// Created on: 1995-02-07 // Created by: Jacques GOUSSARD // Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2012 OPEN CASCADE SAS // // The content of this file is subject to the Open CASCADE Technology Public // License Version 6.5 (the "License"). You may not use the content of this file // except in compliance with the License. Please obtain a copy of the License // at http://www.opencascade.org and read it completely before using this file. // // The Initial Developer of the Original Code is Open CASCADE S.A.S., having its // main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France. // // The Original Code and all software distributed under the License is // distributed on an "AS IS" basis, without warranty of any kind, and the // Initial Developer hereby disclaims all such warranties, including without // limitation, any warranties of merchantability, fitness for a particular // purpose or non-infringement. Please see the License for the specific terms // and conditions governing the rights and limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void Parameters(const Handle(GeomAdaptor_HSurface)& myHS1, const gp_Pnt& Ptref, Standard_Real& U1, Standard_Real& V1); static void Parameters(const Handle(GeomAdaptor_HSurface)& myHS1, const Handle(GeomAdaptor_HSurface)& myHS2, const gp_Pnt& Ptref, Standard_Real& U1, Standard_Real& V1, Standard_Real& U2, Standard_Real& V2); static void GLinePoint(const IntPatch_IType typl, const Handle(IntPatch_GLine)& GLine, const Standard_Real aT, gp_Pnt& aP); static void Recadre(const Handle(GeomAdaptor_HSurface)& myHS1, const Handle(GeomAdaptor_HSurface)& myHS2, Standard_Real& u1, Standard_Real& v1, Standard_Real& u2, Standard_Real& v2); //======================================================================= //function : Perform //purpose : //======================================================================= void IntTools_LineConstructor::Perform(const Handle(IntPatch_Line)& L) { Standard_Integer i,nbvtx; Standard_Real firstp,lastp; const Standard_Real Tol = Precision::PConfusion() * 35.0; const IntPatch_IType typl = L->ArcType(); if(typl == IntPatch_Analytic) { Standard_Real u1,v1,u2,v2; Handle(IntPatch_ALine)& ALine = *((Handle(IntPatch_ALine) *)&L); seqp.Clear(); nbvtx = GeomInt_LineTool::NbVertex(L); for(i=1;iValue(pmid); Parameters(myHS1,myHS2,Pmid,u1,v1,u2,v2); Recadre(myHS1,myHS2,u1,v1,u2,v2); const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol); if(in1 != TopAbs_OUT) { const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol); if(in2 != TopAbs_OUT) { seqp.Append(firstp); seqp.Append(lastp); } } } } done = Standard_True; return; } // if(typl == IntPatch_Analytic) { else if(typl == IntPatch_Walking) { Standard_Real u1,v1,u2,v2; Handle(IntPatch_WLine)& WLine = *((Handle(IntPatch_WLine) *)&L); seqp.Clear(); nbvtx = GeomInt_LineTool::NbVertex(L); for(i=1;iPoint(pmid); Pmid.Parameters(u1,v1,u2,v2); Recadre(myHS1,myHS2,u1,v1,u2,v2); const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol); if(in1 != TopAbs_OUT) { const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol); if(in2 != TopAbs_OUT) { seqp.Append(firstp); seqp.Append(lastp); } } } else { const IntSurf_PntOn2S& Pfirst = WLine->Point((Standard_Integer)(firstp)); Pfirst.Parameters(u1,v1,u2,v2); Recadre(myHS1,myHS2,u1,v1,u2,v2); TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol); if(in1 != TopAbs_OUT) { //-- !=ON donne Pb TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol); if(in2 != TopAbs_OUT) { //-- !=ON const IntSurf_PntOn2S& Plast = WLine->Point((Standard_Integer)(lastp)); Plast.Parameters(u1,v1,u2,v2); Recadre(myHS1,myHS2,u1,v1,u2,v2); in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol); if(in1 != TopAbs_OUT) { //-- !=ON donne Pb in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol); if(in2 != TopAbs_OUT) { seqp.Append(firstp); seqp.Append(lastp); } } } } } } } // // The One resulting curve consists of 7 segments that are // connected between each other. // The aim of the block is to reject these segments and have // one segment instead of 7. // The other reason to do that is value of TolReached3D=49. // Why -? It is not known yet. // PKV 22.Apr.2002 // Standard_Integer aNbParts; // aNbParts = seqp.Length()/2; if (aNbParts > 1) { Standard_Boolean bCond; GeomAbs_SurfaceType aST1, aST2; aST1 = myHS1->Surface().GetType(); aST2 = myHS2->Surface().GetType(); // bCond=Standard_False; if (aST1==GeomAbs_Plane) { if (aST2==GeomAbs_SurfaceOfExtrusion || aST2==GeomAbs_SurfaceOfRevolution) {//+zft bCond=!bCond; } } else if (aST2==GeomAbs_Plane) { if (aST1==GeomAbs_SurfaceOfExtrusion || aST1==GeomAbs_SurfaceOfRevolution) {//+zft bCond=!bCond; } } // if (bCond) { Standard_Integer aNb, anIndex, aNbTmp, jx; TColStd_IndexedMapOfInteger aMap; TColStd_SequenceOfReal aSeqTmp; // aNb=seqp.Length(); for(i=1; i<=aNb; ++i) { lastp =seqp(i); anIndex=(Standard_Integer)lastp; if (!aMap.Contains(anIndex)){ aMap.Add(anIndex); aSeqTmp.Append(lastp); } else { aNbTmp=aSeqTmp.Length(); aSeqTmp.Remove(aNbTmp); } } // seqp.Clear(); // aNb=aSeqTmp.Length()/2; for(i=1; i<=aNb;++i) { jx=2*i; firstp=aSeqTmp(jx-1); lastp =aSeqTmp(jx); seqp.Append(firstp); seqp.Append(lastp); } }//if (bCond) { } done = Standard_True; return; }// else if(typl == IntPatch_Walking) { // //----------------------------------------------------------- else if (typl != IntPatch_Restriction) { seqp.Clear(); // Handle(IntPatch_GLine)& GLine = *((Handle(IntPatch_GLine) *)&L); // if(typl == IntPatch_Circle || typl == IntPatch_Ellipse) { TreatCircle(L, Tol); done=Standard_True; return; } //---------------------------- Standard_Boolean intrvtested; Standard_Real u1,v1,u2,v2; // nbvtx = GeomInt_LineTool::NbVertex(L); intrvtested = Standard_False; for(i=1; iPrecision::PConfusion()) { intrvtested = Standard_True; const Standard_Real pmid = (firstp+lastp)*0.5; gp_Pnt Pmid; GLinePoint(typl, GLine, pmid, Pmid); // Parameters(myHS1,myHS2,Pmid,u1,v1,u2,v2); Recadre(myHS1,myHS2,u1,v1,u2,v2); const TopAbs_State in1 = myDom1->Classify(gp_Pnt2d(u1,v1),Tol); if(in1 != TopAbs_OUT) { const TopAbs_State in2 = myDom2->Classify(gp_Pnt2d(u2,v2),Tol); if(in2 != TopAbs_OUT) { seqp.Append(firstp); seqp.Append(lastp); } } } } // if (!intrvtested) { // Keep a priori. A point 2d on each // surface is required to make the decision. Will be done in the caller seqp.Append(GeomInt_LineTool::FirstParameter(L)); seqp.Append(GeomInt_LineTool::LastParameter(L)); } // done =Standard_True; return; } // else if (typl != IntPatch_Restriction) { done = Standard_False; seqp.Clear(); nbvtx = GeomInt_LineTool::NbVertex(L); if (nbvtx == 0) { // Keep a priori. Point 2d is required on each // surface to make the decision. Will be done in the caller seqp.Append(GeomInt_LineTool::FirstParameter(L)); seqp.Append(GeomInt_LineTool::LastParameter(L)); done = Standard_True; return; } GeomInt_SequenceOfParameterAndOrientation seqpss; TopAbs_Orientation or1=TopAbs_FORWARD,or2=TopAbs_FORWARD; for (i=1; i<=nbvtx; i++) { const IntPatch_Point& thevtx = GeomInt_LineTool::Vertex(L,i); const Standard_Real prm = thevtx.ParameterOnLine(); if (thevtx.IsOnDomS1()) { switch (thevtx.TransitionLineArc1().TransitionType()) { case IntSurf_In: or1 = TopAbs_FORWARD; break; case IntSurf_Out: or1 = TopAbs_REVERSED; break; case IntSurf_Touch: or1 = TopAbs_INTERNAL; break; case IntSurf_Undecided: or1 = TopAbs_INTERNAL; break; } } else { or1 = TopAbs_INTERNAL; } if (thevtx.IsOnDomS2()) { switch (thevtx.TransitionLineArc2().TransitionType()) { case IntSurf_In: or2 = TopAbs_FORWARD; break; case IntSurf_Out: or2 = TopAbs_REVERSED; break; case IntSurf_Touch: or2 = TopAbs_INTERNAL; break; case IntSurf_Undecided: or2 = TopAbs_INTERNAL; break; } } else { or2 = TopAbs_INTERNAL; } // const Standard_Integer nbinserted = seqpss.Length(); Standard_Boolean inserted = Standard_False; for (Standard_Integer j=1; j<=nbinserted;j++) { if (Abs(prm-seqpss(j).Parameter()) <= Tol) { // accumulate GeomInt_ParameterAndOrientation& valj = seqpss.ChangeValue(j); if (or1 != TopAbs_INTERNAL) { if (valj.Orientation1() != TopAbs_INTERNAL) { if (or1 != valj.Orientation1()) { valj.SetOrientation1(TopAbs_INTERNAL); } } else { valj.SetOrientation1(or1); } } if (or2 != TopAbs_INTERNAL) { if (valj.Orientation2() != TopAbs_INTERNAL) { if (or2 != valj.Orientation2()) { valj.SetOrientation2(TopAbs_INTERNAL); } } else { valj.SetOrientation2(or2); } } inserted = Standard_True; break; } if (prm < seqpss(j).Parameter()-Tol ) { // insert before position j seqpss.InsertBefore(j,GeomInt_ParameterAndOrientation(prm,or1,or2)); inserted = Standard_True; break; } } if (!inserted) { seqpss.Append(GeomInt_ParameterAndOrientation(prm,or1,or2)); } } // determine the state at the beginning of line Standard_Boolean trim = Standard_False; Standard_Boolean dansS1 = Standard_False; Standard_Boolean dansS2 = Standard_False; nbvtx = seqpss.Length(); for (i=1; i<= nbvtx; i++) { or1 = seqpss(i).Orientation1(); if (or1 != TopAbs_INTERNAL) { trim = Standard_True; dansS1 = (or1 != TopAbs_FORWARD); break; } } if (i > nbvtx) { Standard_Real U,V; for (i=1; i<=GeomInt_LineTool::NbVertex(L); i++ ) { if (!GeomInt_LineTool::Vertex(L,i).IsOnDomS1() ) { GeomInt_LineTool::Vertex(L,i).ParametersOnS1(U,V); gp_Pnt2d PPCC(U,V); if (myDom1->Classify(PPCC,Tol) == TopAbs_OUT) { done = Standard_True; return; } break; } } dansS1 = Standard_True; // Keep in doubt } // for (i=1; i<= nbvtx; i++) { or2 = seqpss(i).Orientation2(); if (or2 != TopAbs_INTERNAL) { trim = Standard_True; dansS2 = (or2 != TopAbs_FORWARD); break; } } if (i > nbvtx) { Standard_Real U,V; for (i=1; i<=GeomInt_LineTool::NbVertex(L); i++ ) { if (!GeomInt_LineTool::Vertex(L,i).IsOnDomS2() ) { GeomInt_LineTool::Vertex(L,i).ParametersOnS2(U,V); if (myDom2->Classify(gp_Pnt2d(U,V),Tol) == TopAbs_OUT) { done = Standard_True; return; } break; } } dansS2 = Standard_True; // Keep in doubt } if (!trim) { // necessarily dansS1 == dansS2 == Standard_True seqp.Append(GeomInt_LineTool::FirstParameter(L)); seqp.Append(GeomInt_LineTool::LastParameter(L)); done = Standard_True; return; } // sequence seqpss is peeled to create valid ends // and store them in seqp(2*i+1) and seqp(2*i+2) Standard_Real thefirst = GeomInt_LineTool::FirstParameter(L); Standard_Real thelast = GeomInt_LineTool::LastParameter(L); firstp = thefirst; for (i=1; i<=nbvtx; i++) { or1 = seqpss(i).Orientation1(); or2 = seqpss(i).Orientation2(); if (dansS1 && dansS2) { if (or1 == TopAbs_REVERSED){ dansS1 = Standard_False; } if (or2 == TopAbs_REVERSED){ dansS2 = Standard_False; } if (!dansS1 || !dansS2) { lastp = seqpss(i).Parameter(); Standard_Real stofirst = Max(firstp, thefirst); Standard_Real stolast = Min(lastp, thelast) ; if (stolast > stofirst) { seqp.Append(stofirst); seqp.Append(stolast); } if (lastp > thelast) { break; } } } else { if (dansS1) { if (or1 == TopAbs_REVERSED) { dansS1 = Standard_False; } } else { if (or1 == TopAbs_FORWARD){ dansS1 = Standard_True; } } if (dansS2) { if (or2 == TopAbs_REVERSED) { dansS2 = Standard_False; } } else { if (or2 == TopAbs_FORWARD){ dansS2 = Standard_True; } } if (dansS1 && dansS2){ firstp = seqpss(i).Parameter(); } } } // // finally to add if (dansS1 && dansS2) { lastp = thelast; firstp = Max(firstp,thefirst); if (lastp > firstp) { seqp.Append(firstp); seqp.Append(lastp); } } done = Standard_True; } //======================================================================= //function : Recadre //purpose : //======================================================================= void Recadre(const Handle(GeomAdaptor_HSurface)& myHS1, const Handle(GeomAdaptor_HSurface)& myHS2, Standard_Real& u1, Standard_Real& v1, Standard_Real& u2, Standard_Real& v2) { Standard_Boolean myHS1IsUPeriodic,myHS1IsVPeriodic; const GeomAbs_SurfaceType typs1 = myHS1->GetType(); switch (typs1) { case GeomAbs_Cylinder: case GeomAbs_Cone: case GeomAbs_Sphere: { myHS1IsUPeriodic = Standard_True; myHS1IsVPeriodic = Standard_False; break; } case GeomAbs_Torus: { myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_True; break; } default: { //-- Case of periodic biparameters is processed upstream myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_False; break; } } Standard_Boolean myHS2IsUPeriodic,myHS2IsVPeriodic; const GeomAbs_SurfaceType typs2 = myHS2->GetType(); switch (typs2) { case GeomAbs_Cylinder: case GeomAbs_Cone: case GeomAbs_Sphere: { myHS2IsUPeriodic = Standard_True; myHS2IsVPeriodic = Standard_False; break; } case GeomAbs_Torus: { myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_True; break; } default: { //-- Case of periodic biparameters is processed upstream myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_False; break; } } if(myHS1IsUPeriodic) { const Standard_Real lmf = M_PI+M_PI; //-- myHS1->UPeriod(); const Standard_Real f = myHS1->FirstUParameter(); const Standard_Real l = myHS1->LastUParameter(); while(u1 < f) { u1+=lmf; } while(u1 > l) { u1-=lmf; } } if(myHS1IsVPeriodic) { const Standard_Real lmf = M_PI+M_PI; //-- myHS1->VPeriod(); const Standard_Real f = myHS1->FirstVParameter(); const Standard_Real l = myHS1->LastVParameter(); while(v1 < f) { v1+=lmf; } while(v1 > l) { v1-=lmf; } } if(myHS2IsUPeriodic) { const Standard_Real lmf = M_PI+M_PI; //-- myHS2->UPeriod(); const Standard_Real f = myHS2->FirstUParameter(); const Standard_Real l = myHS2->LastUParameter(); while(u2 < f) { u2+=lmf; } while(u2 > l) { u2-=lmf; } } if(myHS2IsVPeriodic) { const Standard_Real lmf = M_PI+M_PI; //-- myHS2->VPeriod(); const Standard_Real f = myHS2->FirstVParameter(); const Standard_Real l = myHS2->LastVParameter(); while(v2 < f) { v2+=lmf; } while(v2 > l) { v2-=lmf; } } } //======================================================================= //function : Parameters //purpose : //======================================================================= void Parameters(const Handle(GeomAdaptor_HSurface)& myHS1, const Handle(GeomAdaptor_HSurface)& myHS2, const gp_Pnt& Ptref, Standard_Real& U1, Standard_Real& V1, Standard_Real& U2, Standard_Real& V2) { Parameters(myHS1, Ptref, U1, V1); Parameters(myHS2, Ptref, U2, V2); } //======================================================================= //function : Parameter //purpose : //======================================================================= void Parameters(const Handle(GeomAdaptor_HSurface)& myHS1, const gp_Pnt& Ptref, Standard_Real& U1, Standard_Real& V1) { IntSurf_Quadric quad1; // switch (myHS1->Surface().GetType()) { case GeomAbs_Plane: quad1.SetValue(myHS1->Surface().Plane()); break; case GeomAbs_Cylinder: quad1.SetValue(myHS1->Surface().Cylinder()); break; case GeomAbs_Cone: quad1.SetValue(myHS1->Surface().Cone()); break; case GeomAbs_Sphere: quad1.SetValue(myHS1->Surface().Sphere()); break; default: Standard_ConstructionError::Raise("IntTools_LineConstructor::Parameters"); } quad1.Parameters(Ptref,U1,V1); } //======================================================================= //function : GLinePoint //purpose : //======================================================================= void GLinePoint(const IntPatch_IType typl, const Handle(IntPatch_GLine)& GLine, const Standard_Real aT, gp_Pnt& aP) { switch (typl) { case IntPatch_Lin: aP = ElCLib::Value(aT, GLine->Line()); break; case IntPatch_Circle: aP = ElCLib::Value(aT, GLine->Circle()); break; case IntPatch_Ellipse: aP = ElCLib::Value(aT, GLine->Ellipse()); break; case IntPatch_Hyperbola: aP = ElCLib::Value(aT, GLine->Hyperbola()); break; case IntPatch_Parabola: aP = ElCLib::Value(aT, GLine->Parabola()); break; default: Standard_ConstructionError::Raise("IntTools_LineConstructor::Parameters"); } } //XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX // //======================================================================= //class : IntTools_RealWithFlag //purpose : //======================================================================= class IntTools_RealWithFlag { public: IntTools_RealWithFlag() : myValue(-99.), myFlag(1) { }; // ~IntTools_RealWithFlag() { }; // void SetValue(const Standard_Real aT) { myValue=aT; }; // Standard_Real Value() const { return myValue; } // void SetFlag(const Standard_Integer aFlag) { myFlag=aFlag; }; // Standard_Integer Flag() const { return myFlag; } // Standard_Boolean operator < (const IntTools_RealWithFlag& aOther) { return myValueArcType(); Handle(IntPatch_GLine)& aGLine=*((Handle(IntPatch_GLine) *)&aLine); // bRejected=RejectMicroCircle(aGLine, aType, aTol); if (bRejected) { return; } //---------------------------------------- Standard_Boolean bFound; Standard_Integer aNbVtx, aNbVtxWas, i; Standard_Real aTolPC, aT, aT1, aT2, aTmid, aTwoPI, aTolPC1; Standard_Real aU1, aV1, aU2, aV2; TopAbs_State aIn1, aIn2; GeomAbs_SurfaceType aTS1, aTS2; gp_Pnt aPmid; gp_Pnt2d aP2D; IntTools_RealWithFlag *pVtx; //-------------------------------------1 aTwoPI=M_PI+M_PI; aTolPC=Precision::PConfusion(); aNbVtxWas=GeomInt_LineTool::NbVertex(aLine); aNbVtx=aNbVtxWas+2; //-------------------------------------2 aTS1=myHS1->GetType(); aTS2=myHS2->GetType(); // // About the value aTolPC1=1000.*aTolPC, // see IntPatch_GLine.cxx, line:398 // for more details; aTolPC1=1000.*aTolPC; //------------------------------------- // pVtx=new IntTools_RealWithFlag [aNbVtx]; // pVtx[0].SetValue(0.); pVtx[1].SetValue(aTwoPI); // for(i=1; i<=aNbVtxWas; ++i) { aT=GeomInt_LineTool::Vertex(aLine, i).ParameterOnLine(); aT=AdjustOnPeriod(aT, aTwoPI); pVtx[i+1].SetValue(aT); } // SortShell(aNbVtx, pVtx); // RejectNearBeacons(aNbVtx, pVtx, aTolPC1, aTS1, aTS2); // RejectDuplicates(aNbVtx, pVtx, aTolPC); // if ((aType==IntPatch_Circle || aType==IntPatch_Ellipse)&& aNbVtx>2) { // zz bFound=Standard_False; for(i=1; i<=aNbVtxWas; ++i) { aT=GeomInt_LineTool::Vertex(aLine, i).ParameterOnLine(); if (fabs(aT) < aTolPC1 || fabs(aT-aTwoPI) < aTolPC1) { bFound=!bFound; break; } } if (!bFound) { aT=pVtx[1].Value()+aTwoPI; pVtx[aNbVtx-1].SetValue(aT); // for(i=0; iClassify(aP2D, aTol); if(aIn1 != TopAbs_OUT) { aP2D.SetCoord(aU2, aV2); aIn2=myDom2->Classify(aP2D, aTol); if(aIn2 != TopAbs_OUT) { seqp.Append(aT1); seqp.Append(aT2); } } } // delete [] pVtx; } //======================================================================= //function : RejectNearBeacons //purpose : Reject the thickenings near the beacon points (if exist) // The gifts, made by sweep algo. // chl/930/B5 B8 C2 C5 E2 E5 E8 F2 G8 H2 H5 H8 //======================================================================= void RejectNearBeacons(Standard_Integer& aNbVtx, IntTools_RealWithFlag *pVtx, Standard_Real aTolPC1, const GeomAbs_SurfaceType aTS1, const GeomAbs_SurfaceType aTS2) { Standard_Integer i, j, iBcn; Standard_Real aT, aBcn[2]; // if (aTS1==GeomAbs_Cylinder && aTS2==GeomAbs_Cylinder) { aBcn[0]=0.5*M_PI; aBcn[1]=1.5*M_PI; // for (j=0; j<2; ++j) { iBcn=-1; for(i=0; i=0. && aT<=aPeriod)) { k=(Standard_Integer)(aT/aPeriod); aT=aT-k*aPeriod; } // return aT; } //======================================================================= //function : RejectMicroCrcles //purpose : //======================================================================= Standard_Boolean RejectMicroCircle(const Handle(IntPatch_GLine)& aGLine, const IntPatch_IType aType, const Standard_Real aTol3D) { Standard_Boolean bRet; Standard_Real aR; // bRet=Standard_False; // if (aType==IntPatch_Circle) { aR=aGLine->Circle().Radius(); bRet=(aREllipse().MajorRadius(); bRet=(aR -1) goto m30; }//if (a[l] < a[j]){ }//for (i=0; i