol(NbrSol));
+              pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
+              pntcen(NbrSol) = Center;
+              parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+            }
+          }
+        }
+        WellDone = Standard_True;
+      }
+    }
+  }
+}
+
+//=========================================================================
+//   Creation d un cercle tant a deux Droites L1 et L2.                +
+//                        centre sur une courbe OnCurv.                   +
+//  Nous calculons les bissectrices a L1 et L2 qui nous donnent           +
+//  l ensemble des lieux possibles des centres de tous les cercles        +
+//  tants a L1 et L2.                                                  +
+//  Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous  +
+//  donne les points parmis lesquels nous allons choisir les solutions.   +
+//  Les choix s effectuent a partir des Qualifieurs qualifiant L1 et L2.  +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin&      Qualified1 , 
+                           const GccEnt_QualifiedLin&      Qualified2 , 
+                           const Geom2dAdaptor_Curve&                 OnCurv     ,
+                           const Standard_Real             Tolerance  ):
+cirsol(1,8)    ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8)  ,
+TheSame2(1,8)  ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8)    ,
+par1sol(1,8)   ,
+par2sol(1,8)   ,
+pararg1(1,8)   ,
+pararg2(1,8)   ,
+parcen3(1,8)   
+{
+
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  NbrSol = 0;
+  if (!(Qualified1.IsEnclosed() || 
+    Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
+    !(Qualified2.IsEnclosed() ||
+    Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
+      GccEnt_BadQualifier::Raise();
+      return;
+  }
+  Standard_Real Tol = Abs(Tolerance);
+  Standard_Real Radius=0;
+  gp_Dir2d dirx(1.,0.);
+  gp_Lin2d L1 = Qualified1.Qualified();
+  gp_Lin2d L2 = Qualified2.Qualified();
+  gp_Dir2d dir1(L1.Direction());
+  gp_Dir2d dir2(L2.Direction());
+  gp_Dir2d Dnor1(-dir1.Y(),dir1.X());
+  gp_Dir2d Dnor2(-dir2.Y(),dir2.X());
+  gp_Pnt2d origin1(L1.Location());
+  gp_Pnt2d origin2(L2.Location());
+  GccAna_Lin2dBisec Bis(L1,L2);
+  if (Bis.IsDone()) {
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Standard_Integer nbsolution = Bis.NbSolutions();
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve C2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+    IntRes2d_Domain D1;
+    for (Standard_Integer i = 1 ; i <=  nbsolution; i++) {
+      Intp.Perform(Bis.ThisSolution(i),D1,C2,D2,Tol1,Tol2);
+      if (Intp.IsDone()) {
+        if ((!Intp.IsEmpty())) {
+          for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+            gp_Pnt2d Center(Intp.Point(j).Value());
+            Standard_Real dist1 = L1.Distance(Center);
+            Standard_Real dist2 = L2.Distance(Center);
+            //     Standard_Integer nbsol = 1;
+            Standard_Boolean ok = Standard_False;
+            if (Qualified1.IsEnclosed()) {
+              if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+                ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
+                  ok = Standard_True;
+              }
+            }
+            else if (Qualified1.IsOutside()) {
+              if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+                ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
+                  ok = Standard_True;
+              }
+            }
+            else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+            if (Qualified2.IsEnclosed() && ok) {
+              ok = Standard_False;
+              if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+                ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
+                  ok = Standard_True;
+                  Radius = (dist1+dist2)/2.;
+              }
+            }
+            else if (Qualified2.IsOutside() && ok) {
+              ok = Standard_False;
+              if ((((origin2.X()-Center.X())*(-dir2.Y()))+
+                ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
+                  ok = Standard_True;
+                  Radius = (dist1+dist2)/2.;
+              }
+            }
+            else if (Qualified2.IsUnqualified() && ok) {
+              Radius = (dist1+dist2)/2.;
+            }
+            if (ok) {
+              NbrSol++;
+              cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+              //            =======================================================
+              gp_Dir2d dc1(origin1.XY()-Center.XY());
+              gp_Dir2d dc2(origin2.XY()-Center.XY());
+              if (!Qualified1.IsUnqualified()) { 
+                qualifier1(NbrSol) = Qualified1.Qualifier();
+              }
+              else if (dc1.Dot(Dnor1) > 0.0) {
+                qualifier1(NbrSol) = GccEnt_outside;
+              }
+              else { qualifier1(NbrSol) = GccEnt_enclosed; }
+              if (!Qualified2.IsUnqualified()) { 
+                qualifier2(NbrSol) = Qualified2.Qualifier();
+              }
+              else if (dc2.Dot(Dnor2) > 0.0) {
+                qualifier2(NbrSol) = GccEnt_outside;
+              }
+              else { qualifier2(NbrSol) = GccEnt_enclosed; }
+              TheSame1(NbrSol) = 0;
+              TheSame2(NbrSol) = 0;
+              Standard_Real sign = dc1.Dot(Dnor1);
+              dc1 = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
+              pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+              par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                pnttg1sol(NbrSol));
+              pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
+              sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
+              dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
+              pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
+              par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                pnttg2sol(NbrSol));
+              pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
+              pntcen(NbrSol) = Center;
+              parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+            }
+          }
+        }
+        WellDone = Standard_True;
+      }
+    }
+  }
+}
+
+//=========================================================================
+//   Creation d un cercle tant a un Cercle C1, passant par un point P2 +
+//                        centre sur une courbe OnCurv.                   +
+//  Nous calculons les bissectrices a C1 et Point2 qui nous donnent       +
+//  l ensemble des lieux possibles des centres de tous les cercles        +
+//  tants a C1 et Point2.                                              +
+//  Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous  +
+//  donne les points parmis lesquels nous allons choisir les solutions.   +
+//  Les choix s effectuent a partir des Qualifieurs qualifiant C1.        +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedCirc&     Qualified1 , 
+                           const gp_Pnt2d&                 Point2     , 
+                           const Geom2dAdaptor_Curve&                 OnCurv     ,
+                           const Standard_Real             Tolerance  ):
+cirsol(1,8)    ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8)  ,
+TheSame2(1,8)  ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8)    ,
+par1sol(1,8)   ,
+par2sol(1,8)   ,
+pararg1(1,8)   ,
+pararg2(1,8)   ,
+parcen3(1,8)   
+{
+
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  NbrSol = 0;
+  if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || 
+    Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
+      GccEnt_BadQualifier::Raise();
+      return;
+  }
+  Standard_Real Tol = Abs(Tolerance);
+  Standard_Real Radius;
+  gp_Dir2d dirx(1.,0.);
+  gp_Circ2d C1 = Qualified1.Qualified();
+  Standard_Real R1 = C1.Radius();
+  gp_Pnt2d center1(C1.Location());
+  GccAna_CircPnt2dBisec Bis(C1,Point2);
+  if (Bis.IsDone()) {
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Standard_Integer nbsolution = Bis.NbSolutions();
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve C2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+    for (Standard_Integer i = 1 ; i <=  nbsolution; i++) {
+      Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
+      GccInt_IType type = Sol->ArcType();
+      switch (type) {
+      case GccInt_Cir:
+        {
+          gp_Circ2d Circ(Sol->Circle());
+          IntRes2d_Domain D1(ElCLib::Value(0.,Circ),   0.,Tol1,
+            ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
+          D1.SetEquivalentParameters(0.,2.*M_PI);
+          Intp.Perform(Circ,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Lin:
+        {
+          gp_Lin2d Line(Sol->Line());
+          IntRes2d_Domain D1;
+          Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Ell:
+        {
+          gp_Elips2d Elips(Sol->Ellipse());
+          IntRes2d_Domain D1(ElCLib::Value(0.,Elips),   0.,Tol1,
+            ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
+          D1.SetEquivalentParameters(0.,2.*M_PI);
+          Intp.Perform(Elips,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      case GccInt_Hpr:
+        {
+          gp_Hypr2d Hypr(Sol->Hyperbola());
+          IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
+            ElCLib::Value(4.,Hypr),4.,Tol2);
+          Intp.Perform(Hypr,D1,C2,D2,Tol1,Tol2);
+        }
+        break;
+      default:
+        {
+          Standard_ConstructionError::Raise();
+        }
+      }
+      if (Intp.IsDone()) {
+        if ((!Intp.IsEmpty())) {
+          for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+            gp_Pnt2d Center(Intp.Point(j).Value());
+            Radius = Center.Distance(Point2);
+            Standard_Real dist1 = center1.Distance(Center);
+            //     Standard_Integer nbsol = 1;
+            Standard_Boolean ok = Standard_False;
+            if (Qualified1.IsEnclosed()) {
+              if (dist1-R1 <= Tol) { ok = Standard_True; }
+            }
+            else if (Qualified1.IsOutside()) {
+              if (R1-dist1 <= Tol) { ok = Standard_True; }
+            }
+            else if (Qualified1.IsEnclosing()) { ok = Standard_True; }
+            else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+            if (ok) {
+              NbrSol++;
+              cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+              //            =======================================================
+              Standard_Real distcc1 = Center.Distance(center1);
+              if (!Qualified1.IsUnqualified()) { 
+                qualifier1(NbrSol) = Qualified1.Qualifier();
+              }
+              else if (Abs(distcc1+Radius-R1) < Tol) {
+                qualifier1(NbrSol) = GccEnt_enclosed;
+              }
+              else if (Abs(distcc1-R1-Radius) < Tol) {
+                qualifier1(NbrSol) = GccEnt_outside;
+              }
+              else { qualifier1(NbrSol) = GccEnt_enclosing; }
+              qualifier2(NbrSol) = GccEnt_noqualifier;
+              if (dist1 <= Tol && Abs(Radius-R1) <= Tol) {
+                TheSame1(NbrSol) = 1;
+              }
+              else {
+                TheSame1(NbrSol) = 0;
+                gp_Dir2d dc1(center1.XY()-Center.XY());
+                pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+                par1sol(NbrSol) = 0.;
+                par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                  pnttg1sol(NbrSol));
+                pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
+              }
+              TheSame2(NbrSol) = 0;
+              pnttg2sol(NbrSol) = Point2;
+              pntcen(NbrSol) = Center;
+              parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+              pararg2(NbrSol) = 0.;
+              par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+                pnttg2sol(NbrSol));
+            }
+          }
+        }
+        WellDone = Standard_True;
+      }
+    }
+  }
+}
+
+//=========================================================================
+//   Creation d un cercle tant a une ligne L1, passant par un point P2 +
+//                        centre sur une courbe OnCurv.                   +
+//  Nous calculons les bissectrices a L1 et Point2 qui nous donnent       +
+//  l ensemble des lieux possibles des centres de tous les cercles        +
+//  tants a L1 et passant par Point2.                                  +
+//  Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous  +
+//  donne les points parmis lesquels nous allons choisir les solutions.   +
+//  Les choix s effectuent a partir des Qualifieurs qualifiant L1.        +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const GccEnt_QualifiedLin&      Qualified1 , 
+                           const gp_Pnt2d&                 Point2     , 
+                           const Geom2dAdaptor_Curve&                 OnCurv     ,
+                           const Standard_Real             Tolerance  ):
+cirsol(1,8)    ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8)  ,
+TheSame2(1,8)  ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8)    ,
+par1sol(1,8)   ,
+par2sol(1,8)   ,
+pararg1(1,8)   ,
+pararg2(1,8)   ,
+parcen3(1,8)   
+{
+
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  Standard_Real Tol = Abs(Tolerance);
+  NbrSol = 0;
+  if (!(Qualified1.IsEnclosed() ||
+    Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
+      GccEnt_BadQualifier::Raise();
+      return;
+  }
+  gp_Dir2d dirx(1.,0.);
+  gp_Lin2d L1 = Qualified1.Qualified();
+  gp_Pnt2d origin1(L1.Location());
+  gp_Dir2d dir1(L1.Direction());
+  gp_Dir2d normal(-dir1.Y(),dir1.X());
+  GccAna_LinPnt2dBisec Bis(L1,Point2);
+  if (Bis.IsDone()) {
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve C2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(C2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(C2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(C2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(C2,lastparam),lastparam,Tol);
+    Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
+    GccInt_IType type = Sol->ArcType();
+    switch (type) {
+    case GccInt_Lin:
+      {
+        gp_Lin2d Line(Sol->Line());
+        IntRes2d_Domain D1;
+        Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
+      }
+      break;
+    case GccInt_Par:
+      {
+        gp_Parab2d Parab(Sol->Parabola());
+        IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
+          ElCLib::Value(40,Parab),40,Tol1);
+        Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
+      }
+      break;
+    default:
+      {
+        Standard_ConstructionError::Raise();
+      }
+    }
+    if (Intp.IsDone()) {
+      if ((!Intp.IsEmpty())) {
+        for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+          gp_Pnt2d Center(Intp.Point(j).Value());
+          Standard_Real Radius = L1.Distance(Center);
+          //     Standard_Integer nbsol = 1;
+          Standard_Boolean ok = Standard_False;
+          if (Qualified1.IsEnclosed()) {
+            if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+              ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
+                ok = Standard_True;
+            }
+          }
+          else if (Qualified1.IsOutside()) {
+            if ((((origin1.X()-Center.X())*(-dir1.Y()))+
+              ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
+                ok = Standard_True;
+            }
+          }
+          else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
+          if (ok) {
+            NbrSol++;
+            cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+            //          =======================================================
+            qualifier2(NbrSol) = GccEnt_noqualifier;
+            gp_Dir2d dc2(origin1.XY()-Center.XY());
+            if (!Qualified1.IsUnqualified()) { 
+              qualifier1(NbrSol) = Qualified1.Qualifier();
+            }
+            else if (dc2.Dot(normal) > 0.0) {
+              qualifier1(NbrSol) = GccEnt_outside;
+            }
+            else { qualifier1(NbrSol) = GccEnt_enclosed; }
+            TheSame1(NbrSol) = 0;
+            TheSame2(NbrSol) = 0;
+            gp_Dir2d dc1(origin1.XY()-Center.XY());
+            Standard_Real sign = dc1.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
+            dc1=gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
+            pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
+            par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+              pnttg1sol(NbrSol));
+            pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
+            pnttg2sol(NbrSol) = Point2;
+            par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+              pnttg2sol(NbrSol));
+            pararg2(NbrSol) = 0.;
+            pntcen(NbrSol) = Center;
+            parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+          }
+        }
+      }
+      WellDone = Standard_True;
+    }
+  }
+}
+
+//=========================================================================
+//   Creation d un cercle passant par deux point Point1 et Point2         +
+//                        centre sur une courbe OnCurv.                   +
+//  Nous calculons les bissectrices a Point1 et Point2 qui nous donnent   +
+//  l ensemble des lieux possibles des centres de tous les cercles        +
+//  passant par Point1 et Point2.                                         +
+//  Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous  +
+//  donne les points parmis lesquels nous allons choisir les solutions.   +
+//=========================================================================
+
+Geom2dGcc_Circ2d2TanOnGeo::
+Geom2dGcc_Circ2d2TanOnGeo (const gp_Pnt2d&               Point1    ,
+                           const gp_Pnt2d&               Point2    ,
+                           const Geom2dAdaptor_Curve&               OnCurv    ,
+                           const Standard_Real           Tolerance ):
+cirsol(1,8)    ,
+qualifier1(1,8),
+qualifier2(1,8),
+TheSame1(1,8)  ,
+TheSame2(1,8)  ,
+pnttg1sol(1,8) ,
+pnttg2sol(1,8) ,
+pntcen(1,8)    ,
+par1sol(1,8)   ,
+par2sol(1,8)   ,
+pararg1(1,8)   ,
+pararg2(1,8)   ,
+parcen3(1,8)   
+{
+
+  WellDone = Standard_False;
+  Standard_Real thefirst = -100000.;
+  Standard_Real thelast  =  100000.;
+  Standard_Real firstparam;
+  Standard_Real lastparam;
+  Standard_Real Tol = Abs(Tolerance);
+  NbrSol = 0;
+  gp_Dir2d dirx(1.,0.);
+  GccAna_Pnt2dBisec Bis(Point1,Point2);
+  if (Bis.IsDone()) {
+    Standard_Real Tol1 = Abs(Tolerance);
+    Standard_Real Tol2 = Tol1;
+    Geom2dInt_TheIntConicCurveOfGInter Intp;
+    Handle(Geom2dAdaptor_HCurve) HCu2 = new Geom2dAdaptor_HCurve(OnCurv); 
+    Adaptor3d_OffsetCurve Cu2(HCu2,0.);
+    firstparam = Max(Geom2dGcc_CurveToolGeo::FirstParameter(Cu2),thefirst);
+    lastparam  = Min(Geom2dGcc_CurveToolGeo::LastParameter(Cu2),thelast);
+    IntRes2d_Domain D2(Geom2dGcc_CurveToolGeo::Value(Cu2,firstparam),firstparam,Tol,
+      Geom2dGcc_CurveToolGeo::Value(Cu2,lastparam),lastparam,Tol);
+    IntRes2d_Domain D1;
+    if (Bis.HasSolution()) {
+      Intp.Perform(Bis.ThisSolution(),D1,Cu2,D2,Tol1,Tol2);
+      if (Intp.IsDone()) {
+        if ((!Intp.IsEmpty())) {
+          for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
+            gp_Pnt2d Center(Intp.Point(j).Value());
+            Standard_Real Radius = Point2.Distance(Center);
+            NbrSol++;
+            cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
+            //           =======================================================
+            qualifier1(NbrSol) = GccEnt_noqualifier;
+            qualifier2(NbrSol) = GccEnt_noqualifier;
+            TheSame1(NbrSol) = 0;
+            TheSame2(NbrSol) = 0;
+            pntcen(NbrSol) = Center;
+            pnttg1sol(NbrSol) = Point1;
+            pnttg2sol(NbrSol) = Point2;
+            pararg1(NbrSol) = 0.;
+            pararg2(NbrSol) = 0.;
+            par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+              pnttg1sol(NbrSol));
+            par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
+              pnttg2sol(NbrSol));
+            parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
+          }
+        }
+        WellDone = Standard_True;
+      }
+    }
+  }
+}
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsDone () const { return WellDone; }
+
+Standard_Integer Geom2dGcc_Circ2d2TanOnGeo::
+NbSolutions () const{ return NbrSol; }
+
+gp_Circ2d Geom2dGcc_Circ2d2TanOnGeo::
+ThisSolution (const Standard_Integer Index) const
+{
+  if (!WellDone) { StdFail_NotDone::Raise(); }
+  if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+
+  return cirsol(Index);
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+WhichQualifier(const Standard_Integer Index   ,
+               GccEnt_Position& Qualif1 ,
+               GccEnt_Position& Qualif2 ) const
+{
+  if (!WellDone) { StdFail_NotDone::Raise(); }
+  else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+  else {
+    Qualif1 = qualifier1(Index);
+    Qualif2 = qualifier2(Index);
+  }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo:: 
+Tangency1 (const Standard_Integer    Index          , 
+           Standard_Real&      ParSol         ,
+           Standard_Real&      ParArg         ,
+           gp_Pnt2d&           PntSol         ) const{
+             if (!WellDone) { StdFail_NotDone::Raise(); }
+             else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+             else {
+               if (TheSame1(Index) == 0) {
+                 ParSol = par1sol(Index);
+                 ParArg = pararg1(Index);
+                 PntSol = gp_Pnt2d(pnttg1sol(Index));
+               }
+               else { StdFail_NotDone::Raise(); }
+             }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo:: 
+Tangency2 (const Standard_Integer    Index          , 
+           Standard_Real&      ParSol         ,
+           Standard_Real&      ParArg         ,
+           gp_Pnt2d&           PntSol         ) const{
+             if (!WellDone) { StdFail_NotDone::Raise(); }
+             else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+             else {
+               if (TheSame2(Index) == 0) {
+                 ParSol = par2sol(Index);
+                 ParArg = pararg2(Index);
+                 PntSol = gp_Pnt2d(pnttg2sol(Index));
+               }
+               else { StdFail_NotDone::Raise(); }
+             }
+}
+
+void Geom2dGcc_Circ2d2TanOnGeo::
+CenterOn3 (const Standard_Integer    Index          ,
+           Standard_Real&      ParArg         ,
+           gp_Pnt2d&           PntSol         ) const{
+             if (!WellDone) { StdFail_NotDone::Raise(); }
+             else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
+             else {
+               ParArg = parcen3(Index);
+               PntSol = gp_Pnt2d(pntcen(Index));
+             }
+}
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsTheSame1 (const Standard_Integer Index) const
+{
+  if (!WellDone) StdFail_NotDone::Raise();
+  if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
+
+  if (TheSame1(Index) == 0) 
+    return Standard_False;
+
+  return Standard_True;
+}
+
+
+Standard_Boolean Geom2dGcc_Circ2d2TanOnGeo::
+IsTheSame2 (const Standard_Integer Index) const
+{
+  if (!WellDone) StdFail_NotDone::Raise();
+  if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
+
+  if (TheSame2(Index) == 0)
+    return Standard_False;
+
+  return Standard_True;
+}