// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. //JCV 16/10/91 #include #include #include #include #include #include #include #include #include #include static Standard_Integer TheDegree = 2; static Standard_Integer MaxNbKnots = 2; static Standard_Integer MaxNbPoles = 3; //======================================================================= //function : Convert_HyperbolaToBSplineCurve //purpose : //======================================================================= Convert_HyperbolaToBSplineCurve::Convert_HyperbolaToBSplineCurve (const gp_Hypr2d& H , const Standard_Real U1, const Standard_Real U2 ) : Convert_ConicToBSplineCurve (MaxNbPoles, MaxNbKnots, TheDegree) { Standard_DomainError_Raise_if( Abs(U2 - U1) < Epsilon(0.), "Convert_ParabolaToBSplineCurve"); Standard_Real UF = Min (U1, U2); Standard_Real UL = Max( U1, U2); nbPoles = 3; nbKnots = 2; isperiodic = Standard_False; knots->ChangeArray1()(1) = UF; mults->ChangeArray1()(1) = 3; knots->ChangeArray1()(2) = UL; mults->ChangeArray1()(2) = 3; // construction of hyperbola in the reference xOy. Standard_Real R = H.MajorRadius(); Standard_Real r = H.MinorRadius(); gp_Dir2d Ox = H.Axis().XDirection(); gp_Dir2d Oy = H.Axis().YDirection(); Standard_Real S = ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.) ? 1 : -1; // poles expressed in the reference mark // the 2nd pole is at the intersection of 2 tangents to the curve // at points P(UF), P(UL) // the weight of this pole is equal to : Cosh((UL-UF)/2) weights->ChangeArray1()(1) = 1.; weights->ChangeArray1()(2) = Cosh((UL-UF)/2); weights->ChangeArray1()(3) = 1.; Standard_Real delta = Sinh(UL-UF); Standard_Real x = R * ( Sinh(UL) - Sinh(UF)) / delta; Standard_Real y = S * r * ( Cosh(UL) - Cosh(UF)) / delta; poles->ChangeArray1()(1) = gp_Pnt2d( R * Cosh(UF), S * r * Sinh(UF)); poles->ChangeArray1()(2) = gp_Pnt2d( x, y); poles->ChangeArray1()(3) = gp_Pnt2d( R * Cosh(UL), S * r * Sinh(UL)); // replace the bspline in the mark of the hyperbola gp_Trsf2d Trsf; Trsf.SetTransformation( H.Axis().XAxis(), gp::OX2d()); poles->ChangeArray1()(1).Transform( Trsf); poles->ChangeArray1()(2).Transform( Trsf); poles->ChangeArray1()(3).Transform( Trsf); }