// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // JCV 30/08/90 Modif passage version C++ 2.0 sur Sun // JCV 1/10/90 Changement de nom du package vgeom -> gp // JCV 07/12/90 Modifs suite a l'introduction des classes XYZ et Mat dans gp #define No_Standard_OutOfRange #include #include #include #include #include #include #include #include #include #include #include #include Standard_Boolean gp_Vec::IsEqual (const gp_Vec& Other, const Standard_Real LinearTolerance, const Standard_Real AngularTolerance) const { if (Magnitude () <= LinearTolerance || Other.Magnitude () <= LinearTolerance) { Standard_Real val = Magnitude() - Other.Magnitude(); if (val < 0) val = - val; return val <= LinearTolerance; } else { Standard_Real val = Magnitude() - Other.Magnitude(); if (val < 0) val = - val; return val <= LinearTolerance && Angle(Other) <= AngularTolerance; } } void gp_Vec::Mirror (const gp_Vec& V) { Standard_Real D = V.coord.Modulus(); if (D > gp::Resolution()) { const gp_XYZ& XYZ = V.coord; Standard_Real A = XYZ.X() / D; Standard_Real B = XYZ.Y() / D; Standard_Real C = XYZ.Z() / D; Standard_Real M1 = 2.0 * A * B; Standard_Real M2 = 2.0 * A * C; Standard_Real M3 = 2.0 * B * C; Standard_Real X = coord.X(); Standard_Real Y = coord.Y(); Standard_Real Z = coord.Z(); coord.SetX(((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z); coord.SetY(M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z); coord.SetZ(M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z); } } void gp_Vec::Mirror (const gp_Ax1& A1) { const gp_XYZ& V = A1.Direction().XYZ(); Standard_Real A = V.X(); Standard_Real B = V.Y(); Standard_Real C = V.Z(); Standard_Real X = coord.X(); Standard_Real Y = coord.Y(); Standard_Real Z = coord.Z(); Standard_Real M1 = 2.0 * A * B; Standard_Real M2 = 2.0 * A * C; Standard_Real M3 = 2.0 * B * C; coord.SetX(((2.0 * A * A) - 1.0) * X + M1 * Y + M2 * Z); coord.SetY(M1 * X + ((2.0 * B * B) - 1.0) * Y + M3 * Z); coord.SetZ(M2 * X + M3 * Y + ((2.0 * C * C) - 1.0) * Z); } void gp_Vec::Mirror (const gp_Ax2& A2) { gp_XYZ Z = A2.Direction().XYZ(); gp_XYZ MirXYZ = Z.Crossed (coord); if (MirXYZ.Modulus() <= gp::Resolution()) { coord.Reverse(); } else { Z.Cross (MirXYZ); Mirror (Z); } } void gp_Vec::Transform(const gp_Trsf& T) { if (T.Form() == gp_Identity || T.Form() == gp_Translation) { } else if (T.Form() == gp_PntMirror) { coord.Reverse(); } else if (T.Form() == gp_Scale) { coord.Multiply (T.ScaleFactor()); } else { coord.Multiply (T.VectorialPart()); } } gp_Vec gp_Vec::Mirrored (const gp_Vec& V) const { gp_Vec Vres = *this; Vres.Mirror (V); return Vres; } gp_Vec gp_Vec::Mirrored (const gp_Ax1& A1) const { gp_Vec Vres = *this; Vres.Mirror (A1); return Vres; } gp_Vec gp_Vec::Mirrored (const gp_Ax2& A2) const { gp_Vec Vres = *this; Vres.Mirror (A2); return Vres; }