// Created by: Kirill GAVRILOV // Copyright (c) 2013-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _NCollection_Vec3_H__ #define _NCollection_Vec3_H__ #include #include #include //! Auxiliary macros to define couple of similar access components as vector methods #define NCOLLECTION_VEC_COMPONENTS_3D(theX, theY, theZ) \ const NCollection_Vec3 theX##theY##theZ() const { return NCollection_Vec3(theX(), theY(), theZ()); } \ const NCollection_Vec3 theX##theZ##theY() const { return NCollection_Vec3(theX(), theZ(), theY()); } \ const NCollection_Vec3 theY##theX##theZ() const { return NCollection_Vec3(theY(), theX(), theZ()); } \ const NCollection_Vec3 theY##theZ##theX() const { return NCollection_Vec3(theY(), theZ(), theX()); } \ const NCollection_Vec3 theZ##theY##theX() const { return NCollection_Vec3(theZ(), theY(), theX()); } \ const NCollection_Vec3 theZ##theX##theY() const { return NCollection_Vec3(theZ(), theX(), theY()); } //! Generic 3-components vector. //! To be used as RGB color pixel or XYZ 3D-point. //! The main target for this class - to handle raw low-level arrays (from/to graphic driver etc.). template class NCollection_Vec3 { public: //! Returns the number of components. static int Length() { return 3; } //! Empty constructor. Construct the zero vector. NCollection_Vec3() { std::memset (this, 0, sizeof(NCollection_Vec3)); } //! Initialize ALL components of vector within specified value. explicit NCollection_Vec3 (Element_t theValue) { v[0] = v[1] = v[2] = theValue; } //! Per-component constructor. explicit NCollection_Vec3 (const Element_t theX, const Element_t theY, const Element_t theZ) { v[0] = theX; v[1] = theY; v[2] = theZ; } //! Constructor from 2-components vector + optional 3rd value. explicit NCollection_Vec3 (const NCollection_Vec2& theVec2, Element_t theZ = Element_t(0)) { v[0] = theVec2[0]; v[1] = theVec2[1]; v[2] = theZ; } //! Conversion constructor (explicitly converts some 3-component vector with other element type //! to a new 3-component vector with the element type Element_t, //! whose elements are static_cast'ed corresponding elements of theOtherVec3 vector) //! @tparam OtherElement_t the element type of the other 3-component vector theOtherVec3 //! @param theOtherVec3 the 3-component vector that needs to be converted template explicit NCollection_Vec3 (const NCollection_Vec3& theOtherVec3) { v[0] = static_cast (theOtherVec3[0]); v[1] = static_cast (theOtherVec3[1]); v[2] = static_cast (theOtherVec3[2]); } //! Assign new values to the vector. void SetValues (const Element_t theX, const Element_t theY, const Element_t theZ) { v[0] = theX; v[1] = theY; v[2] = theZ; } //! Assign new values to the vector. void SetValues (const NCollection_Vec2& theVec2, Element_t theZ) { v[0] = theVec2.x(); v[1] = theVec2.y(); v[2] = theZ; } //! Alias to 1st component as X coordinate in XYZ. Element_t x() const { return v[0]; } //! Alias to 1st component as RED channel in RGB. Element_t r() const { return v[0]; } //! Alias to 2nd component as Y coordinate in XYZ. Element_t y() const { return v[1]; } //! Alias to 2nd component as GREEN channel in RGB. Element_t g() const { return v[1]; } //! Alias to 3rd component as Z coordinate in XYZ. Element_t z() const { return v[2]; } //! Alias to 3rd component as BLUE channel in RGB. Element_t b() const { return v[2]; } //! @return 2 components by their names in specified order (in GLSL-style) NCOLLECTION_VEC_COMPONENTS_2D(x, y) NCOLLECTION_VEC_COMPONENTS_2D(x, z) NCOLLECTION_VEC_COMPONENTS_2D(y, z) //! @return 3 components by their names in specified order (in GLSL-style) NCOLLECTION_VEC_COMPONENTS_3D(x, y, z) //! Alias to 1st component as X coordinate in XYZ. Element_t& x() { return v[0]; } //! Alias to 1st component as RED channel in RGB. Element_t& r() { return v[0]; } //! Alias to 2nd component as Y coordinate in XYZ. Element_t& y() { return v[1]; } //! Alias to 2nd component as GREEN channel in RGB. Element_t& g() { return v[1]; } //! Alias to 3rd component as Z coordinate in XYZ. Element_t& z() { return v[2]; } //! Alias to 3rd component as BLUE channel in RGB. Element_t& b() { return v[2]; } //! Check this vector with another vector for equality (without tolerance!). bool IsEqual (const NCollection_Vec3& theOther) const { return v[0] == theOther.v[0] && v[1] == theOther.v[1] && v[2] == theOther.v[2]; } //! Check this vector with another vector for equality (without tolerance!). bool operator== (const NCollection_Vec3& theOther) { return IsEqual (theOther); } bool operator== (const NCollection_Vec3& theOther) const { return IsEqual (theOther); } //! Check this vector with another vector for non-equality (without tolerance!). bool operator!= (const NCollection_Vec3& theOther) { return !IsEqual (theOther); } bool operator!= (const NCollection_Vec3& theOther) const { return !IsEqual (theOther); } //! Raw access to the data (for OpenGL exchange). const Element_t* GetData() const { return v; } Element_t* ChangeData() { return v; } operator const Element_t*() const { return v; } operator Element_t*() { return v; } //! Compute per-component summary. NCollection_Vec3& operator+= (const NCollection_Vec3& theAdd) { v[0] += theAdd.v[0]; v[1] += theAdd.v[1]; v[2] += theAdd.v[2]; return *this; } //! Compute per-component summary. friend NCollection_Vec3 operator+ (const NCollection_Vec3& theLeft, const NCollection_Vec3& theRight) { NCollection_Vec3 aSumm = NCollection_Vec3 (theLeft); return aSumm += theRight; } //! Unary -. NCollection_Vec3 operator-() const { return NCollection_Vec3 (-x(), -y(), -z()); } //! Compute per-component subtraction. NCollection_Vec3& operator-= (const NCollection_Vec3& theDec) { v[0] -= theDec.v[0]; v[1] -= theDec.v[1]; v[2] -= theDec.v[2]; return *this; } //! Compute per-component subtraction. friend NCollection_Vec3 operator- (const NCollection_Vec3& theLeft, const NCollection_Vec3& theRight) { NCollection_Vec3 aSumm = NCollection_Vec3 (theLeft); return aSumm -= theRight; } //! Compute per-component multiplication by scale factor. void Multiply (const Element_t theFactor) { v[0] *= theFactor; v[1] *= theFactor; v[2] *= theFactor; } //! Compute per-component multiplication. NCollection_Vec3& operator*= (const NCollection_Vec3& theRight) { v[0] *= theRight.v[0]; v[1] *= theRight.v[1]; v[2] *= theRight.v[2]; return *this; } //! Compute per-component multiplication. friend NCollection_Vec3 operator* (const NCollection_Vec3& theLeft, const NCollection_Vec3& theRight) { NCollection_Vec3 aResult = NCollection_Vec3 (theLeft); return aResult *= theRight; } //! Compute per-component multiplication by scale factor. NCollection_Vec3& operator*= (const Element_t theFactor) { Multiply (theFactor); return *this; } //! Compute per-component multiplication by scale factor. NCollection_Vec3 operator* (const Element_t theFactor) const { return Multiplied (theFactor); } //! Compute per-component multiplication by scale factor. NCollection_Vec3 Multiplied (const Element_t theFactor) const { NCollection_Vec3 aCopyVec3 (*this); aCopyVec3 *= theFactor; return aCopyVec3; } //! Compute component-wise minimum of two vectors. NCollection_Vec3 cwiseMin (const NCollection_Vec3& theVec) const { return NCollection_Vec3 (v[0] < theVec.v[0] ? v[0] : theVec.v[0], v[1] < theVec.v[1] ? v[1] : theVec.v[1], v[2] < theVec.v[2] ? v[2] : theVec.v[2]); } //! Compute component-wise maximum of two vectors. NCollection_Vec3 cwiseMax (const NCollection_Vec3& theVec) const { return NCollection_Vec3 (v[0] > theVec.v[0] ? v[0] : theVec.v[0], v[1] > theVec.v[1] ? v[1] : theVec.v[1], v[2] > theVec.v[2] ? v[2] : theVec.v[2]); } //! Compute component-wise modulus of the vector. NCollection_Vec3 cwiseAbs() const { return NCollection_Vec3 (std::abs (v[0]), std::abs (v[1]), std::abs (v[2])); } //! Compute maximum component of the vector. Element_t maxComp() const { return v[0] > v[1] ? (v[0] > v[2] ? v[0] : v[2]) : (v[1] > v[2] ? v[1] : v[2]); } //! Compute minimum component of the vector. Element_t minComp() const { return v[0] < v[1] ? (v[0] < v[2] ? v[0] : v[2]) : (v[1] < v[2] ? v[1] : v[2]); } //! Compute per-component division by scale factor. NCollection_Vec3& operator/= (const Element_t theInvFactor) { v[0] /= theInvFactor; v[1] /= theInvFactor; v[2] /= theInvFactor; return *this; } //! Compute per-component division. NCollection_Vec3& operator/= (const NCollection_Vec3& theRight) { v[0] /= theRight.v[0]; v[1] /= theRight.v[1]; v[2] /= theRight.v[2]; return *this; } //! Compute per-component division by scale factor. NCollection_Vec3 operator/ (const Element_t theInvFactor) const { NCollection_Vec3 aResult (*this); return aResult /= theInvFactor; } //! Compute per-component division. friend NCollection_Vec3 operator/ (const NCollection_Vec3& theLeft, const NCollection_Vec3& theRight) { NCollection_Vec3 aResult = NCollection_Vec3 (theLeft); return aResult /= theRight; } //! Computes the dot product. Element_t Dot (const NCollection_Vec3& theOther) const { return x() * theOther.x() + y() * theOther.y() + z() * theOther.z(); } //! Computes the vector modulus (magnitude, length). Element_t Modulus() const { return std::sqrt (x() * x() + y() * y() + z() * z()); } //! Computes the square of vector modulus (magnitude, length). //! This method may be used for performance tricks. Element_t SquareModulus() const { return x() * x() + y() * y() + z() * z(); } //! Normalize the vector. void Normalize() { Element_t aModulus = Modulus(); if (aModulus != Element_t(0)) // just avoid divide by zero { x() = x() / aModulus; y() = y() / aModulus; z() = z() / aModulus; } } //! Normalize the vector. NCollection_Vec3 Normalized() const { NCollection_Vec3 aCopy (*this); aCopy.Normalize(); return aCopy; } //! Computes the cross product. static NCollection_Vec3 Cross (const NCollection_Vec3& theVec1, const NCollection_Vec3& theVec2) { return NCollection_Vec3(theVec1.y() * theVec2.z() - theVec1.z() * theVec2.y(), theVec1.z() * theVec2.x() - theVec1.x() * theVec2.z(), theVec1.x() * theVec2.y() - theVec1.y() * theVec2.x()); } //! Compute linear interpolation between to vectors. //! @param theT - interpolation coefficient 0..1; //! @return interpolation result. static NCollection_Vec3 GetLERP (const NCollection_Vec3& theFrom, const NCollection_Vec3& theTo, const Element_t theT) { return theFrom * (Element_t(1) - theT) + theTo * theT; } //! Constuct DX unit vector. static NCollection_Vec3 DX() { return NCollection_Vec3 (Element_t(1), Element_t(0), Element_t(0)); } //! Constuct DY unit vector. static NCollection_Vec3 DY() { return NCollection_Vec3 (Element_t(0), Element_t(1), Element_t(0)); } //! Constuct DZ unit vector. static NCollection_Vec3 DZ() { return NCollection_Vec3 (Element_t(0), Element_t(0), Element_t(1)); } private: Element_t v[3]; //!< define the vector as array to avoid structure alignment issues }; //! Optimized concretization for float type. template<> inline NCollection_Vec3& NCollection_Vec3::operator/= (const float theInvFactor) { Multiply (1.0f / theInvFactor); return *this; } //! Optimized concretization for double type. template<> inline NCollection_Vec3& NCollection_Vec3::operator/= (const double theInvFactor) { Multiply (1.0 / theInvFactor); return *this; } #endif // _NCollection_Vec3_H__