// Created on: 1997-10-06 // Created by: Roman BORISOV // Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //======================================================================= //class : Approx_CurveOnSurface_Eval //purpose: evaluator class for approximation of both 2d and 3d curves //======================================================================= class Approx_CurveOnSurface_Eval : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval (const Handle(Adaptor3d_HCurve)& theFunc, const Handle(Adaptor2d_HCurve2d)& theFunc2d, Standard_Real First, Standard_Real Last) : fonct(theFunc), fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor3d_HCurve) fonct; Handle(Adaptor2d_HCurve2d) fonct2d; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 5) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1], Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt pnt; gp_Pnt2d pnt2d; switch (*Order) { case 0: { fonct2d->D0(par, pnt2d); fonct->D0(par, pnt); Result[0] = pnt2d.X(); Result[1] = pnt2d.Y(); Result[2] = pnt.X(); Result[3] = pnt.Y(); Result[4] = pnt.Z(); break; } case 1: { gp_Vec v1; gp_Vec2d v21; fonct2d->D1(par, pnt2d, v21); fonct->D1(par,pnt, v1); Result[0] = v21.X(); Result[1] = v21.Y(); Result[2] = v1.X(); Result[3] = v1.Y(); Result[4] = v1.Z(); break; } case 2: { gp_Vec v1, v2; gp_Vec2d v21, v22; fonct2d->D2(par, pnt2d, v21, v22); fonct->D2(par, pnt, v1, v2); Result[0] = v22.X(); Result[1] = v22.Y(); Result[2] = v2.X(); Result[3] = v2.Y(); Result[4] = v2.Z(); break; } default: Result[0] = Result[1] = Result[2] = Result[3] = Result[4] = 0.; *ErrorCode = 3; break; } } //======================================================================= //class : Approx_CurveOnSurface_Eval3d //purpose: evaluator class for approximation of 3d curve //======================================================================= class Approx_CurveOnSurface_Eval3d : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval3d (const Handle(Adaptor3d_HCurve)& theFunc, Standard_Real First, Standard_Real Last) : fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor3d_HCurve) fonct; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval3d::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 3) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt pnt; switch (*Order) { case 0: pnt = fonct->Value(par); Result[0] = pnt.X(); Result[1] = pnt.Y(); Result[2] = pnt.Z(); break; case 1: { gp_Vec v1; fonct->D1(par, pnt, v1); Result[0] = v1.X(); Result[1] = v1.Y(); Result[2] = v1.Z(); break; } case 2: { gp_Vec v1, v2; fonct->D2(par, pnt, v1, v2); Result[0] = v2.X(); Result[1] = v2.Y(); Result[2] = v2.Z(); break; } default: Result[0] = Result[1] = Result[2] = 0.; *ErrorCode = 3; break; } } //======================================================================= //class : Approx_CurveOnSurface_Eval2d //purpose: evaluator class for approximation of 2d curve //======================================================================= class Approx_CurveOnSurface_Eval2d : public AdvApprox_EvaluatorFunction { public: Approx_CurveOnSurface_Eval2d (const Handle(Adaptor2d_HCurve2d)& theFunc2d, Standard_Real First, Standard_Real Last) : fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor2d_HCurve2d) fonct2d; Standard_Real StartEndSav[2]; }; void Approx_CurveOnSurface_Eval2d::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension != 2) { *ErrorCode = 1; } // Parameter is incorrect if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt2d pnt; switch (*Order) { case 0: { pnt = fonct2d->Value(par); Result[0] = pnt.X(); Result[1] = pnt.Y(); break; } case 1: { gp_Vec2d v1; fonct2d->D1(par, pnt, v1); Result[0] = v1.X(); Result[1] = v1.Y(); break; } case 2: { gp_Vec2d v1, v2; fonct2d->D2(par, pnt, v1, v2); Result[0] = v2.X(); Result[1] = v2.Y(); break; } default: Result[0] = Result[1] = 0.; *ErrorCode = 3; break; } } //============================================================================= //function : Approx_CurveOnSurface //purpose : Constructor //============================================================================= Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_HCurve2d)& C2D, const Handle(Adaptor3d_HSurface)& Surf, const Standard_Real First, const Standard_Real Last, const Standard_Real Tol, const GeomAbs_Shape S, const Standard_Integer MaxDegree, const Standard_Integer MaxSegments, const Standard_Boolean only3d, const Standard_Boolean only2d) : myC2D(C2D), mySurf(Surf), myFirst(First), myLast(Last), myTol(Tol), myIsDone(Standard_False), myHasResult(Standard_False), myError3d(0.0), myError2dU(0.0), myError2dV(0.0) { Perform(MaxSegments, MaxDegree, S, only3d, only2d); } //============================================================================= //function : Approx_CurveOnSurface //purpose : Constructor //============================================================================= Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_HCurve2d)& theC2D, const Handle(Adaptor3d_HSurface)& theSurf, const Standard_Real theFirst, const Standard_Real theLast, const Standard_Real theTol) : myC2D(theC2D), mySurf(theSurf), myFirst(theFirst), myLast(theLast), myTol(theTol), myIsDone(Standard_False), myHasResult(Standard_False), myError3d(0.0), myError2dU(0.0), myError2dV(0.0) { } //============================================================================= //function : Perform //purpose : //============================================================================= void Approx_CurveOnSurface::Perform(const Standard_Integer theMaxSegments, const Standard_Integer theMaxDegree, const GeomAbs_Shape theContinuity, const Standard_Boolean theOnly3d, const Standard_Boolean theOnly2d) { myIsDone = Standard_False; myHasResult = Standard_False; myError2dU = 0.0; myError2dV = 0.0; myError3d = 0.0; if(theOnly3d && theOnly2d) throw Standard_ConstructionError(); Handle( Adaptor2d_HCurve2d ) TrimmedC2D = myC2D->Trim( myFirst, myLast, Precision::PConfusion() ); Standard_Boolean isU, isForward; Standard_Real aParam; if (theOnly3d && isIsoLine(TrimmedC2D, isU, aParam, isForward)) { if (buildC3dOnIsoLine(TrimmedC2D, isU, aParam, isForward)) { myIsDone = Standard_True; myHasResult = Standard_True; return; } } Adaptor3d_CurveOnSurface COnS( TrimmedC2D, mySurf ); Handle(Adaptor3d_HCurveOnSurface) HCOnS = new Adaptor3d_HCurveOnSurface(); HCOnS->Set(COnS); Standard_Integer Num1DSS = 0, Num2DSS=0, Num3DSS=0; Handle(TColStd_HArray1OfReal) OneDTol; Handle(TColStd_HArray1OfReal) TwoDTolNul; Handle(TColStd_HArray1OfReal) ThreeDTol; // create evaluators and choose appropriate one Approx_CurveOnSurface_Eval3d Eval3dCvOnSurf (HCOnS, myFirst, myLast); Approx_CurveOnSurface_Eval2d Eval2dCvOnSurf ( TrimmedC2D, myFirst, myLast); Approx_CurveOnSurface_Eval EvalCvOnSurf (HCOnS, TrimmedC2D, myFirst, myLast); AdvApprox_EvaluatorFunction* EvalPtr; if ( theOnly3d ) EvalPtr = &Eval3dCvOnSurf; else if ( theOnly2d ) EvalPtr = &Eval2dCvOnSurf; else EvalPtr = &EvalCvOnSurf; // Initialization for 2d approximation if(!theOnly3d) { Num1DSS = 2; OneDTol = new TColStd_HArray1OfReal(1,Num1DSS); Standard_Real TolU, TolV; TolU = mySurf->UResolution(myTol)/2; TolV = mySurf->VResolution(myTol)/2; OneDTol->SetValue(1,TolU); OneDTol->SetValue(2,TolV); } if(!theOnly2d) { Num3DSS=1; ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS); ThreeDTol->Init(myTol/2); } Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2); TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1); HCOnS->Intervals(CutPnts_C2, GeomAbs_C2); Standard_Integer NbInterv_C3 = HCOnS->NbIntervals(GeomAbs_C3); TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3 + 1); HCOnS->Intervals(CutPnts_C3, GeomAbs_C3); AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3); AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS, OneDTol, TwoDTolNul, ThreeDTol, myFirst, myLast, theContinuity, theMaxDegree, theMaxSegments, *EvalPtr, CutTool); myIsDone = aApprox.IsDone(); myHasResult = aApprox.HasResult(); if (myHasResult) { Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots(); Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities(); Standard_Integer Degree = aApprox.Degree(); if(!theOnly2d) { TColgp_Array1OfPnt Poles(1,aApprox.NbPoles()); aApprox.Poles(1,Poles); myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree); myError3d = aApprox.MaxError(3, 1); } if(!theOnly3d) { TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles()); TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles()); aApprox.Poles1d(1, Poles1dU); TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles()); aApprox.Poles1d(2, Poles1dV); for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++) Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i))); myCurve2d = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree); myError2dU = aApprox.MaxError(1, 1); myError2dV = aApprox.MaxError(1, 2); } } } Standard_Boolean Approx_CurveOnSurface::IsDone() const { return myIsDone; } Standard_Boolean Approx_CurveOnSurface::HasResult() const { return myHasResult; } Handle(Geom_BSplineCurve) Approx_CurveOnSurface::Curve3d() const { return myCurve3d; } Handle(Geom2d_BSplineCurve) Approx_CurveOnSurface::Curve2d() const { return myCurve2d; } Standard_Real Approx_CurveOnSurface::MaxError3d() const { return myError3d; } Standard_Real Approx_CurveOnSurface::MaxError2dU() const { return myError2dU; } Standard_Real Approx_CurveOnSurface::MaxError2dV() const { return myError2dV; } //============================================================================= //function : isIsoLine //purpose : //============================================================================= Standard_Boolean Approx_CurveOnSurface::isIsoLine(const Handle(Adaptor2d_HCurve2d) theC2D, Standard_Boolean& theIsU, Standard_Real& theParam, Standard_Boolean& theIsForward) const { // These variables are used to check line state (vertical or horizontal). Standard_Boolean isAppropriateType = Standard_False; gp_Pnt2d aLoc2d; gp_Dir2d aDir2d; // Test type. const GeomAbs_CurveType aType = theC2D->GetType(); if (aType == GeomAbs_Line) { gp_Lin2d aLin2d = theC2D->Line(); aLoc2d = aLin2d.Location(); aDir2d = aLin2d.Direction(); isAppropriateType = Standard_True; } else if (aType == GeomAbs_BSplineCurve) { Handle(Geom2d_BSplineCurve) aBSpline2d = theC2D->BSpline(); if (aBSpline2d->Degree() != 1 || aBSpline2d->NbPoles() != 2) return Standard_False; // Not a line or uneven parameterization. aLoc2d = aBSpline2d->Pole(1); // Vector should be non-degenerated. gp_Vec2d aVec2d(aBSpline2d->Pole(1), aBSpline2d->Pole(2)); if (aVec2d.SquareMagnitude() < Precision::Confusion()) return Standard_False; // Degenerated spline. aDir2d = aVec2d; isAppropriateType = Standard_True; } else if (aType == GeomAbs_BezierCurve) { Handle(Geom2d_BezierCurve) aBezier2d = theC2D->Bezier(); if (aBezier2d->Degree() != 1 || aBezier2d->NbPoles() != 2) return Standard_False; // Not a line or uneven parameterization. aLoc2d = aBezier2d->Pole(1); // Vector should be non-degenerated. gp_Vec2d aVec2d(aBezier2d->Pole(1), aBezier2d->Pole(2)); if (aVec2d.SquareMagnitude() < Precision::Confusion()) return Standard_False; // Degenerated spline. aDir2d = aVec2d; isAppropriateType = Standard_True; } if (!isAppropriateType) return Standard_False; // Check line to be vertical or horizontal. if (aDir2d.IsParallel(gp::DX2d(), Precision::Angular())) { // Horizontal line. V = const. theIsU = Standard_False; theParam = aLoc2d.Y(); theIsForward = aDir2d.Dot(gp::DX2d()) > 0.0; return Standard_True; } else if (aDir2d.IsParallel(gp::DY2d(), Precision::Angular())) { // Vertical line. U = const. theIsU = Standard_True; theParam = aLoc2d.X(); theIsForward = aDir2d.Dot(gp::DY2d()) > 0.0; return Standard_True; } return Standard_False; } #include //============================================================================= //function : buildC3dOnIsoLine //purpose : //============================================================================= Standard_Boolean Approx_CurveOnSurface::buildC3dOnIsoLine(const Handle(Adaptor2d_HCurve2d) theC2D, const Standard_Boolean theIsU, const Standard_Real theParam, const Standard_Boolean theIsForward) { // Convert adapter to the appropriate type. Handle(GeomAdaptor_HSurface) aGeomAdapter = Handle(GeomAdaptor_HSurface)::DownCast(mySurf); if (aGeomAdapter.IsNull()) return Standard_False; if (mySurf->GetType() == GeomAbs_Sphere) return Standard_False; // Extract isoline Handle(Geom_Surface) aSurf = aGeomAdapter->ChangeSurface().Surface(); Handle(Geom_Curve) aC3d; gp_Pnt2d aF2d = theC2D->Value(theC2D->FirstParameter()); gp_Pnt2d aL2d = theC2D->Value(theC2D->LastParameter()); Standard_Boolean isToTrim = Standard_True; Standard_Real U1, U2, V1, V2; aSurf->Bounds(U1, U2, V1, V2); if (theIsU) { Standard_Real aV1Param = Min(aF2d.Y(), aL2d.Y()); Standard_Real aV2Param = Max(aF2d.Y(), aL2d.Y()); if (aV2Param < V1 - myTol || aV1Param > V2 + myTol) { return Standard_False; } else if (Precision::IsInfinite(V1) || Precision::IsInfinite(V2)) { if (Abs(aV2Param - aV1Param) < Precision::PConfusion()) { return Standard_False; } aSurf = new Geom_RectangularTrimmedSurface(aSurf, U1, U2, aV1Param, aV2Param); isToTrim = Standard_False; } else { aV1Param = Max(aV1Param, V1); aV2Param = Min(aV2Param, V2); if (Abs(aV2Param - aV1Param) < Precision::PConfusion()) { return Standard_False; } } aC3d = aSurf->UIso(theParam); if (isToTrim) aC3d = new Geom_TrimmedCurve(aC3d, aV1Param, aV2Param); } else { Standard_Real aU1Param = Min(aF2d.X(), aL2d.X()); Standard_Real aU2Param = Max(aF2d.X(), aL2d.X()); if (aU2Param < U1 - myTol || aU1Param > U2 + myTol) { return Standard_False; } else if (Precision::IsInfinite(U1) || Precision::IsInfinite(U2)) { if (Abs(aU2Param - aU1Param) < Precision::PConfusion()) { return Standard_False; } aSurf = new Geom_RectangularTrimmedSurface(aSurf, aU1Param, aU2Param, V1, V2); isToTrim = Standard_False; } else { aU1Param = Max(aU1Param, U1); aU2Param = Min(aU2Param, U2); if (Abs(aU2Param - aU1Param) < Precision::PConfusion()) { return Standard_False; } } aC3d = aSurf->VIso(theParam); if (isToTrim) aC3d = new Geom_TrimmedCurve(aC3d, aU1Param, aU2Param); } // Convert arbitrary curve type to the b-spline. myCurve3d = GeomConvert::CurveToBSplineCurve(aC3d, Convert_QuasiAngular); if (!theIsForward) myCurve3d->Reverse(); // Rebuild parameterization for the 3d curve to have the same parameterization with // a two-dimensional curve. TColStd_Array1OfReal aKnots = myCurve3d->Knots(); BSplCLib::Reparametrize(theC2D->FirstParameter(), theC2D->LastParameter(), aKnots); myCurve3d->SetKnots(aKnots); // Evaluate error. myError3d = 0.0; const Standard_Real aParF = myFirst; const Standard_Real aParL = myLast; const Standard_Integer aNbPnt = 23; for(Standard_Integer anIdx = 0; anIdx <= aNbPnt; ++anIdx) { const Standard_Real aPar = aParF + ((aParL - aParF) * anIdx) / aNbPnt; const gp_Pnt2d aPnt2d = theC2D->Value(aPar); const gp_Pnt aPntC3D = myCurve3d->Value(aPar); const gp_Pnt aPntC2D = mySurf->Value(aPnt2d.X(), aPnt2d.Y()); const Standard_Real aSqDeviation = aPntC3D.SquareDistance(aPntC2D); myError3d = Max(aSqDeviation, myError3d); } myError3d = Sqrt(myError3d); // Target tolerance is not obtained. This situation happens for isolines on the sphere. // OCCT is unable to convert it keeping original parameterization, while the geometric // form of the result is entirely identical. In that case, it is better to utilize // a general-purpose approach. if (myError3d > myTol) return Standard_False; return Standard_True; }