// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //========================================================================= // Creation of a circle tangent to two straight lines and a point. + //========================================================================= GccAna_Circ2d3Tan:: GccAna_Circ2d3Tan (const GccEnt_QualifiedLin& Qualified1 , const GccEnt_QualifiedLin& Qualified2 , const gp_Pnt2d& Point3 , const Standard_Real Tolerance ): cirsol(1,2) , qualifier1(1,2) , qualifier2(1,2) , qualifier3(1,2) , TheSame1(1,2) , TheSame2(1,2) , TheSame3(1,2) , pnttg1sol(1,2) , pnttg2sol(1,2) , pnttg3sol(1,2) , par1sol(1,2) , par2sol(1,2) , par3sol(1,2) , pararg1(1,2) , pararg2(1,2) , pararg3(1,2) { gp_Dir2d dirx(1.0,0.0); WellDone = Standard_False; Standard_Real Tol = Abs(Tolerance); NbrSol = 0; if (!(Qualified1.IsEnclosed() || Qualified1.IsOutside() || Qualified1.IsUnqualified()) || !(Qualified2.IsEnclosed() || Qualified2.IsOutside() || Qualified2.IsUnqualified())) { throw GccEnt_BadQualifier(); return; } pnttg3sol.Init(Point3); //========================================================================= // Processing. + //========================================================================= gp_Lin2d L1 = Qualified1.Qualified(); gp_Lin2d L2 = Qualified2.Qualified(); gp_Pnt2d origin1(L1.Location()); gp_Dir2d dir1(L1.Direction()); gp_Dir2d normL1(-dir1.Y(),dir1.X()); gp_Pnt2d origin2(L2.Location()); gp_Dir2d dir2(L2.Direction()); gp_Dir2d normL2(-dir2.Y(),dir2.X()); GccAna_Lin2dBisec Bis1(L1,L2); GccAna_LinPnt2dBisec Bis2(L1,Point3); if (Bis1.IsDone() && Bis2.IsDone()) { Standard_Integer nbsolution1 = Bis1.NbSolutions(); Handle(GccInt_Bisec) Sol2 = Bis2.ThisSolution(); for (Standard_Integer i = 1 ; i <= nbsolution1; i++) { const gp_Lin2d Sol1(Bis1.ThisSolution(i)); GccInt_IType typ2 = Sol2->ArcType(); IntAna2d_AnaIntersection Intp; if (typ2 == GccInt_Lin) { Intp.Perform(Sol1,Sol2->Line()); } else if (typ2 == GccInt_Par) { Intp.Perform(Sol1,IntAna2d_Conic(Sol2->Parabola())); } if (Intp.IsDone()) { if (!Intp.IsEmpty()) { for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) { gp_Pnt2d Center(Intp.Point(j).Value()); Standard_Real dist1 = L1.Distance(Center); Standard_Real dist2 = L2.Distance(Center); Standard_Real dist3 = Center.Distance(Point3); Standard_Real Radius=0; Standard_Integer nbsol3 = 0; Standard_Boolean ok = Standard_False; if (Qualified1.IsEnclosed()) { if ((((origin1.X()-Center.X())*(-dir1.Y()))+ ((origin1.Y()-Center.Y())*(dir1.X())))<=0){ ok = Standard_True; Radius = dist1; } } else if (Qualified1.IsOutside()) { if ((((origin1.X()-Center.X())*(-dir1.Y()))+ ((origin1.Y()-Center.Y())*(dir1.X())))>=0){ ok = Standard_True; Radius = dist1; } } else if (Qualified1.IsUnqualified()) { ok = Standard_True; Radius = dist1; } if (Qualified2.IsEnclosed()) { if ((((origin2.X()-Center.X())*(-dir2.Y()))+ ((origin2.Y()-Center.Y())*(dir2.X())))<=0){ if (Abs(dist2-Radius) < Tol) { } else { ok = Standard_False; } } } else if (Qualified2.IsOutside() && ok) { if ((((origin2.X()-Center.X())*(-dir2.Y()))+ ((origin2.Y()-Center.Y())*(dir2.X())))>=0){ if (Abs(dist2-Radius) < Tol) { } else { ok = Standard_False; } } } else if (Qualified2.IsUnqualified() && ok) { if (Abs(dist2-Radius) < Tol) { } else { ok = Standard_False; } } if (ok) { if (Abs(dist3-Radius) < Tol) { nbsol3 = 1; } else { ok = Standard_False; } } if (ok) { for (Standard_Integer k = 1 ; k <= nbsol3 ; k++) { NbrSol++; cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius); // ======================================================= gp_Dir2d dc1(origin1.XY()-Center.XY()); if (!Qualified1.IsUnqualified()) { qualifier1(NbrSol) = Qualified1.Qualifier(); } else if (dc1.Dot(normL1) > 0.0) { qualifier1(NbrSol) = GccEnt_outside; } else { qualifier1(NbrSol) = GccEnt_enclosed; } gp_Dir2d dc2(origin2.XY()-Center.XY()); if (!Qualified2.IsUnqualified()) { qualifier2(NbrSol) = Qualified2.Qualifier(); } else if (dc2.Dot(normL2) > 0.0) { qualifier2(NbrSol) = GccEnt_outside; } else { qualifier2(NbrSol) = GccEnt_enclosed; } qualifier3(NbrSol) = GccEnt_noqualifier; TheSame1(NbrSol) = 0; gp_Dir2d dc(origin1.XY()-Center.XY()); Standard_Real sign = dc.Dot(gp_Dir2d(-dir1.Y(),dir1.X())); dc = gp_Dir2d(sign*gp_XY(-dir1.Y(),dir1.X())); pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY()); par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg1sol(NbrSol)); pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol)); TheSame2(NbrSol) = 0; dc = gp_Dir2d(origin2.XY()-Center.XY()); sign = dc.Dot(gp_Dir2d(-dir2.Y(),dir2.X())); dc = gp_Dir2d(sign*gp_XY(-dir2.Y(),dir2.X())); pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc.XY()); par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg2sol(NbrSol)); pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol)); TheSame3(NbrSol) = 0; par3sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg3sol(NbrSol)); pararg3(NbrSol) = 0.; } } } } WellDone = Standard_True; } } } }