// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //======================================================================= // Creation of a circle tangent to a circle and two points. + //======================================================================= GccAna_Circ2d3Tan:: GccAna_Circ2d3Tan (const GccEnt_QualifiedCirc& Qualified1 , const gp_Pnt2d& Point2 , const gp_Pnt2d& Point3 , const Standard_Real Tolerance ): cirsol(1,2) , qualifier1(1,2) , qualifier2(1,2) , qualifier3(1,2) , TheSame1(1,2) , TheSame2(1,2) , TheSame3(1,2) , pnttg1sol(1,2) , pnttg2sol(1,2) , pnttg3sol(1,2) , par1sol(1,2) , par2sol(1,2) , par3sol(1,2) , pararg1(1,2) , pararg2(1,2) , pararg3(1,2) { gp_Dir2d dirx(1.0,0.0); Standard_Real Tol = Abs(Tolerance); WellDone = Standard_False; NbrSol = 0; if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() || Qualified1.IsOutside() || Qualified1.IsUnqualified())) { GccEnt_BadQualifier::Raise(); return; } //========================================================================= // Processing. + //========================================================================= gp_Circ2d C1 = Qualified1.Qualified(); Standard_Real R1 = C1.Radius(); gp_Pnt2d center1(C1.Location()); TColStd_Array1OfReal Radius(1,2); if (Point2.IsEqual(Point3,Precision::Confusion())) { WellDone = Standard_False; return ; } GccAna_Pnt2dBisec Bis1(Point2,Point3); GccAna_CircPnt2dBisec Bis2(C1,Point2); if (Bis1.IsDone() && Bis2.IsDone()) { Standard_Integer nbsolution2 = Bis2.NbSolutions(); for (Standard_Integer i = 1 ; i <= nbsolution2; i++) { Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution(i); GccInt_IType typ2 = Sol2->ArcType(); gp_Lin2d Sol1(Bis1.ThisSolution()); IntAna2d_AnaIntersection Intp; if (typ2 == GccInt_Cir) { Intp.Perform(Sol1,Sol2->Circle()); } else if (typ2 == GccInt_Lin) { Intp.Perform(Sol1,Sol2->Line()); } else if (typ2 == GccInt_Hpr) { Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Hyperbola())); } else if (typ2 == GccInt_Ell) { Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Ellipse())); } if (Intp.IsDone()) { if (!Intp.IsEmpty()) { for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) { gp_Pnt2d Center(Intp.Point(j).Value()); Standard_Real dist1 = Center.Distance(center1); Standard_Real dist2 = Center.Distance(Point2); Standard_Real dist3 = Center.Distance(Point3); Standard_Integer nbsol1 = 0; // Standard_Integer nbsol2 = 0; Standard_Integer nbsol3 = 0; Standard_Boolean ok = Standard_False; if (Qualified1.IsEnclosed()) { if (dist1-R1 < Tolerance) { Radius(1) = Abs(R1-dist1); nbsol1 = 1; ok = Standard_True; } } else if (Qualified1.IsOutside()) { if (R1-dist1 < Tolerance) { Radius(1) = Abs(R1-dist1); nbsol1 = 1; ok = Standard_True; } } else if (Qualified1.IsEnclosing()) { ok = Standard_True; nbsol1 = 1; Radius(1) = R1+dist1; } else if (Qualified1.IsUnqualified()) { ok = Standard_True; nbsol1 = 2; Radius(1) = Abs(R1-dist1); Radius(2) = R1+dist1; } if (ok) { ok = Standard_False; for (Standard_Integer ii = 1 ; ii <= nbsol1 ; ii++) { //pop if (Abs(dist2-Radius(ii))<=Tol && Abs(dist2-Radius(ii))<=Tol){ if (Abs(dist2-Radius(ii))<=Tol && Abs(dist3-Radius(ii))<=Tol){ nbsol3 = ii; ok = Standard_True; } } } if (ok) { // for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) { if (NbrSol>=2) break; NbrSol++; // cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(k)); cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius(nbsol3)); // ========================================================== Standard_Real distcc1 = Center.Distance(center1); if (!Qualified1.IsUnqualified()) { qualifier1(NbrSol) = Qualified1.Qualifier(); } else if (Abs(distcc1+Radius(nbsol3)-R1) < Tol) { qualifier1(NbrSol) = GccEnt_enclosed; } else if (Abs(distcc1-R1-Radius(nbsol3)) < Tol) { qualifier1(NbrSol) = GccEnt_outside; } else { qualifier1(NbrSol) = GccEnt_enclosing; } qualifier2(NbrSol) = GccEnt_noqualifier; qualifier3(NbrSol) = GccEnt_noqualifier; if (Center.Distance(center1) <= Tolerance && Abs(Radius(nbsol3)-R1) <= Tolerance) { TheSame1(NbrSol) = 1; } else { TheSame1(NbrSol) = 0; gp_Dir2d dc(center1.XY()-Center.XY()); pnttg1sol(NbrSol)=gp_Pnt2d(Center.XY()+Radius(nbsol3)*dc.XY()); par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg1sol(NbrSol)); pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol)); } TheSame2(NbrSol) = 0; pnttg2sol(NbrSol) = Point2; par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg2sol(NbrSol)); pararg2(NbrSol)=0.; TheSame3(NbrSol) = 0; pnttg3sol(NbrSol) = Point3; par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg3sol(NbrSol)); pararg3(NbrSol) = 0.; //} } } } WellDone = Standard_True; } } } }