0025630: Possible memory leaks in BRepGProp_Vinert and BRepGProp_Sinert
[occt.git] / src / BRepGProp / BRepGProp_Gauss.hxx
diff --git a/src/BRepGProp/BRepGProp_Gauss.hxx b/src/BRepGProp/BRepGProp_Gauss.hxx
new file mode 100644 (file)
index 0000000..6ded4b8
--- /dev/null
@@ -0,0 +1,284 @@
+// Copyright (c) 2015 OPEN CASCADE SAS
+//
+// This file is part of Open CASCADE Technology software library.
+//
+// This library is free software; you can redistribute it and/or modify it under
+// the terms of the GNU Lesser General Public License version 2.1 as published
+// by the Free Software Foundation, with special exception defined in the file
+// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
+// distribution for complete text of the license and disclaimer of any warranty.
+//
+// Alternatively, this file may be used under the terms of Open CASCADE
+// commercial license or contractual agreement.
+
+#ifndef _BRepGProp_Gauss_HeaderFile
+#define _BRepGProp_Gauss_HeaderFile
+
+#include <NCollection_Handle.hxx>
+#include <NCollection_Array1.hxx>
+
+class math_Vector;
+
+//! Class performs computing of the global inertia properties
+//! of geometric object in 3D space by adaptive and non-adaptive
+//! 2D Gauss integration algorithms.
+class BRepGProp_Gauss
+{
+  //! Auxiliary structure for storing of inertial moments.
+  struct Inertia
+  {
+    //! Mass of the current system (without density).
+    //! May correspond to: length, area, volume.
+    Standard_Real Mass;
+
+    //! Static moments of inertia.
+    Standard_Real Ix;
+    Standard_Real Iy;
+    Standard_Real Iz;
+
+    //! Quadratic moments of inertia.
+    Standard_Real Ixx;
+    Standard_Real Iyy;
+    Standard_Real Izz;
+    Standard_Real Ixy;
+    Standard_Real Ixz;
+    Standard_Real Iyz;
+
+    //! Default constructor.
+    Inertia();
+
+    //! Zeroes all values.
+    void Reset();
+  };
+
+  typedef NCollection_Handle< NCollection_Array1<Inertia> > InertiaArray;
+  typedef NCollection_Handle<math_Vector>                   Handle_Vector;
+  typedef Standard_Real(*BRepGProp_GaussFunc)(const Standard_Real, const Standard_Real);
+
+public: //! @name public API
+
+  //! Describes types of geometric objects.
+  //! - Vinert is 3D closed region of space delimited with:
+  //! -- Surface;
+  //! -- Point and Surface;
+  //! -- Plane and Surface.
+  //! - Sinert is face in 3D space.
+  typedef enum { Vinert = 0, Sinert } BRepGProp_GaussType;
+
+  //! Constructor
+  Standard_EXPORT explicit BRepGProp_Gauss(const BRepGProp_GaussType theType);
+
+  //! Computes the global properties of a solid region of 3D space which can be
+  //! delimited by the surface and point or surface and plane. Surface can be closed.
+  //! The method is quick and its precision is enough for many cases of analytical surfaces.
+  //! Non-adaptive 2D Gauss integration with predefined numbers of Gauss points
+  //! is used. Numbers of points depend on types of surfaces and curves.
+  //! Error of the computation is not calculated.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theLocation - location of the point or the plane;
+  //! @param theCoeff - plane coefficients;
+  //! @param theIsByPoint - flag of restricition (point/plane);
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  Standard_EXPORT void Compute(
+    const BRepGProp_Face&  theSurface,
+    const gp_Pnt&          theLocation,
+    const Standard_Real    theCoeff[],
+    const Standard_Boolean theIsByPoint,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+  //! Computes the global properties of a surface. Surface can be closed.
+  //! The method is quick and its precision is enough for many cases of analytical surfaces.
+  //! Non-adaptive 2D Gauss integration with predefined numbers of Gauss points
+  //! is used. Numbers of points depend on types of surfaces and curves.
+  //! Error of the computation is not calculated.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theLocation - surface location;
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  Standard_EXPORT void Compute(
+    const BRepGProp_Face&  theSurface,
+    const gp_Pnt&          theLocation,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+  //! Computes the global properties of a region of 3D space which can be
+  //! delimited by the surface and point or surface and plane. Surface can be closed.
+  //! The method is quick and its precision is enough for many cases of analytical surfaces.
+  //! Non-adaptive 2D Gauss integration with predefined numbers of Gauss points is used.
+  //! Numbers of points depend on types of surfaces and curves.
+  //! Error of the computation is not calculated.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theDomain - surface boundings;
+  //! @param theLocation - location of the point or the plane;
+  //! @param theCoeff - plane coefficients;
+  //! @param theIsByPoint - flag of restricition (point/plane);
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  Standard_EXPORT void Compute(
+    BRepGProp_Face&        theSurface,
+    BRepGProp_Domain&      theDomain,
+    const gp_Pnt&          theLocation,
+    const Standard_Real    theCoeff[],
+    const Standard_Boolean theIsByPoint,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+  //! Computes the global properties of a surface. Surface can be closed.
+  //! The method is quick and its precision is enough for many cases of analytical surfaces.
+  //! Non-adaptive 2D Gauss integration with predefined numbers of Gauss points
+  //! is used. Numbers of points depend on types of surfaces and curves.
+  //! Error of the computation is not calculated.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theDomain - surface boundings;
+  //! @param theLocation - surface location;
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  Standard_EXPORT void Compute(
+    BRepGProp_Face&        theSurface,
+    BRepGProp_Domain&      theDomain,
+    const gp_Pnt&          theLocation,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+  //! Computes the global properties of the region of 3D space which can be
+  //! delimited by the surface and point or surface and plane.
+  //! Adaptive 2D Gauss integration is used.
+  //! If Epsilon more than 0.001 then algorithm performs non-adaptive integration.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theDomain - surface boundings;
+  //! @param theLocation - location of the point or the plane;
+  //! @param theEps - maximal relative error of computed mass (volume) for face;
+  //! @param theCoeff - plane coefficients;
+  //! @param theIsByPoint - flag of restricition (point/plane);
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  //! @return value of error which is calculated as
+  //! Abs((M(i+1)-M(i))/M(i+1)), M(i+1) and M(i) are values
+  //! for two successive steps of adaptive integration.
+  Standard_EXPORT Standard_Real Compute(
+    BRepGProp_Face&        theSurface,
+    BRepGProp_Domain&      theDomain,
+    const gp_Pnt&          theLocation,
+    const Standard_Real    theEps,
+    const Standard_Real    theCoeff[],
+    const Standard_Boolean theByPoint,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+  //! Computes the global properties of the face. Adaptive 2D Gauss integration is used.
+  //! If Epsilon more than 0.001 then algorithm performs non-adaptive integration.
+  //! @param theSurface - bounding surface of the region;
+  //! @param theDomain - surface boundings;
+  //! @param theLocation - surface location;
+  //! @param theEps - maximal relative error of computed mass (square) for face;
+  //! @param theOutMass[out] - mass (volume) of region;
+  //! @param theOutGravityCenter[out] - garvity center of region;
+  //! @param theOutInertia[out] - matrix of inertia;
+  //! @return value of error which is calculated as
+  //! Abs((M(i+1)-M(i))/M(i+1)), M(i+1) and M(i) are values
+  //! for two successive steps of adaptive integration.
+  Standard_EXPORT Standard_Real Compute(
+    BRepGProp_Face&        theSurface,
+    BRepGProp_Domain&      theDomain,
+    const gp_Pnt&          theLocation,
+    const Standard_Real    theEps,
+    Standard_Real&         theOutMass,
+    gp_Pnt&                theOutGravityCenter,
+    gp_Mat&                theOutInertia);
+
+private: //! @name private methods
+
+  BRepGProp_Gauss(BRepGProp_Gauss const&);
+  BRepGProp_Gauss& operator= (BRepGProp_Gauss const&);
+
+  void computeVInertiaOfElementaryPart(
+    const gp_Pnt&             thePoint,
+    const gp_Vec&             theNormal,
+    const gp_Pnt&             theLocation,
+    const Standard_Real       theWeight,
+    const Standard_Real       theCoeff[],
+    const Standard_Boolean    theIsByPoint,
+    BRepGProp_Gauss::Inertia& theOutInertia);
+
+  void computeSInertiaOfElementaryPart(
+    const gp_Pnt&             thePoint,
+    const gp_Vec&             theNormal,
+    const gp_Pnt&             theLocation,
+    const Standard_Real       theWeight,
+    BRepGProp_Gauss::Inertia& theOutInertia);
+
+  void checkBounds(
+    const Standard_Real theU1,
+    const Standard_Real theU2,
+    const Standard_Real theV1,
+    const Standard_Real theV2);
+
+  void addAndRestoreInertia(
+    const BRepGProp_Gauss::Inertia& theInInertia,
+    BRepGProp_Gauss::Inertia&       theOutInertia);
+
+  void multAndRestoreInertia(
+    const Standard_Real       theValue,
+    BRepGProp_Gauss::Inertia& theInertia);
+
+  void convert(
+    const BRepGProp_Gauss::Inertia& theInertia,
+    gp_Pnt&                         theOutGravityCenter,
+    gp_Mat&                         theOutMatrixOfInertia,
+    Standard_Real&                  theOutMass);
+
+  void convert(
+    const BRepGProp_Gauss::Inertia& theInertia,
+    const Standard_Real             theCoeff[],
+    const Standard_Boolean          theIsByPoint,
+    gp_Pnt&                         theOutGravityCenter,
+    gp_Mat&                         theOutMatrixOfInertia,
+    Standard_Real&                  theOutMass);
+
+  static Standard_Integer MaxSubs(
+    const Standard_Integer theN,
+    const Standard_Integer theCoeff = 32);
+
+  static void Init(
+    Handle_Vector&         theOutVec,
+    const Standard_Real    theValue,
+    const Standard_Integer theFirst = 0,
+    const Standard_Integer theLast  = 0);
+
+  static void InitMass(
+    const Standard_Real    theValue,
+    const Standard_Integer theFirst,
+    const Standard_Integer theLast,
+    InertiaArray&          theArray);
+
+  static Standard_Integer FillIntervalBounds(
+    const Standard_Real         theA,
+    const Standard_Real         theB,
+    const TColStd_Array1OfReal& theKnots,
+    const Standard_Integer      theNumSubs,
+    InertiaArray&               theInerts,
+    Handle_Vector&              theParam1,
+    Handle_Vector&              theParam2,
+    Handle_Vector&              theError,
+    Handle_Vector&              theCommonError);
+
+private: //! @name private fields
+
+  BRepGProp_GaussType myType; //!< Type of geometric object
+  BRepGProp_GaussFunc add;    //!< Pointer on the add function
+  BRepGProp_GaussFunc mult;   //!< Pointer on the mult function
+};
+
+#endif
\ No newline at end of file