// Created on: 1997-09-23 // Created by: Roman BORISOV // Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FuncTol 1.e-10 #ifdef OCCT_DEBUG_CHRONO #include static OSD_Chronometer chr_init_point, chr_dicho_bound; Standard_EXPORT Standard_Real t_init_point, t_dicho_bound; Standard_EXPORT Standard_Integer init_point_count, dicho_bound_count; static void InitChron(OSD_Chronometer& ch) { ch.Reset(); ch.Start(); } static void ResultChron( OSD_Chronometer & ch, Standard_Real & time) { Standard_Real tch ; ch.Stop(); ch.Show(tch); time=time +tch; } #endif // Structure to perform splits computation. // This structure is not thread-safe since operations under mySplits should be performed in a critical section. // myPeriodicDir - 0 for U periodicity and 1 for V periodicity. struct SplitDS { SplitDS(const Handle(Adaptor3d_HCurve) &theCurve, const Handle(Adaptor3d_HSurface) &theSurface, NCollection_Vector &theSplits) : myCurve(theCurve), mySurface(theSurface), mySplits(theSplits) { } // Assignment operator is forbidden. void operator=(const SplitDS &theSplitDS); const Handle(Adaptor3d_HCurve) myCurve; const Handle(Adaptor3d_HSurface) mySurface; NCollection_Vector &mySplits; Standard_Real myPerMinParam; Standard_Real myPerMaxParam; Standard_Integer myPeriodicDir; Extrema_ExtCC *myExtCC; Extrema_ExtPS *myExtPS; }; //! Compute split points in the parameter space of the curve. static void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve, const Handle(Adaptor3d_HSurface) &theSurface, const Standard_Real theTolU, const Standard_Real theTolV, NCollection_Vector &theSplits); //! Perform splitting on a specified direction. Sub-method in BuildCurveSplits. static void SplitOnDirection(SplitDS & theSplitDS); //! Perform recursive search of the split points. static void FindSplitPoint(SplitDS & theSplitDS, const Standard_Real theMinParam, const Standard_Real theMaxParam); //======================================================================= //function : Comparator //purpose : used in sort algorithm //======================================================================= inline Standard_Boolean Comparator(const Standard_Real theA, const Standard_Real theB) { return theA < theB; } //======================================================================= //function : d1 //purpose : computes first derivative of the projected curve //======================================================================= static void d1(const Standard_Real t, const Standard_Real u, const Standard_Real v, gp_Vec2d& V, const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { gp_Pnt S, C; gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t; Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv); Curve->D1(t, C, DC1_t); gp_Vec Ort(C, S);// Ort = S - C gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v); gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u, DS1_u*DS1_v + Ort*DS2_uv); gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv, DS1_v*DS1_v + Ort*DS2_v); Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X(); if (fabs(det) < gp::Resolution()) throw Standard_ConstructionError(); gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det), gp_XY(-dE_dv.X()/det, dE_du.X()/det)); V = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt); } //======================================================================= //function : d2 //purpose : computes second derivative of the projected curve //======================================================================= static void d2(const Standard_Real t, const Standard_Real u, const Standard_Real v, gp_Vec2d& V1, gp_Vec2d& V2, const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { gp_Pnt S, C; gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DS3_u, DS3_v, DS3_uuv, DS3_uvv, DC1_t, DC2_t; Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv, DS3_u, DS3_v, DS3_uuv, DS3_uvv); Curve->D2(t, C, DC1_t, DC2_t); gp_Vec Ort(C, S); gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v); gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u, DS1_u*DS1_v + Ort*DS2_uv); gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv, DS1_v*DS1_v + Ort*DS2_v); Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X(); if (fabs(det) < gp::Resolution()) throw Standard_ConstructionError(); gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det), gp_XY(-dE_dv.X()/det, dE_du.X()/det)); // First derivative V1 = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt); /* Second derivative */ // Computation of d2E_dt2 = S1 gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v); // Computation of 2*(d2E/dtdX)(dX/dt) = S2 gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u, -DC1_t*DS2_uv); gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv, -DC1_t*DS2_v); gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V1, d2E2_dtdX*V1); // Computation of (d2E/dX2)*(dX/dt)2 = S3 // Row11 = (d2E1/du2, d2E1/dudv) Standard_Real tmp; gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u, tmp = 2*DS1_u*DS2_uv + DS1_v*DS2_u + Ort*DS3_uuv); // Row12 = (d2E1/dudv, d2E1/dv2) gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv + Ort*DS3_uvv); // Row21 = (d2E2/du2, d2E2/dudv) gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv, tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv); // Row22 = (d2E2/duv, d2E2/dvdv) gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v); gp_Vec2d S3(V1*gp_Vec2d(Row11*V1, Row12*V1), V1*gp_Vec2d(Row21*V1, Row22*V1)); gp_Vec2d Sum = d2E_dt + S2 + S3; V2 = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum); } //======================================================================= //function : d1CurveOnSurf //purpose : computes first derivative of the 3d projected curve //======================================================================= #if 0 static void d1CurvOnSurf(const Standard_Real t, const Standard_Real u, const Standard_Real v, gp_Vec& V, const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { gp_Pnt S, C; gp_Vec2d V2d; gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DC1_t; Surface->D2(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv); Curve->D1(t, C, DC1_t); gp_Vec Ort(C, S);// Ort = S - C gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v); gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u, DS1_u*DS1_v + Ort*DS2_uv); gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv, DS1_v*DS1_v + Ort*DS2_v); Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X(); if (fabs(det) < gp::Resolution()) throw Standard_ConstructionError(); gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det), gp_XY(-dE_dv.X()/det, dE_du.X()/det)); V2d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt); V = DS1_u * V2d.X() + DS1_v * V2d.Y(); } #endif //======================================================================= //function : d2CurveOnSurf //purpose : computes second derivative of the 3D projected curve //======================================================================= static void d2CurvOnSurf(const Standard_Real t, const Standard_Real u, const Standard_Real v, gp_Vec& V1 , gp_Vec& V2 , const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { gp_Pnt S, C; gp_Vec2d V12d,V22d; gp_Vec DS1_u, DS1_v, DS2_u, DS2_uv, DS2_v, DS3_u, DS3_v, DS3_uuv, DS3_uvv, DC1_t, DC2_t; Surface->D3(u, v, S, DS1_u, DS1_v, DS2_u, DS2_v, DS2_uv, DS3_u, DS3_v, DS3_uuv, DS3_uvv); Curve->D2(t, C, DC1_t, DC2_t); gp_Vec Ort(C, S); gp_Vec2d dE_dt(-DC1_t*DS1_u, -DC1_t*DS1_v); gp_XY dE_du(DS1_u*DS1_u + Ort*DS2_u, DS1_u*DS1_v + Ort*DS2_uv); gp_XY dE_dv(DS1_v*DS1_u + Ort*DS2_uv, DS1_v*DS1_v + Ort*DS2_v); Standard_Real det = dE_du.X()*dE_dv.Y() - dE_du.Y()*dE_dv.X(); if (fabs(det) < gp::Resolution()) throw Standard_ConstructionError(); gp_Mat2d M(gp_XY(dE_dv.Y()/det, -dE_du.Y()/det), gp_XY(-dE_dv.X()/det, dE_du.X()/det)); // First derivative V12d = - gp_Vec2d(gp_Vec2d(M.Row(1))*dE_dt, gp_Vec2d(M.Row(2))*dE_dt); /* Second derivative */ // Computation of d2E_dt2 = S1 gp_Vec2d d2E_dt(-DC2_t*DS1_u, -DC2_t*DS1_v); // Computation of 2*(d2E/dtdX)(dX/dt) = S2 gp_Vec2d d2E1_dtdX(-DC1_t*DS2_u, -DC1_t*DS2_uv); gp_Vec2d d2E2_dtdX(-DC1_t*DS2_uv, -DC1_t*DS2_v); gp_Vec2d S2 = 2*gp_Vec2d(d2E1_dtdX*V12d, d2E2_dtdX*V12d); // Computation of (d2E/dX2)*(dX/dt)2 = S3 // Row11 = (d2E1/du2, d2E1/dudv) Standard_Real tmp; gp_Vec2d Row11(3*DS1_u*DS2_u + Ort*DS3_u, tmp = 2*DS1_u*DS2_uv + DS1_v*DS2_u + Ort*DS3_uuv); // Row12 = (d2E1/dudv, d2E1/dv2) gp_Vec2d Row12(tmp, DS2_v*DS1_u + 2*DS1_v*DS2_uv + Ort*DS3_uvv); // Row21 = (d2E2/du2, d2E2/dudv) gp_Vec2d Row21(DS2_u*DS1_v + 2*DS1_u*DS2_uv + Ort*DS3_uuv, tmp = 2*DS2_uv*DS1_v + DS1_u*DS2_v + Ort*DS3_uvv); // Row22 = (d2E2/duv, d2E2/dvdv) gp_Vec2d Row22(tmp, 3*DS1_v*DS2_v + Ort*DS3_v); gp_Vec2d S3(V12d*gp_Vec2d(Row11*V12d, Row12*V12d), V12d*gp_Vec2d(Row21*V12d, Row22*V12d)); gp_Vec2d Sum = d2E_dt + S2 + S3; V22d = - gp_Vec2d(gp_Vec2d(M.Row(1))*Sum, gp_Vec2d(M.Row(2))*Sum); V1 = DS1_u * V12d.X() + DS1_v * V12d.Y(); V2 = DS2_u * V12d.X() *V12d.X() + DS1_u * V22d.X() + 2 * DS2_uv * V12d.X() *V12d.Y() + DS2_v * V12d.Y() * V12d.Y() + DS1_v * V22d.Y(); } //======================================================================= //function : ExactBound //purpose : computes exact boundary point //======================================================================= static Standard_Boolean ExactBound(gp_Pnt& Sol, const Standard_Real NotSol, const Standard_Real Tol, const Standard_Real TolU, const Standard_Real TolV, const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { Standard_Real U0, V0, t, t1, t2, FirstU, LastU, FirstV, LastV; gp_Pnt2d POnS; U0 = Sol.Y(); V0 = Sol.Z(); FirstU = Surface->FirstUParameter(); LastU = Surface->LastUParameter(); FirstV = Surface->FirstVParameter(); LastV = Surface->LastVParameter(); // Here we have to compute the boundary that projection is going to intersect gp_Vec2d D2d; //these variables are to estimate which boundary has more apportunity //to be intersected Standard_Real RU1, RU2, RV1, RV2; d1(Sol.X(), U0, V0, D2d, Curve, Surface); // Here we assume that D2d != (0, 0) if(Abs(D2d.X()) < gp::Resolution()) { RU1 = Precision::Infinite(); RU2 = Precision::Infinite(); RV1 = V0 - FirstV; RV2 = LastV - V0; } else if(Abs(D2d.Y()) < gp::Resolution()) { RU1 = U0 - FirstU; RU2 = LastU - U0; RV1 = Precision::Infinite(); RV2 = Precision::Infinite(); } else { RU1 = gp_Pnt2d(U0, V0). Distance(gp_Pnt2d(FirstU, V0 + (FirstU - U0)*D2d.Y()/D2d.X())); RU2 = gp_Pnt2d(U0, V0). Distance(gp_Pnt2d(LastU, V0 + (LastU - U0)*D2d.Y()/D2d.X())); RV1 = gp_Pnt2d(U0, V0). Distance(gp_Pnt2d(U0 + (FirstV - V0)*D2d.X()/D2d.Y(), FirstV)); RV2 = gp_Pnt2d(U0, V0). Distance(gp_Pnt2d(U0 + (LastV - V0)*D2d.X()/D2d.Y(), LastV)); } TColgp_SequenceOfPnt Seq; Seq.Append(gp_Pnt(FirstU, RU1, 2)); Seq.Append(gp_Pnt(LastU, RU2, 2)); Seq.Append(gp_Pnt(FirstV, RV1, 3)); Seq.Append(gp_Pnt(LastV, RV2, 3)); Standard_Integer i, j; for(i = 1; i <= 3; i++) for(j = 1; j <= 4-i; j++) if(Seq(j).Y() < Seq(j+1).Y()) { gp_Pnt swp; swp = Seq.Value(j+1); Seq.ChangeValue(j+1) = Seq.Value(j); Seq.ChangeValue(j) = swp; } t = Sol.X(); t1 = Min(Sol.X(), NotSol); t2 = Max(Sol.X(), NotSol); Standard_Boolean isDone = Standard_False; while (!Seq.IsEmpty()) { gp_Pnt P; P = Seq.Last(); Seq.Remove(Seq.Length()); ProjLib_PrjResolve aPrjPS(Curve->Curve(), Surface->Surface(), Standard_Integer(P.Z())); if(Standard_Integer(P.Z()) == 2) { aPrjPS.Perform(t, P.X(), V0, gp_Pnt2d(Tol, TolV), gp_Pnt2d(t1, Surface->FirstVParameter()), gp_Pnt2d(t2, Surface->LastVParameter()), FuncTol); if(!aPrjPS.IsDone()) continue; POnS = aPrjPS.Solution(); Sol = gp_Pnt(POnS.X(), P.X(), POnS.Y()); isDone = Standard_True; break; } else { aPrjPS.Perform(t, U0, P.X(), gp_Pnt2d(Tol, TolU), gp_Pnt2d(t1, Surface->FirstUParameter()), gp_Pnt2d(t2, Surface->LastUParameter()), FuncTol); if(!aPrjPS.IsDone()) continue; POnS = aPrjPS.Solution(); Sol = gp_Pnt(POnS.X(), POnS.Y(), P.X()); isDone = Standard_True; break; } } return isDone; } //======================================================================= //function : DichExactBound //purpose : computes exact boundary point //======================================================================= static void DichExactBound(gp_Pnt& Sol, const Standard_Real NotSol, const Standard_Real Tol, const Standard_Real TolU, const Standard_Real TolV, const Handle(Adaptor3d_HCurve)& Curve, const Handle(Adaptor3d_HSurface)& Surface) { #ifdef OCCT_DEBUG_CHRONO InitChron(chr_dicho_bound); #endif Standard_Real U0, V0, t; gp_Pnt2d POnS; U0 = Sol.Y(); V0 = Sol.Z(); ProjLib_PrjResolve aPrjPS(Curve->Curve(), Surface->Surface(), 1); Standard_Real aNotSol = NotSol; while (fabs(Sol.X() - aNotSol) > Tol) { t = (Sol.X() + aNotSol)/2; aPrjPS.Perform(t, U0, V0, gp_Pnt2d(TolU, TolV), gp_Pnt2d(Surface->FirstUParameter(),Surface->FirstVParameter()), gp_Pnt2d(Surface->LastUParameter(),Surface->LastVParameter()), FuncTol, Standard_True); if (aPrjPS.IsDone()) { POnS = aPrjPS.Solution(); Sol = gp_Pnt(t, POnS.X(), POnS.Y()); U0=Sol.Y(); V0=Sol.Z(); } else aNotSol = t; } #ifdef OCCT_DEBUG_CHRONO ResultChron(chr_dicho_bound,t_dicho_bound); dicho_bound_count++; #endif } //======================================================================= //function : InitialPoint //purpose : //======================================================================= static Standard_Boolean InitialPoint(const gp_Pnt& Point, const Standard_Real t, const Handle(Adaptor3d_HCurve)& C, const Handle(Adaptor3d_HSurface)& S, const Standard_Real TolU, const Standard_Real TolV, Standard_Real& U, Standard_Real& V) { ProjLib_PrjResolve aPrjPS(C->Curve(), S->Surface(), 1); Standard_Real ParU,ParV; Extrema_ExtPS aExtPS; aExtPS.Initialize(S->Surface(), S->FirstUParameter(), S->LastUParameter(), S->FirstVParameter(), S->LastVParameter(), TolU, TolV); aExtPS.Perform(Point); Standard_Integer argmin = 0; if (aExtPS.IsDone() && aExtPS.NbExt()) { Standard_Integer i, Nend; // Search for the nearest solution which is also a normal projection Nend = aExtPS.NbExt(); for(i = 1; i <= Nend; i++) { Extrema_POnSurf POnS = aExtPS.Point(i); POnS.Parameter(ParU, ParV); aPrjPS.Perform(t, ParU, ParV, gp_Pnt2d(TolU, TolV), gp_Pnt2d(S->FirstUParameter(), S->FirstVParameter()), gp_Pnt2d(S->LastUParameter(), S->LastVParameter()), FuncTol, Standard_True); if(aPrjPS.IsDone() ) if (argmin == 0 || aExtPS.SquareDistance(i) < aExtPS.SquareDistance(argmin)) argmin = i; } } if( argmin == 0 ) return Standard_False; else { Extrema_POnSurf POnS = aExtPS.Point(argmin); POnS.Parameter(U, V); return Standard_True; } } //======================================================================= //function : ProjLib_CompProjectedCurve //purpose : //======================================================================= ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve() : myNbCurves(0), myTolU (0.0), myTolV (0.0), myMaxDist (0.0) { } //======================================================================= //function : ProjLib_CompProjectedCurve //purpose : //======================================================================= ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve (const Handle(Adaptor3d_HSurface)& theSurface, const Handle(Adaptor3d_HCurve)& theCurve, const Standard_Real theTolU, const Standard_Real theTolV) : mySurface (theSurface), myCurve (theCurve), myNbCurves(0), mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()), myTolU (theTolU), myTolV (theTolV), myMaxDist (-1.0) { Init(); } //======================================================================= //function : ProjLib_CompProjectedCurve //purpose : //======================================================================= ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve (const Handle(Adaptor3d_HSurface)& theSurface, const Handle(Adaptor3d_HCurve)& theCurve, const Standard_Real theTolU, const Standard_Real theTolV, const Standard_Real theMaxDist) : mySurface (theSurface), myCurve (theCurve), myNbCurves(0), mySequence(new ProjLib_HSequenceOfHSequenceOfPnt()), myTolU (theTolU), myTolV (theTolV), myMaxDist (theMaxDist) { Init(); } //======================================================================= //function : Init //purpose : //======================================================================= void ProjLib_CompProjectedCurve::Init() { myTabInt.Nullify(); NCollection_Vector aSplits; aSplits.Clear(); Standard_Real Tol;// Tolerance for ExactBound Standard_Integer i, Nend = 0, aSplitIdx = 0; Standard_Boolean FromLastU = Standard_False, isSplitsComputed = Standard_False; const Standard_Real aTol3D = Precision::Confusion(); Extrema_ExtCS CExt(myCurve->Curve(), mySurface->Surface(), aTol3D, aTol3D); if (CExt.IsDone() && CExt.NbExt()) { // Search for the minimum solution. // Avoid usage of extrema result that can be wrong for extrusion. if(myMaxDist > 0 && mySurface->GetType() != GeomAbs_SurfaceOfExtrusion) { Standard_Real min_val2; min_val2 = CExt.SquareDistance(1); Nend = CExt.NbExt(); for(i = 2; i <= Nend; i++) { if (CExt.SquareDistance(i) < min_val2) min_val2 = CExt.SquareDistance(i); } if (min_val2 > myMaxDist * myMaxDist) return; // No near solution -> exit. } } Standard_Real FirstU, LastU, Step, SearchStep, WalkStep, t; FirstU = myCurve->FirstParameter(); LastU = myCurve->LastParameter(); const Standard_Real GlobalMinStep = 1.e-4; // is sufficiently small to provide solving from initial point //and, on the other hand, it is sufficiently large to avoid too close solutions. const Standard_Real MinStep = 0.01*(LastU - FirstU), MaxStep = 0.1*(LastU - FirstU); SearchStep = 10*MinStep; Step = SearchStep; gp_Pnt2d aLowBorder(mySurface->FirstUParameter(),mySurface->FirstVParameter()); gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter()); gp_Pnt2d aTol(myTolU, myTolV); ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1); t = FirstU; Standard_Boolean new_part; Standard_Real prevDeb=0.; Standard_Boolean SameDeb=Standard_False; gp_Pnt Triple, prevTriple; //Basic loop while(t <= LastU) { // Search for the beginning of a new continuous part // to avoid infinite computation in some difficult cases. new_part = Standard_False; if(t > FirstU && Abs(t-prevDeb) <= Precision::PConfusion()) SameDeb=Standard_True; while(t <= LastU && !new_part && !FromLastU && !SameDeb) { prevDeb=t; if (t == LastU) FromLastU=Standard_True; Standard_Boolean initpoint=Standard_False; Standard_Real U = 0., V = 0.; gp_Pnt CPoint; Standard_Real ParT,ParU,ParV; // Search an initial point in the list of Extrema Curve-Surface if(Nend != 0 && !CExt.IsParallel()) { for (i=1;i<=Nend;i++) { Extrema_POnCurv P1; Extrema_POnSurf P2; CExt.Points(i,P1,P2); ParT=P1.Parameter(); P2.Parameter(ParU, ParV); aPrjPS.Perform(ParT, ParU, ParV, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True); if ( aPrjPS.IsDone() && P1.Parameter() > Max(FirstU,t-Step+Precision::PConfusion()) && P1.Parameter() <= t) { t=ParT; U=ParU; V=ParV; CPoint=P1.Value(); initpoint = Standard_True; break; } } } if (!initpoint) { myCurve->D0(t,CPoint); #ifdef OCCT_DEBUG_CHRONO InitChron(chr_init_point); #endif // PConfusion - use geometric tolerances in extrema / optimization. initpoint=InitialPoint(CPoint, t,myCurve,mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V); #ifdef OCCT_DEBUG_CHRONO ResultChron(chr_init_point,t_init_point); init_point_count++; #endif } if(initpoint) { // When U or V lie on surface joint in some cases we cannot use them // as initial point for aPrjPS, so we switch them gp_Vec2d D; if ((mySurface->IsUPeriodic() && Abs(aUppBorder.X() - aLowBorder.X() - mySurface->UPeriod()) < Precision::Confusion()) || (mySurface->IsVPeriodic() && Abs(aUppBorder.Y() - aLowBorder.Y() - mySurface->VPeriod()) < Precision::Confusion())) { if((Abs(U - aLowBorder.X()) < mySurface->UResolution(Precision::PConfusion())) && mySurface->IsUPeriodic()) { d1(t, U, V, D, myCurve, mySurface); if (D.X() < 0 ) U = aUppBorder.X(); } else if((Abs(U - aUppBorder.X()) < mySurface->UResolution(Precision::PConfusion())) && mySurface->IsUPeriodic()) { d1(t, U, V, D, myCurve, mySurface); if (D.X() > 0) U = aLowBorder.X(); } if((Abs(V - aLowBorder.Y()) < mySurface->VResolution(Precision::PConfusion())) && mySurface->IsVPeriodic()) { d1(t, U, V, D, myCurve, mySurface); if (D.Y() < 0) V = aUppBorder.Y(); } else if((Abs(V - aUppBorder.Y()) <= mySurface->VResolution(Precision::PConfusion())) && mySurface->IsVPeriodic()) { d1(t, U, V, D, myCurve, mySurface); if (D.Y() > 0) V = aLowBorder.Y(); } } if (myMaxDist > 0) { // Here we are going to stop if the distance between projection and // corresponding curve point is greater than myMaxDist gp_Pnt POnS; Standard_Real d; mySurface->D0(U, V, POnS); d = CPoint.Distance(POnS); if (d > myMaxDist) { mySequence->Clear(); myNbCurves = 0; return; } } Triple = gp_Pnt(t, U, V); if (t != FirstU) { //Search for exact boundary point Tol = Min(myTolU, myTolV); gp_Vec2d aD; d1(Triple.X(), Triple.Y(), Triple.Z(), aD, myCurve, mySurface); Tol /= Max(Abs(aD.X()), Abs(aD.Y())); if(!ExactBound(Triple, t - Step, Tol, myTolU, myTolV, myCurve, mySurface)) { #ifdef OCCT_DEBUG cout<<"There is a problem with ExactBound computation"<LastU) { Step =Step+LastU-t; t=LastU; } } } if (!new_part) break; //We have found a new continuous part Handle(TColgp_HSequenceOfPnt) hSeq = new TColgp_HSequenceOfPnt(); mySequence->Append(hSeq); myNbCurves++; mySequence->Value(myNbCurves)->Append(Triple); prevTriple = Triple; if (Triple.X() == LastU) break;//return; //Computation of WalkStep gp_Vec D1, D2; Standard_Real MagnD1, MagnD2; d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface); MagnD1 = D1.Magnitude(); MagnD2 = D2.Magnitude(); if(MagnD2 < Precision::Confusion()) WalkStep = MaxStep; else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2)); Step = WalkStep; t = Triple.X() + Step; if (t > LastU) t = LastU; Standard_Real prevStep = Step; Standard_Real U0, V0; //Here we are trying to prolong continuous part while (t <= LastU && new_part) { U0 = Triple.Y() + (Step / prevStep) * (Triple.Y() - prevTriple.Y()); V0 = Triple.Z() + (Step / prevStep) * (Triple.Z() - prevTriple.Z()); // adjust U0 to be in [mySurface->FirstUParameter(),mySurface->LastUParameter()] U0 = Min(Max(U0, aLowBorder.X()), aUppBorder.X()); // adjust V0 to be in [mySurface->FirstVParameter(),mySurface->LastVParameter()] V0 = Min(Max(V0, aLowBorder.Y()), aUppBorder.Y()); aPrjPS.Perform(t, U0, V0, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True); if(!aPrjPS.IsDone()) { if (Step <= GlobalMinStep) { //Search for exact boundary point Tol = Min(myTolU, myTolV); gp_Vec2d D; d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface); Tol /= Max(Abs(D.X()), Abs(D.Y())); if(!ExactBound(Triple, t, Tol, myTolU, myTolV, myCurve, mySurface)) { #ifdef OCCT_DEBUG cout<<"There is a problem with ExactBound computation"<Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10) mySequence->Value(myNbCurves)->Append(Triple); if((LastU - Triple.X()) < Tol) {t = LastU + 1; break;}//return; Step = SearchStep; t = Triple.X() + Step; if (t > (LastU-MinStep/2) ) { Step =Step+LastU-t; t = LastU; } new_part = Standard_False; } else { // decrease step Standard_Real SaveStep = Step; Step /= 2.; t = Triple .X() + Step; if (t > (LastU-MinStep/4) ) { Step =Step+LastU-t; if (Abs(Step - SaveStep) <= Precision::PConfusion()) Step = GlobalMinStep; //to avoid looping t = LastU; } } } // Go further else { prevTriple = Triple; prevStep = Step; Triple = gp_Pnt(t, aPrjPS.Solution().X(), aPrjPS.Solution().Y()); // Check for possible local traps. UpdateTripleByTrapCriteria(Triple); // Protection from case when the whole curve lies on a seam. if (!isSplitsComputed) { Standard_Boolean isUPossible = Standard_False; if (mySurface->IsUPeriodic() && (Abs(Triple.Y() - mySurface->FirstUParameter() ) > Precision::PConfusion() && Abs(Triple.Y() - mySurface->LastUParameter() ) > Precision::PConfusion())) { isUPossible = Standard_True; } Standard_Boolean isVPossible = Standard_False; if (mySurface->IsVPeriodic() && (Abs(Triple.Z() - mySurface->FirstVParameter() ) > Precision::PConfusion() && Abs(Triple.Z() - mySurface->LastVParameter() ) > Precision::PConfusion())) { isVPossible = Standard_True; } if (isUPossible || isVPossible) { // When point is good conditioned. BuildCurveSplits(myCurve, mySurface, myTolU, myTolV, aSplits); isSplitsComputed = Standard_True; } } if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10) mySequence->Value(myNbCurves)->Append(Triple); if (t == LastU) {t = LastU + 1; break;}//return; //Computation of WalkStep d2CurvOnSurf(Triple.X(), Triple.Y(), Triple.Z(), D1, D2, myCurve, mySurface); MagnD1 = D1.Magnitude(); MagnD2 = D2.Magnitude(); if(MagnD2 < Precision::Confusion() ) WalkStep = MaxStep; else WalkStep = Min(MaxStep, Max(MinStep, 0.1*MagnD1/MagnD2)); Step = WalkStep; t += Step; if (t > (LastU-MinStep/2)) { Step = Step + LastU - t; t = LastU; } // We assume at least one point of cache inside of a split. const Standard_Integer aSize = aSplits.Size(); for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx) { const Standard_Real aParam = aSplits(anIdx); if (Abs(aParam - Triple.X() ) < Precision::PConfusion()) { // The current point is equal to a split point. new_part = Standard_False; // Move split index to avoid check of the whole list. ++aSplitIdx; break; } else if (aParam < t + Precision::PConfusion() ) { // The next point crosses the split point. t = aParam; Step = t - prevTriple.X(); } } // for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx) } } } // Sequence post-proceeding. Standard_Integer j; // 1. Removing poor parts Standard_Integer NbPart=myNbCurves; Standard_Integer ipart=1; for(i = 1; i <= NbPart; i++) { // Standard_Integer NbPoints = mySequence->Value(i)->Length(); if(mySequence->Value(ipart)->Length() < 2) { mySequence->Remove(ipart); myNbCurves--; } else ipart++; } if(myNbCurves == 0) return; // 2. Removing common parts of bounds for(i = 1; i < myNbCurves; i++) { if(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() >= mySequence->Value(i+1)->Value(1).X()) mySequence->ChangeValue(i+1)->ChangeValue(1).SetX(mySequence->Value(i)->Value(mySequence->Value(i)->Length()).X() + 1.e-12); } // 3. Computation of the maximum distance from each part of curve to surface myMaxDistance = new TColStd_HArray1OfReal(1, myNbCurves); myMaxDistance->Init(0); for(i = 1; i <= myNbCurves; i++) for(j = 1; j <= mySequence->Value(i)->Length(); j++) { gp_Pnt POnC, POnS, aTriple; Standard_Real Distance; aTriple = mySequence->Value(i)->Value(j); myCurve->D0(aTriple.X(), POnC); mySurface->D0(aTriple.Y(), aTriple.Z(), POnS); Distance = POnC.Distance(POnS); if (myMaxDistance->Value(i) < Distance) myMaxDistance->ChangeValue(i) = Distance; } // 4. Check the projection to be a single point gp_Pnt2d Pmoy, Pcurr, P; Standard_Real AveU, AveV; mySnglPnts = new TColStd_HArray1OfBoolean(1, myNbCurves); for(i = 1; i <= myNbCurves; i++) mySnglPnts->SetValue(i, Standard_True); for(i = 1; i <= myNbCurves; i++) { //compute an average U and V for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++) { AveU += mySequence->Value(i)->Value(j).Y(); AveV += mySequence->Value(i)->Value(j).Z(); } AveU /= mySequence->Value(i)->Length(); AveV /= mySequence->Value(i)->Length(); Pmoy.SetCoord(AveU,AveV); for(j = 1; j <= mySequence->Value(i)->Length(); j++) { Pcurr = gp_Pnt2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z()); if (Pcurr.Distance(Pmoy) > ((myTolU < myTolV) ? myTolV : myTolU)) { mySnglPnts->SetValue(i, Standard_False); break; } } } // 5. Check the projection to be an isoparametric curve of the surface myUIso = new TColStd_HArray1OfBoolean(1, myNbCurves); for(i = 1; i <= myNbCurves; i++) myUIso->SetValue(i, Standard_True); myVIso = new TColStd_HArray1OfBoolean(1, myNbCurves); for(i = 1; i <= myNbCurves; i++) myVIso->SetValue(i, Standard_True); for(i = 1; i <= myNbCurves; i++) { if (IsSinglePnt(i, P)|| mySequence->Value(i)->Length() <=2) { myUIso->SetValue(i, Standard_False); myVIso->SetValue(i, Standard_False); continue; } // new test for isoparametrics if ( mySequence->Value(i)->Length() > 2) { //compute an average U and V for(j = 1, AveU = 0., AveV = 0.; j <= mySequence->Value(i)->Length(); j++) { AveU += mySequence->Value(i)->Value(j).Y(); AveV += mySequence->Value(i)->Value(j).Z(); } AveU /= mySequence->Value(i)->Length(); AveV /= mySequence->Value(i)->Length(); // is i-part U-isoparametric ? for(j = 1; j <= mySequence->Value(i)->Length(); j++) { if(Abs(mySequence->Value(i)->Value(j).Y() - AveU) > myTolU) { myUIso->SetValue(i, Standard_False); break; } } // is i-part V-isoparametric ? for(j = 1; j <= mySequence->Value(i)->Length(); j++) { if(Abs(mySequence->Value(i)->Value(j).Z() - AveV) > myTolV) { myVIso->SetValue(i, Standard_False); break; } } // } } } //======================================================================= //function : Load //purpose : //======================================================================= void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HSurface)& S) { mySurface = S; } //======================================================================= //function : Load //purpose : //======================================================================= void ProjLib_CompProjectedCurve::Load(const Handle(Adaptor3d_HCurve)& C) { myCurve = C; } //======================================================================= //function : GetSurface //purpose : //======================================================================= const Handle(Adaptor3d_HSurface)& ProjLib_CompProjectedCurve::GetSurface() const { return mySurface; } //======================================================================= //function : GetCurve //purpose : //======================================================================= const Handle(Adaptor3d_HCurve)& ProjLib_CompProjectedCurve::GetCurve() const { return myCurve; } //======================================================================= //function : GetTolerance //purpose : //======================================================================= void ProjLib_CompProjectedCurve::GetTolerance(Standard_Real& TolU, Standard_Real& TolV) const { TolU = myTolU; TolV = myTolV; } //======================================================================= //function : NbCurves //purpose : //======================================================================= Standard_Integer ProjLib_CompProjectedCurve::NbCurves() const { return myNbCurves; } //======================================================================= //function : Bounds //purpose : //======================================================================= void ProjLib_CompProjectedCurve::Bounds(const Standard_Integer Index, Standard_Real& Udeb, Standard_Real& Ufin) const { if(Index < 1 || Index > myNbCurves) throw Standard_NoSuchObject(); Udeb = mySequence->Value(Index)->Value(1).X(); Ufin = mySequence->Value(Index)->Value(mySequence->Value(Index)->Length()).X(); } //======================================================================= //function : IsSinglePnt //purpose : //======================================================================= Standard_Boolean ProjLib_CompProjectedCurve::IsSinglePnt(const Standard_Integer Index, gp_Pnt2d& P) const { if(Index < 1 || Index > myNbCurves) throw Standard_NoSuchObject(); P = gp_Pnt2d(mySequence->Value(Index)->Value(1).Y(), mySequence->Value(Index)->Value(1).Z()); return mySnglPnts->Value(Index); } //======================================================================= //function : IsUIso //purpose : //======================================================================= Standard_Boolean ProjLib_CompProjectedCurve::IsUIso(const Standard_Integer Index, Standard_Real& U) const { if(Index < 1 || Index > myNbCurves) throw Standard_NoSuchObject(); U = mySequence->Value(Index)->Value(1).Y(); return myUIso->Value(Index); } //======================================================================= //function : IsVIso //purpose : //======================================================================= Standard_Boolean ProjLib_CompProjectedCurve::IsVIso(const Standard_Integer Index, Standard_Real& V) const { if(Index < 1 || Index > myNbCurves) throw Standard_NoSuchObject(); V = mySequence->Value(Index)->Value(1).Z(); return myVIso->Value(Index); } //======================================================================= //function : Value //purpose : //======================================================================= gp_Pnt2d ProjLib_CompProjectedCurve::Value(const Standard_Real t) const { gp_Pnt2d P; D0(t, P); return P; } //======================================================================= //function : D0 //purpose : //======================================================================= void ProjLib_CompProjectedCurve::D0(const Standard_Real U,gp_Pnt2d& P) const { Standard_Integer i, j; Standard_Real Udeb, Ufin; Standard_Boolean found = Standard_False; for(i = 1; i <= myNbCurves; i++) { Bounds(i, Udeb, Ufin); if (U >= Udeb && U <= Ufin) { found = Standard_True; break; } } if (!found) throw Standard_DomainError("ProjLib_CompProjectedCurve::D0"); Standard_Real U0, V0; Standard_Integer End = mySequence->Value(i)->Length(); for(j = 1; j < End; j++) if ((U >= mySequence->Value(i)->Value(j).X()) && (U <= mySequence->Value(i)->Value(j + 1).X())) break; // U0 = mySequence->Value(i)->Value(j).Y(); // V0 = mySequence->Value(i)->Value(j).Z(); // Cubic Interpolation if(mySequence->Value(i)->Length() < 4 || (Abs(U-mySequence->Value(i)->Value(j).X()) <= Precision::PConfusion()) ) { U0 = mySequence->Value(i)->Value(j).Y(); V0 = mySequence->Value(i)->Value(j).Z(); } else if (Abs(U-mySequence->Value(i)->Value(j+1).X()) <= Precision::PConfusion()) { U0 = mySequence->Value(i)->Value(j+1).Y(); V0 = mySequence->Value(i)->Value(j+1).Z(); } else { if (j == 1) j = 2; if (j > mySequence->Value(i)->Length() - 2) j = mySequence->Value(i)->Length() - 2; gp_Vec2d I1, I2, I3, I21, I22, I31, Y1, Y2, Y3, Y4, Res; Standard_Real X1, X2, X3, X4; X1 = mySequence->Value(i)->Value(j - 1).X(); X2 = mySequence->Value(i)->Value(j).X(); X3 = mySequence->Value(i)->Value(j + 1).X(); X4 = mySequence->Value(i)->Value(j + 2).X(); Y1 = gp_Vec2d(mySequence->Value(i)->Value(j - 1).Y(), mySequence->Value(i)->Value(j - 1).Z()); Y2 = gp_Vec2d(mySequence->Value(i)->Value(j).Y(), mySequence->Value(i)->Value(j).Z()); Y3 = gp_Vec2d(mySequence->Value(i)->Value(j + 1).Y(), mySequence->Value(i)->Value(j + 1).Z()); Y4 = gp_Vec2d(mySequence->Value(i)->Value(j + 2).Y(), mySequence->Value(i)->Value(j + 2).Z()); I1 = (Y1 - Y2)/(X1 - X2); I2 = (Y2 - Y3)/(X2 - X3); I3 = (Y3 - Y4)/(X3 - X4); I21 = (I1 - I2)/(X1 - X3); I22 = (I2 - I3)/(X2 - X4); I31 = (I21 - I22)/(X1 - X4); Res = Y1 + (U - X1)*(I1 + (U - X2)*(I21 + (U - X3)*I31)); U0 = Res.X(); V0 = Res.Y(); if(U0 < mySurface->FirstUParameter()) U0 = mySurface->FirstUParameter(); else if(U0 > mySurface->LastUParameter()) U0 = mySurface->LastUParameter(); if(V0 < mySurface->FirstVParameter()) V0 = mySurface->FirstVParameter(); else if(V0 > mySurface->LastVParameter()) V0 = mySurface->LastVParameter(); } //End of cubic interpolation ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1); aPrjPS.Perform(U, U0, V0, gp_Pnt2d(myTolU, myTolV), gp_Pnt2d(mySurface->FirstUParameter(), mySurface->FirstVParameter()), gp_Pnt2d(mySurface->LastUParameter(), mySurface->LastVParameter())); if (aPrjPS.IsDone()) P = aPrjPS.Solution(); else { gp_Pnt thePoint = myCurve->Value(U); Extrema_ExtPS aExtPS(thePoint, mySurface->Surface(), myTolU, myTolV); if (aExtPS.IsDone() && aExtPS.NbExt()) { Standard_Integer k, Nend, imin = 1; // Search for the nearest solution which is also a normal projection Nend = aExtPS.NbExt(); for(k = 2; k <= Nend; k++) if (aExtPS.SquareDistance(k) < aExtPS.SquareDistance(imin)) imin = k; const Extrema_POnSurf& POnS = aExtPS.Point(imin); Standard_Real ParU,ParV; POnS.Parameter(ParU, ParV); P.SetCoord(ParU, ParV); } else P.SetCoord(U0,V0); } } //======================================================================= //function : D1 //purpose : //======================================================================= void ProjLib_CompProjectedCurve::D1(const Standard_Real t, gp_Pnt2d& P, gp_Vec2d& V) const { Standard_Real u, v; D0(t, P); u = P.X(); v = P.Y(); d1(t, u, v, V, myCurve, mySurface); } //======================================================================= //function : D2 //purpose : //======================================================================= void ProjLib_CompProjectedCurve::D2(const Standard_Real t, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const { Standard_Real u, v; D0(t, P); u = P.X(); v = P.Y(); d2(t, u, v, V1, V2, myCurve, mySurface); } //======================================================================= //function : DN //purpose : //======================================================================= gp_Vec2d ProjLib_CompProjectedCurve::DN(const Standard_Real t, const Standard_Integer N) const { if (N < 1 ) throw Standard_OutOfRange("ProjLib_CompProjectedCurve : N must be greater than 0"); else if (N ==1) { gp_Pnt2d P; gp_Vec2d V; D1(t,P,V); return V; } else if ( N==2) { gp_Pnt2d P; gp_Vec2d V1,V2; D2(t,P,V1,V2); return V2; } else if (N > 2 ) throw Standard_NotImplemented("ProjLib_CompProjectedCurve::DN"); return gp_Vec2d(); } //======================================================================= //function : GetSequence //purpose : //======================================================================= const Handle(ProjLib_HSequenceOfHSequenceOfPnt)& ProjLib_CompProjectedCurve::GetSequence() const { return mySequence; } //======================================================================= //function : FirstParameter //purpose : //======================================================================= Standard_Real ProjLib_CompProjectedCurve::FirstParameter() const { return myCurve->FirstParameter(); } //======================================================================= //function : LastParameter //purpose : //======================================================================= Standard_Real ProjLib_CompProjectedCurve::LastParameter() const { return myCurve->LastParameter(); } //======================================================================= //function : MaxDistance //purpose : //======================================================================= Standard_Real ProjLib_CompProjectedCurve::MaxDistance(const Standard_Integer Index) const { if(Index < 1 || Index > myNbCurves) throw Standard_NoSuchObject(); return myMaxDistance->Value(Index); } //======================================================================= //function : NbIntervals //purpose : //======================================================================= Standard_Integer ProjLib_CompProjectedCurve::NbIntervals(const GeomAbs_Shape S) const { const_cast(this)->myTabInt.Nullify(); BuildIntervals(S); return myTabInt->Length() - 1; } //======================================================================= //function : Intervals //purpose : //======================================================================= void ProjLib_CompProjectedCurve::Intervals(TColStd_Array1OfReal& T,const GeomAbs_Shape S) const { if (myTabInt.IsNull()) BuildIntervals (S); T = myTabInt->Array1(); } //======================================================================= //function : BuildIntervals //purpose : //======================================================================= void ProjLib_CompProjectedCurve::BuildIntervals(const GeomAbs_Shape S) const { GeomAbs_Shape SforS = GeomAbs_CN; switch(S) { case GeomAbs_C0: SforS = GeomAbs_C1; break; case GeomAbs_C1: SforS = GeomAbs_C2; break; case GeomAbs_C2: SforS = GeomAbs_C3; break; case GeomAbs_C3: SforS = GeomAbs_CN; break; case GeomAbs_CN: SforS = GeomAbs_CN; break; default: throw Standard_OutOfRange(); } Standard_Integer i, j, k; Standard_Integer NbIntCur = myCurve->NbIntervals(S); Standard_Integer NbIntSurU = mySurface->NbUIntervals(SforS); Standard_Integer NbIntSurV = mySurface->NbVIntervals(SforS); TColStd_Array1OfReal CutPntsT(1, NbIntCur+1); TColStd_Array1OfReal CutPntsU(1, NbIntSurU+1); TColStd_Array1OfReal CutPntsV(1, NbIntSurV+1); myCurve->Intervals(CutPntsT, S); mySurface->UIntervals(CutPntsU, SforS); mySurface->VIntervals(CutPntsV, SforS); Standard_Real Tl, Tr, Ul, Ur, Vl, Vr, Tol; Handle(TColStd_HArray1OfReal) BArr = NULL, CArr = NULL, UArr = NULL, VArr = NULL; // proccessing projection bounds BArr = new TColStd_HArray1OfReal(1, 2*myNbCurves); for(i = 1; i <= myNbCurves; i++) Bounds(i, BArr->ChangeValue(2*i - 1), BArr->ChangeValue(2*i)); // proccessing curve discontinuities if(NbIntCur > 1) { CArr = new TColStd_HArray1OfReal(1, NbIntCur - 1); for(i = 1; i <= CArr->Length(); i++) CArr->ChangeValue(i) = CutPntsT(i + 1); } // proccessing U-surface discontinuities TColStd_SequenceOfReal TUdisc; for(k = 2; k <= NbIntSurU; k++) { // cout<<"CutPntsU("<Value(i)->Length(); j++) { Ul = mySequence->Value(i)->Value(j).Y(); Ur = mySequence->Value(i)->Value(j + 1).Y(); if(Abs(Ul - CutPntsU(k)) <= myTolU) TUdisc.Append(mySequence->Value(i)->Value(j).X()); else if(Abs(Ur - CutPntsU(k)) <= myTolU) TUdisc.Append(mySequence->Value(i)->Value(j + 1).X()); else if((Ul < CutPntsU(k) && CutPntsU(k) < Ur) || (Ur < CutPntsU(k) && CutPntsU(k) < Ul)) { Standard_Real V; V = (mySequence->Value(i)->Value(j).Z() + mySequence->Value(i)->Value(j +1).Z())/2; ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 2); gp_Vec2d D; gp_Pnt Triple; Triple = mySequence->Value(i)->Value(j); d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface); if (Abs(D.X()) < Precision::Confusion()) Tol = myTolU; else Tol = Min(myTolU, myTolU / Abs(D.X())); Tl = mySequence->Value(i)->Value(j).X(); Tr = mySequence->Value(i)->Value(j + 1).X(); Solver.Perform((Tl + Tr)/2, CutPntsU(k), V, gp_Pnt2d(Tol, myTolV), gp_Pnt2d(Tl, mySurface->FirstVParameter()), gp_Pnt2d(Tr, mySurface->LastVParameter())); // if(Solver.IsDone()) { TUdisc.Append(Solver.Solution().X()); } } } } for(i = 2; i <= TUdisc.Length(); i++) if(TUdisc(i) - TUdisc(i-1) < Precision::PConfusion()) TUdisc.Remove(i--); if(TUdisc.Length()) { UArr = new TColStd_HArray1OfReal(1, TUdisc.Length()); for(i = 1; i <= UArr->Length(); i++) UArr->ChangeValue(i) = TUdisc(i); } // proccessing V-surface discontinuities TColStd_SequenceOfReal TVdisc; for(k = 2; k <= NbIntSurV; k++) for(i = 1; i <= myNbCurves; i++) { // cout<<"CutPntsV("<Value(i)->Length(); j++) { Vl = mySequence->Value(i)->Value(j).Z(); Vr = mySequence->Value(i)->Value(j + 1).Z(); if(Abs(Vl - CutPntsV(k)) <= myTolV) TVdisc.Append(mySequence->Value(i)->Value(j).X()); else if (Abs(Vr - CutPntsV(k)) <= myTolV) TVdisc.Append(mySequence->Value(i)->Value(j + 1).X()); else if((Vl < CutPntsV(k) && CutPntsV(k) < Vr) || (Vr < CutPntsV(k) && CutPntsV(k) < Vl)) { Standard_Real U; U = (mySequence->Value(i)->Value(j).Y() + mySequence->Value(i)->Value(j +1).Y())/2; ProjLib_PrjResolve Solver(myCurve->Curve(), mySurface->Surface(), 3); gp_Vec2d D; gp_Pnt Triple; Triple = mySequence->Value(i)->Value(j); d1(Triple.X(), Triple.Y(), Triple.Z(), D, myCurve, mySurface); if (Abs(D.Y()) < Precision::Confusion()) Tol = myTolV; else Tol = Min(myTolV, myTolV / Abs(D.Y())); Tl = mySequence->Value(i)->Value(j).X(); Tr = mySequence->Value(i)->Value(j + 1).X(); Solver.Perform((Tl + Tr)/2, U, CutPntsV(k), gp_Pnt2d(Tol, myTolV), gp_Pnt2d(Tl, mySurface->FirstUParameter()), gp_Pnt2d(Tr, mySurface->LastUParameter())); // if(Solver.IsDone()) { TVdisc.Append(Solver.Solution().X()); } } } } for(i = 2; i <= TVdisc.Length(); i++) if(TVdisc(i) - TVdisc(i-1) < Precision::PConfusion()) TVdisc.Remove(i--); if(TVdisc.Length()) { VArr = new TColStd_HArray1OfReal(1, TVdisc.Length()); for(i = 1; i <= VArr->Length(); i++) VArr->ChangeValue(i) = TVdisc(i); } // fusion TColStd_SequenceOfReal Fusion; if(!CArr.IsNull()) { GeomLib::FuseIntervals(BArr->ChangeArray1(), CArr->ChangeArray1(), Fusion, Precision::PConfusion()); BArr = new TColStd_HArray1OfReal(1, Fusion.Length()); for(i = 1; i <= BArr->Length(); i++) BArr->ChangeValue(i) = Fusion(i); Fusion.Clear(); } if(!UArr.IsNull()) { GeomLib::FuseIntervals(BArr->ChangeArray1(), UArr->ChangeArray1(), Fusion, Precision::PConfusion()); BArr = new TColStd_HArray1OfReal(1, Fusion.Length()); for(i = 1; i <= BArr->Length(); i++) BArr->ChangeValue(i) = Fusion(i); Fusion.Clear(); } if(!VArr.IsNull()) { GeomLib::FuseIntervals(BArr->ChangeArray1(), VArr->ChangeArray1(), Fusion, Precision::PConfusion()); BArr = new TColStd_HArray1OfReal(1, Fusion.Length()); for(i = 1; i <= BArr->Length(); i++) BArr->ChangeValue(i) = Fusion(i); } const_cast(this)->myTabInt = new TColStd_HArray1OfReal(1, BArr->Length()); for(i = 1; i <= BArr->Length(); i++) myTabInt->ChangeValue(i) = BArr->Value(i); } //======================================================================= //function : Trim //purpose : //======================================================================= Handle(Adaptor2d_HCurve2d) ProjLib_CompProjectedCurve::Trim (const Standard_Real First, const Standard_Real Last, const Standard_Real Tol) const { Handle(ProjLib_HCompProjectedCurve) HCS = new ProjLib_HCompProjectedCurve(*this); HCS->ChangeCurve2d().Load(mySurface); HCS->ChangeCurve2d().Load(myCurve->Trim(First,Last,Tol)); return HCS; } //======================================================================= //function : GetType //purpose : //======================================================================= GeomAbs_CurveType ProjLib_CompProjectedCurve::GetType() const { return GeomAbs_OtherCurve; } //======================================================================= //function : UpdateTripleByTrapCriteria //purpose : //======================================================================= void ProjLib_CompProjectedCurve::UpdateTripleByTrapCriteria(gp_Pnt &thePoint) const { Standard_Boolean isProblemsPossible = Standard_False; // Check possible traps cases: // 25892 bug. if (mySurface->GetType() == GeomAbs_SurfaceOfRevolution) { // Compute maximal deviation from 3D and choose the biggest one. Standard_Real aVRes = mySurface->VResolution(Precision::Confusion()); Standard_Real aMaxTol = Max(Precision::PConfusion(), aVRes); if (Abs (thePoint.Z() - mySurface->FirstVParameter()) < aMaxTol || Abs (thePoint.Z() - mySurface->LastVParameter() ) < aMaxTol ) { isProblemsPossible = Standard_True; } } // 27135 bug. Trap on degenerated edge. if (mySurface->GetType() == GeomAbs_Sphere && (Abs (thePoint.Z() - mySurface->FirstVParameter()) < Precision::PConfusion() || Abs (thePoint.Z() - mySurface->LastVParameter() ) < Precision::PConfusion() || Abs (thePoint.Y() - mySurface->FirstUParameter()) < Precision::PConfusion() || Abs (thePoint.Y() - mySurface->LastUParameter() ) < Precision::PConfusion() )) { isProblemsPossible = Standard_True; } if (!isProblemsPossible) return; Standard_Real U,V; Standard_Boolean isDone = InitialPoint(myCurve->Value(thePoint.X()), thePoint.X(), myCurve, mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V); if (!isDone) return; // Restore original position in case of period jump. if (mySurface->IsUPeriodic() && Abs (Abs(U - thePoint.Y()) - mySurface->UPeriod()) < Precision::PConfusion()) { U = thePoint.Y(); } if (mySurface->IsVPeriodic() && Abs (Abs(V - thePoint.Z()) - mySurface->VPeriod()) < Precision::PConfusion()) { V = thePoint.Z(); } thePoint.SetY(U); thePoint.SetZ(V); } //======================================================================= //function : BuildCurveSplits //purpose : //======================================================================= void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve, const Handle(Adaptor3d_HSurface) &theSurface, const Standard_Real theTolU, const Standard_Real theTolV, NCollection_Vector &theSplits) { SplitDS aDS(theCurve, theSurface, theSplits); Extrema_ExtPS anExtPS; anExtPS.Initialize(theSurface->Surface(), theSurface->FirstUParameter(), theSurface->LastUParameter(), theSurface->FirstVParameter(), theSurface->LastVParameter(), theTolU, theTolV); aDS.myExtPS = &anExtPS; if (theSurface->IsUPeriodic()) { aDS.myPeriodicDir = 0; SplitOnDirection(aDS); } if (theSurface->IsVPeriodic()) { aDS.myPeriodicDir = 1; SplitOnDirection(aDS); } std::sort(aDS.mySplits.begin(), aDS.mySplits.end(), Comparator); } //======================================================================= //function : SplitOnDirection //purpose : This method compute points in the parameter space of the curve // on which curve should be split since period jump is happen. //======================================================================= void SplitOnDirection(SplitDS & theSplitDS) { // Algorithm: // Create 3D curve which is correspond to the periodic bound in 2d space. // Run curve / curve extrema and run extrema point / surface to check that // the point will be projected to the periodic bound. // In this method assumed that the points cannot be closer to each other that 1% of the parameter space. gp_Pnt2d aStartPnt(theSplitDS.mySurface->FirstUParameter(), theSplitDS.mySurface->FirstVParameter()); gp_Dir2d aDir(theSplitDS.myPeriodicDir, (Standard_Integer)!theSplitDS.myPeriodicDir); theSplitDS.myPerMinParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->FirstUParameter(): theSplitDS.mySurface->FirstVParameter(); theSplitDS.myPerMaxParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter(): theSplitDS.mySurface->LastVParameter(); Standard_Real aLast2DParam = theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter() - theSplitDS.mySurface->FirstUParameter(): theSplitDS.mySurface->LastVParameter() - theSplitDS.mySurface->FirstVParameter(); // Create line which is represent periodic border. Handle(Geom2d_Curve) aC2GC = new Geom2d_Line(aStartPnt, aDir); Handle(Geom2dAdaptor_HCurve) aC = new Geom2dAdaptor_HCurve(aC2GC, 0, aLast2DParam); Adaptor3d_CurveOnSurface aCOnS(aC, theSplitDS.mySurface); Extrema_ExtCC anExtCC; anExtCC.SetCurve(1, aCOnS); anExtCC.SetCurve(2, theSplitDS.myCurve->Curve()); anExtCC.SetSingleSolutionFlag(Standard_True); // Search only one solution since multiple invocations are needed. anExtCC.SetRange(1, 0, aLast2DParam); theSplitDS.myExtCC = &anExtCC; FindSplitPoint(theSplitDS, theSplitDS.myCurve->FirstParameter(), // Initial curve range. theSplitDS.myCurve->LastParameter()); } //======================================================================= //function : FindSplitPoint //purpose : //======================================================================= void FindSplitPoint(SplitDS &theSplitDS, const Standard_Real theMinParam, const Standard_Real theMaxParam) { // Make extrema copy to avoid dependencies between different levels of the recursion. Extrema_ExtCC anExtCC(*theSplitDS.myExtCC); anExtCC.SetRange(2, theMinParam, theMaxParam); anExtCC.Perform(); if (anExtCC.IsDone()) { const Standard_Integer aNbExt = anExtCC.NbExt(); for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx) { Extrema_POnCurv aPOnC1, aPOnC2; anExtCC.Points(anIdx, aPOnC1, aPOnC2); theSplitDS.myExtPS->Perform(aPOnC2.Value()); if (!theSplitDS.myExtPS->IsDone()) return; // Find point with the minimal Euclidean distance to avoid // false positive points detection. Standard_Integer aMinIdx = -1; Standard_Real aMinSqDist = RealLast(); const Standard_Integer aNbPext = theSplitDS.myExtPS->NbExt(); for(Standard_Integer aPIdx = 1; aPIdx <= aNbPext; ++aPIdx) { const Standard_Real aCurrSqDist = theSplitDS.myExtPS->SquareDistance(aPIdx); if (aCurrSqDist < aMinSqDist) { aMinSqDist = aCurrSqDist; aMinIdx = aPIdx; } } // Check that is point will be projected to the periodic border. const Extrema_POnSurf &aPOnS = theSplitDS.myExtPS->Point(aMinIdx); Standard_Real U, V, aProjParam; aPOnS.Parameter(U, V); aProjParam = theSplitDS.myPeriodicDir ? V : U; if (Abs(aProjParam - theSplitDS.myPerMinParam) < Precision::PConfusion() || Abs(aProjParam - theSplitDS.myPerMaxParam) < Precision::PConfusion() ) { const Standard_Real aParam = aPOnC2.Parameter(); const Standard_Real aCFParam = theSplitDS.myCurve->FirstParameter(); const Standard_Real aCLParam = theSplitDS.myCurve->LastParameter(); if (aParam > aCFParam + Precision::PConfusion() && aParam < aCLParam - Precision::PConfusion() ) { // Add only inner points. theSplitDS.mySplits.Append(aParam); } const Standard_Real aDeltaCoeff = 0.01; const Standard_Real aDelta = (theMaxParam - theMinParam + aCLParam - aCFParam) * aDeltaCoeff; if (aParam - aDelta > theMinParam + Precision::PConfusion()) { FindSplitPoint(theSplitDS, theMinParam, aParam - aDelta); // Curve parameters. } if (aParam + aDelta < theMaxParam - Precision::PConfusion()) { FindSplitPoint(theSplitDS, aParam + aDelta, theMaxParam); // Curve parameters. } } } // for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx) } }