-- Created on: 1997-07-29
-- Created by: Jerome LEMONIER
-- Copyright (c) 1997-1999 Matra Datavision
-- Copyright (c) 1999-2012 OPEN CASCADE SAS
--
-- The content of this file is subject to the Open CASCADE Technology Public
-- License Version 6.5 (the "License"). You may not use the content of this file
-- except in compliance with the License. Please obtain a copy of the License
-- at http://www.opencascade.org and read it completely before using this file.
--
-- The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
-- main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
--
-- The Original Code and all software distributed under the License is
-- distributed on an "AS IS" basis, without warranty of any kind, and the
-- Initial Developer hereby disclaims all such warranties, including without
-- limitation, any warranties of merchantability, fitness for a particular
-- purpose or non-infringement. Please see the License for the specific terms
-- and conditions governing the rights and limitations under the License.
class SurfPointEvolRadInv from BRepBlend
inherits SurfPointFuncInv from Blend
---Purpose: This function is used to find a solution on a done
-- point of the curve when using SurfRstConsRad or
-- CSConstRad...
-- The vector used in Value, Values and Derivatives
-- methods has to be the vector of the parametric
-- coordinates w, U, V where w is the parameter on the
-- guide line, U,V are the parametric coordinates of a
-- point on the partner surface.
uses
Pnt from gp,
Vector from math,
Matrix from math,
HSurface from Adaptor3d,
HCurve from Adaptor3d,
Function from Law
is
Create(S : HSurface from Adaptor3d; C : HCurve from Adaptor3d;
Evol : Function from Law)
returns SurfPointEvolRadInv from BRepBlend;
Set(me: in out; Choix: Integer from Standard)
is static;
NbEquations(me)
---Purpose: returns 3.
returns Integer from Standard;
Value(me: in out; X: Vector; F: out Vector)
---Purpose: computes the values of the Functions for the
-- variable .
-- Returns True if the computation was done successfully,
-- False otherwise.
returns Boolean from Standard;
Derivatives(me: in out; X: Vector; D: out Matrix)
---Purpose: returns the values of the derivatives for the
-- variable .
-- Returns True if the computation was done successfully,
-- False otherwise.
returns Boolean from Standard;
Values(me: in out; X: Vector; F: out Vector; D: out Matrix)
---Purpose: returns the values of the functions and the derivatives
-- for the variable .
-- Returns True if the computation was done successfully,
-- False otherwise.
returns Boolean from Standard;
Set(me: in out; P : Pnt from gp);
---Purpose: Set the Point on which a solution has to be found.
GetTolerance(me; Tolerance: out Vector from math; Tol: Real from Standard);
---Purpose: Returns in the vector Tolerance the parametric tolerance
-- for each of the 3 variables;
-- Tol is the tolerance used in 3d space.
GetBounds(me; InfBound,SupBound: out Vector from math);
---Purpose: Returns in the vector InfBound the lowest values allowed
-- for each of the 3 variables.
-- Returns in the vector SupBound the greatest values allowed
-- for each of the 3 variables.
IsSolution(me: in out; Sol: Vector from math; Tol: Real from Standard)
---Purpose: Returns Standard_True if Sol is a zero of the function.
-- Tol is the tolerance used in 3d space.
returns Boolean from Standard;
fields
surf : HSurface from Adaptor3d;
curv : HCurve from Adaptor3d;
point : Pnt from gp;
ray : Real from Standard;
choix : Integer from Standard;
tevol : Function from Law;
sg1 : Real from Standard;
end SurfPointEvolRadInv;