+++ /dev/null
-// Created on: 1991-12-13
-// Created by: Remi GILET
-// Copyright (c) 1991-1999 Matra Datavision
-// Copyright (c) 1999-2014 OPEN CASCADE SAS
-//
-// This file is part of Open CASCADE Technology software library.
-//
-// This library is free software; you can redistribute it and/or modify it under
-// the terms of the GNU Lesser General Public License version 2.1 as published
-// by the Free Software Foundation, with special exception defined in the file
-// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-// distribution for complete text of the license and disclaimer of any warranty.
-//
-// Alternatively, this file may be used under the terms of Open CASCADE
-// commercial license or contractual agreement.
-
-//=========================================================================
-// Creation d un cercle tangent a deux elements : Droite. +
-// Cercle. +
-// Point. +
-// Courbes. +
-// centre sur un troisieme : Droite. +
-// Cercle. +
-// Courbes. +
-//=========================================================================
-
-#include <ElCLib.hxx>
-#include <gp_Dir2d.hxx>
-#include <gp_Ax2d.hxx>
-#include <GccAna_Circ2dBisec.hxx>
-#include <GccAna_CircLin2dBisec.hxx>
-#include <GccAna_Lin2dBisec.hxx>
-#include <GccAna_CircPnt2dBisec.hxx>
-#include <GccAna_LinPnt2dBisec.hxx>
-#include <GccAna_Pnt2dBisec.hxx>
-#include <GccInt_IType.hxx>
-#include <GccInt_BCirc.hxx>
-#include <GccInt_BLine.hxx>
-#include <GccInt_BElips.hxx>
-#include <GccInt_BHyper.hxx>
-#include <IntRes2d_Domain.hxx>
-#include <IntRes2d_IntersectionPoint.hxx>
-#include <Standard_OutOfRange.hxx>
-#include <StdFail_NotDone.hxx>
-#include <TColStd_Array1OfReal.hxx>
-#include <GccEnt_BadQualifier.hxx>
-#include <Standard_ConstructionError.hxx>
-
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
- const GccEnt_QualifiedCirc& Qualified2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- Standard_Real Tol = Abs(Tolerance);
- NbrSol = 0;
- TColStd_Array1OfReal Rbid(1,2);
- TColStd_Array1OfReal RBid(1,2);
- TColStd_Array1OfReal Radius(1,2);
- if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
- Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
- !(Qualified2.IsEnclosed() || Qualified2.IsEnclosing() ||
- Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
- GccEnt_BadQualifier::Raise();
- return;
- }
- gp_Circ2d C1 = Qualified1.Qualified();
- gp_Circ2d C2 = Qualified2.Qualified();
- Standard_Real R1 = C1.Radius();
- Standard_Real R2 = C2.Radius();
- gp_Dir2d dirx(1.,0.);
- gp_Pnt2d center1(C1.Location());
- gp_Pnt2d center2(C2.Location());
- GccAna_Circ2dBisec Bis(C1,C2);
- if (Bis.IsDone()) {
- TheIntConicCurve Intp;
- Standard_Integer nbsolution = Bis.NbSolutions();
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve Cu2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(Cu2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(Cu2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(Cu2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(Cu2,lastparam),lastparam,Tol);
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
- Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
- GccInt_IType type = Sol->ArcType();
- switch (type) {
- case GccInt_Cir:
- {
- gp_Circ2d Circ(Sol->Circle());
- IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
- ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
- D1.SetEquivalentParameters(0.,2.*M_PI);
- Intp.Perform(Circ,D1,Cu2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Ell:
- {
- gp_Elips2d Elips(Sol->Ellipse());
- IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
- ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
- D1.SetEquivalentParameters(0.,2.*M_PI);
- Intp.Perform(Elips,D1,Cu2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Hpr:
- {
- gp_Hypr2d Hypr(Sol->Hyperbola());
- IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
- ElCLib::Value(4.,Hypr),4.,Tol2);
- Intp.Perform(Hypr,D1,Cu2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Lin:
- {
- gp_Lin2d Line(Sol->Line());
- IntRes2d_Domain D1;
- Intp.Perform(Line,D1,Cu2,D2,Tol1,Tol2);
- }
- break;
- default:
- {
- Standard_ConstructionError::Raise();
- }
- }
- if (Intp.IsDone()) {
- if ((!Intp.IsEmpty())) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Standard_Real dist1 = Center.Distance(C1.Location());
- Standard_Real dist2 = Center.Distance(C2.Location());
- Standard_Integer nbsol = 0;
- Standard_Integer nnsol = 0;
- R1 = C1.Radius();
- R2 = C2.Radius();
- if (Qualified1.IsEnclosed()) {
- if (dist1-R1 < Tol) {
- nbsol = 1;
- Rbid(1) = Abs(R1-dist1);
- }
- }
- else if (Qualified1.IsOutside()) {
- if (R1-dist1 < Tol) {
- nbsol = 1;
- Rbid(1) = Abs(dist1-R1);
- }
- }
- else if (Qualified1.IsEnclosing()) {
- nbsol = 1;
- Rbid(1) = dist1+R1;
- }
- else if (Qualified1.IsUnqualified()) {
- nbsol = 2;
- Rbid(1) = dist1+R1;
- Rbid(1) = Abs(dist1-R1);
- }
- if (Qualified2.IsEnclosed() && nbsol != 0) {
- if (dist2-R2 < Tol) {
- RBid(1) = Abs(R2-dist2);
- }
- }
- else if (Qualified2.IsOutside() && nbsol != 0) {
- if (R2-dist2 < Tol) {
- RBid(1) = Abs(R2-dist2);
- }
- }
- else if (Qualified2.IsEnclosing() && nbsol != 0) {
- RBid(1) = dist2+R2;
- }
- else if (Qualified2.IsUnqualified() && nbsol != 0) {
- RBid(1) = dist2+R2;
- RBid(2) = Abs(R2-dist2);
- }
- for (Standard_Integer isol = 1; isol <= nbsol ; isol++) {
- for (Standard_Integer jsol = 1; jsol <= nbsol ; jsol++) {
- if (Abs(Rbid(isol)-RBid(jsol)) <= Tol) {
- nnsol++;
- Radius(nnsol) = (RBid(jsol)+Rbid(isol))/2.;
- }
- }
- }
- if (nnsol > 0) {
- for (Standard_Integer k = 1 ; k <= nnsol ; k++) {
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k));
-// ==========================================================
- Standard_Real distcc1 = Center.Distance(center1);
- Standard_Real distcc2 = Center.Distance(center2);
- if (!Qualified1.IsUnqualified()) {
- qualifier1(NbrSol) = Qualified1.Qualifier();
- }
- else if (Abs(distcc1+Radius(i)-R1) < Tol) {
- qualifier1(NbrSol) = GccEnt_enclosed;
- }
- else if (Abs(distcc1-R1-Radius(i)) < Tol) {
- qualifier1(NbrSol) = GccEnt_outside;
- }
- else { qualifier1(NbrSol) = GccEnt_enclosing; }
- if (!Qualified2.IsUnqualified()) {
- qualifier2(NbrSol) = Qualified2.Qualifier();
- }
- else if (Abs(distcc2+Radius(i)-R2) < Tol) {
- qualifier2(NbrSol) = GccEnt_enclosed;
- }
- else if (Abs(distcc2-R2-Radius(i)) < Tol) {
- qualifier2(NbrSol) = GccEnt_outside;
- }
- else { qualifier2(NbrSol) = GccEnt_enclosing; }
- if (dist1 <= Tol && Abs(Radius(k)-C1.Radius()) <= Tol) {
- TheSame1(NbrSol) = 1;
- }
- else {
- TheSame1(NbrSol) = 0;
- gp_Dir2d dc1(C1.Location().XY()-Center.XY());
- pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc1.XY());
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
- }
- if (dist2 <= Tol && Abs(Radius(k)-C2.Radius()) <= Tol) {
- TheSame2(NbrSol) = 1;
- }
- else {
- TheSame2(NbrSol) = 0;
- gp_Dir2d dc2(C2.Location().XY()-Center.XY());
- pnttg2sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(k)*dc2.XY());
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- pararg2(NbrSol)=ElCLib::Parameter(C2,pnttg2sol(NbrSol));
- }
- pntcen(NbrSol) = Center;
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- }
- WellDone = Standard_True;
- }
- }
- }
- }
- }
- }
-}
-
-//=========================================================================
-// Creation d un cercle tangent a un Cercle C1 et a une Droite L2. +
-// centre sur une courbe OnCurv. +
-// Nous calculons les bissectrices a C1 et L2 qui nous donnent +
-// l ensemble des lieux possibles des centres de tous les cercles +
-// tangents a C1 et L2. +
-// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
-// donne les points parmis lesquels nous allons choisir les solutions. +
-// Les choix s effectuent a partir des Qualifieurs qualifiant C1 et L2. +
-//=========================================================================
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
- const GccEnt_QualifiedLin& Qualified2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- NbrSol = 0;
- Standard_Real Tol = Abs(Tolerance);
- Standard_Real Radius;
- if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
- Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
- !(Qualified2.IsEnclosed() ||
- Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
- GccEnt_BadQualifier::Raise();
- return;
- }
- gp_Dir2d dirx(1.,0.);
- gp_Circ2d C1 = Qualified1.Qualified();
- gp_Lin2d L2 = Qualified2.Qualified();
- Standard_Real R1 = C1.Radius();
- gp_Pnt2d center1(C1.Location());
- gp_Pnt2d origin2(L2.Location());
- gp_Dir2d dir2(L2.Direction());
- gp_Dir2d normL2(-dir2.Y(),dir2.X());
-
- GccAna_CircLin2dBisec Bis(C1,L2);
- if (Bis.IsDone()) {
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- TheIntConicCurve Intp;
- Standard_Integer nbsolution = Bis.NbSolutions();
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve C2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(C2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(C2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(C2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(C2,lastparam),lastparam,Tol);
- for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
- Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
- GccInt_IType type = Sol->ArcType();
- switch (type) {
- case GccInt_Lin:
- {
- gp_Lin2d Line(Sol->Line());
- IntRes2d_Domain D1;
- Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Par:
- {
- gp_Parab2d Parab(Sol->Parabola());
- IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
- ElCLib::Value(40,Parab),40,Tol1);
- Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
- }
- break;
- default:
- {
- Standard_ConstructionError::Raise();
- }
- }
- if (Intp.IsDone()) {
- if (!Intp.IsEmpty()) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Standard_Real dist1 = Center.Distance(center1);
-// Standard_Integer nbsol = 1;
- Standard_Boolean ok = Standard_False;
- if (Qualified1.IsEnclosed()) {
- if (dist1-R1 < Tol) { ok = Standard_True; }
- }
- else if (Qualified1.IsOutside()) {
- if (R1-dist1 < Tol) { ok = Standard_True; }
- }
- else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
- ok = Standard_True;
- }
- Radius = L2.Distance(Center);
- if (Qualified2.IsEnclosed() && ok) {
- ok = Standard_False;
- if ((((origin2.X()-Center.X())*(-dir2.Y()))+
- ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
- ok = Standard_True;
- }
- }
- else if (Qualified2.IsOutside() && ok) {
- ok = Standard_False;
- if ((((origin2.X()-Center.X())*(-dir2.Y()))+
- ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
- ok = Standard_True;
- }
- }
- if (Qualified1.IsEnclosing()&&dist1>Radius) { ok=Standard_False; }
- if (ok) {
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
-// =======================================================
-#ifdef DEB
- gp_Dir2d dc1(center1.XY()-Center.XY());
-#endif
- gp_Dir2d dc2(origin2.XY()-Center.XY());
- Standard_Real distcc1 = Center.Distance(center1);
- if (!Qualified1.IsUnqualified()) {
- qualifier1(NbrSol) = Qualified1.Qualifier();
- }
- else if (Abs(distcc1+Radius-R1) < Tol) {
- qualifier1(NbrSol) = GccEnt_enclosed;
- }
- else if (Abs(distcc1-R1-Radius) < Tol) {
- qualifier1(NbrSol) = GccEnt_outside;
- }
- else { qualifier1(NbrSol) = GccEnt_enclosing; }
- if (!Qualified2.IsUnqualified()) {
- qualifier2(NbrSol) = Qualified2.Qualifier();
- }
- else if (dc2.Dot(normL2) > 0.0) {
- qualifier2(NbrSol) = GccEnt_outside;
- }
- else { qualifier2(NbrSol) = GccEnt_enclosed; }
- if (dist1 <= Tol && Abs(Radius-C1.Radius()) <= Tol) {
- TheSame1(NbrSol) = 1;
- }
- else {
- TheSame1(NbrSol) = 0;
- gp_Dir2d dc1(center1.XY()-Center.XY());
- pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
- }
- TheSame2(NbrSol) = 0;
- Standard_Real sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
- dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
- pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
- pntcen(NbrSol) = Center;
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- }
- }
- }
- WellDone = Standard_True;
- }
- }
- }
-}
-
-//=========================================================================
-// Creation d un cercle tant a deux Droites L1 et L2. +
-// centre sur une courbe OnCurv. +
-// Nous calculons les bissectrices a L1 et L2 qui nous donnent +
-// l ensemble des lieux possibles des centres de tous les cercles +
-// tants a L1 et L2. +
-// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
-// donne les points parmis lesquels nous allons choisir les solutions. +
-// Les choix s effectuent a partir des Qualifieurs qualifiant L1 et L2. +
-//=========================================================================
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const GccEnt_QualifiedLin& Qualified1 ,
- const GccEnt_QualifiedLin& Qualified2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- NbrSol = 0;
- if (!(Qualified1.IsEnclosed() ||
- Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
- !(Qualified2.IsEnclosed() ||
- Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
- GccEnt_BadQualifier::Raise();
- return;
- }
- Standard_Real Tol = Abs(Tolerance);
- Standard_Real Radius=0;
- gp_Dir2d dirx(1.,0.);
- gp_Lin2d L1 = Qualified1.Qualified();
- gp_Lin2d L2 = Qualified2.Qualified();
- gp_Dir2d dir1(L1.Direction());
- gp_Dir2d dir2(L2.Direction());
- gp_Dir2d Dnor1(-dir1.Y(),dir1.X());
- gp_Dir2d Dnor2(-dir2.Y(),dir2.X());
- gp_Pnt2d origin1(L1.Location());
- gp_Pnt2d origin2(L2.Location());
- GccAna_Lin2dBisec Bis(L1,L2);
- if (Bis.IsDone()) {
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- TheIntConicCurve Intp;
- Standard_Integer nbsolution = Bis.NbSolutions();
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve C2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(C2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(C2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(C2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(C2,lastparam),lastparam,Tol);
- IntRes2d_Domain D1;
- for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
- Intp.Perform(Bis.ThisSolution(i),D1,C2,D2,Tol1,Tol2);
- if (Intp.IsDone()) {
- if ((!Intp.IsEmpty())) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Standard_Real dist1 = L1.Distance(Center);
- Standard_Real dist2 = L2.Distance(Center);
-// Standard_Integer nbsol = 1;
- Standard_Boolean ok = Standard_False;
- if (Qualified1.IsEnclosed()) {
- if ((((origin1.X()-Center.X())*(-dir1.Y()))+
- ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
- ok = Standard_True;
- }
- }
- else if (Qualified1.IsOutside()) {
- if ((((origin1.X()-Center.X())*(-dir1.Y()))+
- ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
- ok = Standard_True;
- }
- }
- else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
- if (Qualified2.IsEnclosed() && ok) {
- ok = Standard_False;
- if ((((origin2.X()-Center.X())*(-dir2.Y()))+
- ((origin2.Y()-Center.Y())*(dir2.X())))<=0){
- ok = Standard_True;
- Radius = (dist1+dist2)/2.;
- }
- }
- else if (Qualified2.IsOutside() && ok) {
- ok = Standard_False;
- if ((((origin2.X()-Center.X())*(-dir2.Y()))+
- ((origin2.Y()-Center.Y())*(dir2.X())))>=0){
- ok = Standard_True;
- Radius = (dist1+dist2)/2.;
- }
- }
- else if (Qualified2.IsUnqualified() && ok) {
- Radius = (dist1+dist2)/2.;
- }
- if (ok) {
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
-// =======================================================
- gp_Dir2d dc1(origin1.XY()-Center.XY());
- gp_Dir2d dc2(origin2.XY()-Center.XY());
- if (!Qualified1.IsUnqualified()) {
- qualifier1(NbrSol) = Qualified1.Qualifier();
- }
- else if (dc1.Dot(Dnor1) > 0.0) {
- qualifier1(NbrSol) = GccEnt_outside;
- }
- else { qualifier1(NbrSol) = GccEnt_enclosed; }
- if (!Qualified2.IsUnqualified()) {
- qualifier2(NbrSol) = Qualified2.Qualifier();
- }
- else if (dc2.Dot(Dnor2) > 0.0) {
- qualifier2(NbrSol) = GccEnt_outside;
- }
- else { qualifier2(NbrSol) = GccEnt_enclosed; }
- TheSame1(NbrSol) = 0;
- TheSame2(NbrSol) = 0;
- Standard_Real sign = dc1.Dot(Dnor1);
- dc1 = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
- pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
- sign = dc2.Dot(gp_Dir2d(-dir2.Y(),dir2.X()));
- dc2 = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X()));
- pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
- pntcen(NbrSol) = Center;
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- }
- }
- }
- WellDone = Standard_True;
- }
- }
- }
-}
-
-//=========================================================================
-// Creation d un cercle tant a un Cercle C1, passant par un point P2 +
-// centre sur une courbe OnCurv. +
-// Nous calculons les bissectrices a C1 et Point2 qui nous donnent +
-// l ensemble des lieux possibles des centres de tous les cercles +
-// tants a C1 et Point2. +
-// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
-// donne les points parmis lesquels nous allons choisir les solutions. +
-// Les choix s effectuent a partir des Qualifieurs qualifiant C1. +
-//=========================================================================
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
- const gp_Pnt2d& Point2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- NbrSol = 0;
- if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
- Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
- GccEnt_BadQualifier::Raise();
- return;
- }
- Standard_Real Tol = Abs(Tolerance);
- Standard_Real Radius;
- gp_Dir2d dirx(1.,0.);
- gp_Circ2d C1 = Qualified1.Qualified();
- Standard_Real R1 = C1.Radius();
- gp_Pnt2d center1(C1.Location());
- GccAna_CircPnt2dBisec Bis(C1,Point2);
- if (Bis.IsDone()) {
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- TheIntConicCurve Intp;
- Standard_Integer nbsolution = Bis.NbSolutions();
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve C2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(C2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(C2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(C2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(C2,lastparam),lastparam,Tol);
- for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
- Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
- GccInt_IType type = Sol->ArcType();
- switch (type) {
- case GccInt_Cir:
- {
- gp_Circ2d Circ(Sol->Circle());
- IntRes2d_Domain D1(ElCLib::Value(0.,Circ), 0.,Tol1,
- ElCLib::Value(2.*M_PI,Circ),2.*M_PI,Tol2);
- D1.SetEquivalentParameters(0.,2.*M_PI);
- Intp.Perform(Circ,D1,C2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Lin:
- {
- gp_Lin2d Line(Sol->Line());
- IntRes2d_Domain D1;
- Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Ell:
- {
- gp_Elips2d Elips(Sol->Ellipse());
- IntRes2d_Domain D1(ElCLib::Value(0.,Elips), 0.,Tol1,
- ElCLib::Value(2.*M_PI,Elips),2.*M_PI,Tol2);
- D1.SetEquivalentParameters(0.,2.*M_PI);
- Intp.Perform(Elips,D1,C2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Hpr:
- {
- gp_Hypr2d Hypr(Sol->Hyperbola());
- IntRes2d_Domain D1(ElCLib::Value(-4.,Hypr),-4.,Tol1,
- ElCLib::Value(4.,Hypr),4.,Tol2);
- Intp.Perform(Hypr,D1,C2,D2,Tol1,Tol2);
- }
- break;
- default:
- {
- Standard_ConstructionError::Raise();
- }
- }
- if (Intp.IsDone()) {
- if ((!Intp.IsEmpty())) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Radius = Center.Distance(Point2);
- Standard_Real dist1 = center1.Distance(Center);
-// Standard_Integer nbsol = 1;
- Standard_Boolean ok = Standard_False;
- if (Qualified1.IsEnclosed()) {
- if (dist1-R1 <= Tol) { ok = Standard_True; }
- }
- else if (Qualified1.IsOutside()) {
- if (R1-dist1 <= Tol) { ok = Standard_True; }
- }
- else if (Qualified1.IsEnclosing()) { ok = Standard_True; }
- else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
- if (ok) {
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
-// =======================================================
- Standard_Real distcc1 = Center.Distance(center1);
- if (!Qualified1.IsUnqualified()) {
- qualifier1(NbrSol) = Qualified1.Qualifier();
- }
- else if (Abs(distcc1+Radius-R1) < Tol) {
- qualifier1(NbrSol) = GccEnt_enclosed;
- }
- else if (Abs(distcc1-R1-Radius) < Tol) {
- qualifier1(NbrSol) = GccEnt_outside;
- }
- else { qualifier1(NbrSol) = GccEnt_enclosing; }
- qualifier2(NbrSol) = GccEnt_noqualifier;
- if (dist1 <= Tol && Abs(Radius-R1) <= Tol) {
- TheSame1(NbrSol) = 1;
- }
- else {
- TheSame1(NbrSol) = 0;
- gp_Dir2d dc1(center1.XY()-Center.XY());
- pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius*dc1.XY());
- par1sol(NbrSol) = 0.;
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
- }
- TheSame2(NbrSol) = 0;
- pnttg2sol(NbrSol) = Point2;
- pntcen(NbrSol) = Center;
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- pararg2(NbrSol) = 0.;
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- }
- }
- }
- WellDone = Standard_True;
- }
- }
- }
-}
-
-//=========================================================================
-// Creation d un cercle tant a une ligne L1, passant par un point P2 +
-// centre sur une courbe OnCurv. +
-// Nous calculons les bissectrices a L1 et Point2 qui nous donnent +
-// l ensemble des lieux possibles des centres de tous les cercles +
-// tants a L1 et passant par Point2. +
-// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
-// donne les points parmis lesquels nous allons choisir les solutions. +
-// Les choix s effectuent a partir des Qualifieurs qualifiant L1. +
-//=========================================================================
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const GccEnt_QualifiedLin& Qualified1 ,
- const gp_Pnt2d& Point2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- Standard_Real Tol = Abs(Tolerance);
- NbrSol = 0;
- if (!(Qualified1.IsEnclosed() ||
- Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
- GccEnt_BadQualifier::Raise();
- return;
- }
- gp_Dir2d dirx(1.,0.);
- gp_Lin2d L1 = Qualified1.Qualified();
- gp_Pnt2d origin1(L1.Location());
- gp_Dir2d dir1(L1.Direction());
- gp_Dir2d normal(-dir1.Y(),dir1.X());
- GccAna_LinPnt2dBisec Bis(L1,Point2);
- if (Bis.IsDone()) {
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- TheIntConicCurve Intp;
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve C2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(C2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(C2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(C2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(C2,lastparam),lastparam,Tol);
- Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
- GccInt_IType type = Sol->ArcType();
- switch (type) {
- case GccInt_Lin:
- {
- gp_Lin2d Line(Sol->Line());
- IntRes2d_Domain D1;
- Intp.Perform(Line,D1,C2,D2,Tol1,Tol2);
- }
- break;
- case GccInt_Par:
- {
- gp_Parab2d Parab(Sol->Parabola());
- IntRes2d_Domain D1(ElCLib::Value(-40,Parab),-40,Tol1,
- ElCLib::Value(40,Parab),40,Tol1);
- Intp.Perform(Parab,D1,C2,D2,Tol1,Tol2);
- }
- break;
- default:
- {
- Standard_ConstructionError::Raise();
- }
- }
- if (Intp.IsDone()) {
- if ((!Intp.IsEmpty())) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Standard_Real Radius = L1.Distance(Center);
-// Standard_Integer nbsol = 1;
- Standard_Boolean ok = Standard_False;
- if (Qualified1.IsEnclosed()) {
- if ((((origin1.X()-Center.X())*(-dir1.Y()))+
- ((origin1.Y()-Center.Y())*(dir1.X())))<=0){
- ok = Standard_True;
- }
- }
- else if (Qualified1.IsOutside()) {
- if ((((origin1.X()-Center.X())*(-dir1.Y()))+
- ((origin1.Y()-Center.Y())*(dir1.X())))>=0){
- ok = Standard_True;
- }
- }
- else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
- if (ok) {
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
-// =======================================================
- qualifier2(NbrSol) = GccEnt_noqualifier;
- gp_Dir2d dc2(origin1.XY()-Center.XY());
- if (!Qualified1.IsUnqualified()) {
- qualifier1(NbrSol) = Qualified1.Qualifier();
- }
- else if (dc2.Dot(normal) > 0.0) {
- qualifier1(NbrSol) = GccEnt_outside;
- }
- else { qualifier1(NbrSol) = GccEnt_enclosed; }
- TheSame1(NbrSol) = 0;
- TheSame2(NbrSol) = 0;
- gp_Dir2d dc1(origin1.XY()-Center.XY());
- Standard_Real sign = dc1.Dot(gp_Dir2d(-dir1.Y(),dir1.X()));
- dc1=gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X()));
- pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
- pnttg2sol(NbrSol) = Point2;
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- pararg2(NbrSol) = 0.;
- pntcen(NbrSol) = Center;
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- }
- }
- }
- WellDone = Standard_True;
- }
- }
-}
-
-//=========================================================================
-// Creation d un cercle passant par deux point Point1 et Point2 +
-// centre sur une courbe OnCurv. +
-// Nous calculons les bissectrices a Point1 et Point2 qui nous donnent +
-// l ensemble des lieux possibles des centres de tous les cercles +
-// passant par Point1 et Point2. +
-// Nous intersectons ces bissectrices avec la courbe OnCurv ce qui nous +
-// donne les points parmis lesquels nous allons choisir les solutions. +
-//=========================================================================
-
-GccGeo_Circ2d2TanOn::
- GccGeo_Circ2d2TanOn (const gp_Pnt2d& Point1 ,
- const gp_Pnt2d& Point2 ,
- const TheCurve& OnCurv ,
- const Standard_Real Tolerance ):
- cirsol(1,8) ,
- qualifier1(1,8),
- qualifier2(1,8),
- TheSame1(1,8) ,
- TheSame2(1,8) ,
- pnttg1sol(1,8) ,
- pnttg2sol(1,8) ,
- pntcen(1,8) ,
- par1sol(1,8) ,
- par2sol(1,8) ,
- pararg1(1,8) ,
- pararg2(1,8) ,
- parcen3(1,8)
-{
-
- WellDone = Standard_False;
- Standard_Real thefirst = -100000.;
- Standard_Real thelast = 100000.;
- Standard_Real firstparam;
- Standard_Real lastparam;
- Standard_Real Tol = Abs(Tolerance);
- NbrSol = 0;
- gp_Dir2d dirx(1.,0.);
- GccAna_Pnt2dBisec Bis(Point1,Point2);
- if (Bis.IsDone()) {
- Standard_Real Tol1 = Abs(Tolerance);
- Standard_Real Tol2 = Tol1;
- TheIntConicCurve Intp;
- Handle(TheHParGenCurve) HCu2 = new TheHParGenCurve(OnCurv);
- TheParGenCurve Cu2(HCu2,0.);
- firstparam = Max(TheCurvePGTool::FirstParameter(Cu2),thefirst);
- lastparam = Min(TheCurvePGTool::LastParameter(Cu2),thelast);
- IntRes2d_Domain D2(TheCurvePGTool::Value(Cu2,firstparam),firstparam,Tol,
- TheCurvePGTool::Value(Cu2,lastparam),lastparam,Tol);
- IntRes2d_Domain D1;
- if (Bis.HasSolution()) {
- Intp.Perform(Bis.ThisSolution(),D1,Cu2,D2,Tol1,Tol2);
- if (Intp.IsDone()) {
- if ((!Intp.IsEmpty())) {
- for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
- gp_Pnt2d Center(Intp.Point(j).Value());
- Standard_Real Radius = Point2.Distance(Center);
- NbrSol++;
- cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
-// =======================================================
- qualifier1(NbrSol) = GccEnt_noqualifier;
- qualifier2(NbrSol) = GccEnt_noqualifier;
- TheSame1(NbrSol) = 0;
- TheSame2(NbrSol) = 0;
- pntcen(NbrSol) = Center;
- pnttg1sol(NbrSol) = Point1;
- pnttg2sol(NbrSol) = Point2;
- pararg1(NbrSol) = 0.;
- pararg2(NbrSol) = 0.;
- par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg1sol(NbrSol));
- par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
- pnttg2sol(NbrSol));
- parcen3(NbrSol) = Intp.Point(j).ParamOnSecond();
- }
- }
- WellDone = Standard_True;
- }
- }
- }
- }
-
-Standard_Boolean GccGeo_Circ2d2TanOn::
- IsDone () const { return WellDone; }
-
-Standard_Integer GccGeo_Circ2d2TanOn::
- NbSolutions () const{ return NbrSol; }
-
-gp_Circ2d GccGeo_Circ2d2TanOn::
- ThisSolution (const Standard_Integer Index) const
-{
- if (!WellDone) { StdFail_NotDone::Raise(); }
- if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
-
- return cirsol(Index);
-}
-
-void GccGeo_Circ2d2TanOn::
- WhichQualifier(const Standard_Integer Index ,
- GccEnt_Position& Qualif1 ,
- GccEnt_Position& Qualif2 ) const
-{
- if (!WellDone) { StdFail_NotDone::Raise(); }
- else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
- else {
- Qualif1 = qualifier1(Index);
- Qualif2 = qualifier2(Index);
- }
-}
-
-void GccGeo_Circ2d2TanOn::
- Tangency1 (const Standard_Integer Index ,
- Standard_Real& ParSol ,
- Standard_Real& ParArg ,
- gp_Pnt2d& PntSol ) const{
- if (!WellDone) { StdFail_NotDone::Raise(); }
- else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
- else {
- if (TheSame1(Index) == 0) {
- ParSol = par1sol(Index);
- ParArg = pararg1(Index);
- PntSol = gp_Pnt2d(pnttg1sol(Index));
- }
- else { StdFail_NotDone::Raise(); }
- }
- }
-
-void GccGeo_Circ2d2TanOn::
- Tangency2 (const Standard_Integer Index ,
- Standard_Real& ParSol ,
- Standard_Real& ParArg ,
- gp_Pnt2d& PntSol ) const{
- if (!WellDone) { StdFail_NotDone::Raise(); }
- else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
- else {
- if (TheSame2(Index) == 0) {
- ParSol = par2sol(Index);
- ParArg = pararg2(Index);
- PntSol = gp_Pnt2d(pnttg2sol(Index));
- }
- else { StdFail_NotDone::Raise(); }
- }
- }
-
-void GccGeo_Circ2d2TanOn::
- CenterOn3 (const Standard_Integer Index ,
- Standard_Real& ParArg ,
- gp_Pnt2d& PntSol ) const{
- if (!WellDone) { StdFail_NotDone::Raise(); }
- else if (Index <= 0 ||Index > NbrSol) { Standard_OutOfRange::Raise(); }
- else {
- ParArg = parcen3(Index);
- PntSol = gp_Pnt2d(pntcen(Index));
- }
- }
-
-Standard_Boolean GccGeo_Circ2d2TanOn::
- IsTheSame1 (const Standard_Integer Index) const
-{
- if (!WellDone) StdFail_NotDone::Raise();
- if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
-
- if (TheSame1(Index) == 0)
- return Standard_False;
-
- return Standard_True;
-}
-
-
-Standard_Boolean GccGeo_Circ2d2TanOn::
- IsTheSame2 (const Standard_Integer Index) const
-{
- if (!WellDone) StdFail_NotDone::Raise();
- if (Index <= 0 ||Index > NbrSol) Standard_OutOfRange::Raise();
-
- if (TheSame2(Index) == 0)
- return Standard_False;
-
- return Standard_True;
-}