// Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Sphere_HeaderFile #define _gp_Sphere_HeaderFile #include #include #include #include #include #include #include class Standard_ConstructionError; class gp_Ax3; class gp_Pnt; class gp_Ax1; class gp_Ax2; class gp_Trsf; class gp_Vec; //! Describes a sphere. //! A sphere is defined by its radius and positioned in space //! with a coordinate system (a gp_Ax3 object). The origin of //! the coordinate system is the center of the sphere. This //! coordinate system is the "local coordinate system" of the sphere. //! Note: when a gp_Sphere sphere is converted into a //! Geom_SphericalSurface sphere, some implicit //! properties of its local coordinate system are used explicitly: //! - its origin, "X Direction", "Y Direction" and "main //! Direction" are used directly to define the parametric //! directions on the sphere and the origin of the parameters, //! - its implicit orientation (right-handed or left-handed) //! gives the orientation (direct, indirect) to the //! Geom_SphericalSurface sphere. //! See Also //! gce_MakeSphere which provides functions for more //! complex sphere constructions //! Geom_SphericalSurface which provides additional //! functions for constructing spheres and works, in //! particular, with the parametric equations of spheres. class gp_Sphere { public: DEFINE_STANDARD_ALLOC //! Creates an indefinite sphere. gp_Sphere(); //! Constructs a sphere with radius Radius, centered on the origin //! of A3. A3 is the local coordinate system of the sphere. //! Warnings : //! It is not forbidden to create a sphere with null radius. //! Raises ConstructionError if Radius < 0.0 gp_Sphere(const gp_Ax3& A3, const Standard_Real Radius); //! Changes the center of the sphere. void SetLocation (const gp_Pnt& Loc); //! Changes the local coordinate system of the sphere. void SetPosition (const gp_Ax3& A3); //! Assigns R the radius of the Sphere. //! Warnings : //! It is not forbidden to create a sphere with null radius. //! Raises ConstructionError if R < 0.0 void SetRadius (const Standard_Real R); //! Computes the aera of the sphere. Standard_Real Area() const; //! Computes the coefficients of the implicit equation of the quadric //! in the absolute cartesian coordinates system : //! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) + //! 2.(C1.X + C2.Y + C3.Z) + D = 0.0 Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const; //! Reverses the U parametrization of the sphere //! reversing the YAxis. void UReverse(); //! Reverses the V parametrization of the sphere //! reversing the ZAxis. void VReverse(); //! Returns true if the local coordinate system of this sphere //! is right-handed. Standard_Boolean Direct() const; //! --- Purpose ; //! Returns the center of the sphere. const gp_Pnt& Location() const; //! Returns the local coordinates system of the sphere. const gp_Ax3& Position() const; //! Returns the radius of the sphere. Standard_Real Radius() const; //! Computes the volume of the sphere Standard_Real Volume() const; //! Returns the axis X of the sphere. gp_Ax1 XAxis() const; //! Returns the axis Y of the sphere. gp_Ax1 YAxis() const; Standard_EXPORT void Mirror (const gp_Pnt& P); //! Performs the symmetrical transformation of a sphere //! with respect to the point P which is the center of the //! symmetry. Standard_EXPORT gp_Sphere Mirrored (const gp_Pnt& P) const; Standard_EXPORT void Mirror (const gp_Ax1& A1); //! Performs the symmetrical transformation of a sphere with //! respect to an axis placement which is the axis of the //! symmetry. Standard_EXPORT gp_Sphere Mirrored (const gp_Ax1& A1) const; Standard_EXPORT void Mirror (const gp_Ax2& A2); //! Performs the symmetrical transformation of a sphere with respect //! to a plane. The axis placement A2 locates the plane of the //! of the symmetry : (Location, XDirection, YDirection). Standard_EXPORT gp_Sphere Mirrored (const gp_Ax2& A2) const; void Rotate (const gp_Ax1& A1, const Standard_Real Ang); //! Rotates a sphere. A1 is the axis of the rotation. //! Ang is the angular value of the rotation in radians. gp_Sphere Rotated (const gp_Ax1& A1, const Standard_Real Ang) const; void Scale (const gp_Pnt& P, const Standard_Real S); //! Scales a sphere. S is the scaling value. //! The absolute value of S is used to scale the sphere gp_Sphere Scaled (const gp_Pnt& P, const Standard_Real S) const; void Transform (const gp_Trsf& T); //! Transforms a sphere with the transformation T from class Trsf. gp_Sphere Transformed (const gp_Trsf& T) const; void Translate (const gp_Vec& V); //! Translates a sphere in the direction of the vector V. //! The magnitude of the translation is the vector's magnitude. gp_Sphere Translated (const gp_Vec& V) const; void Translate (const gp_Pnt& P1, const gp_Pnt& P2); //! Translates a sphere from the point P1 to the point P2. gp_Sphere Translated (const gp_Pnt& P1, const gp_Pnt& P2) const; protected: private: gp_Ax3 pos; Standard_Real radius; }; #include #endif // _gp_Sphere_HeaderFile