// Created on: 1998-08-20 // Created by: Philippe MANGIN // Copyright (c) 1998-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include //======================================================================= //class : Approx_Curve3d_Eval //purpose: evaluator class for approximation //======================================================================= class Approx_Curve3d_Eval : public AdvApprox_EvaluatorFunction { public: Approx_Curve3d_Eval (const Handle(Adaptor3d_HCurve)& theFunc, Standard_Real First, Standard_Real Last) : fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; } virtual void Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Parameter, Standard_Integer *DerivativeRequest, Standard_Real *Result, // [Dimension] Standard_Integer *ErrorCode); private: Handle(Adaptor3d_HCurve) fonct; Standard_Real StartEndSav[2]; }; void Approx_Curve3d_Eval::Evaluate (Standard_Integer *Dimension, Standard_Real StartEnd[2], Standard_Real *Param, // Parameter at which evaluation Standard_Integer *Order, // Derivative Request Standard_Real *Result,// [Dimension] Standard_Integer *ErrorCode) { *ErrorCode = 0; Standard_Real par = *Param; // Dimension is incorrect if (*Dimension!=3) { *ErrorCode = 1; } if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1]) { fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion()); StartEndSav[0]=StartEnd[0]; StartEndSav[1]=StartEnd[1]; } gp_Pnt pnt; gp_Vec v1, v2; switch (*Order) { case 0: pnt = fonct->Value(par); Result[0] = pnt.X(); Result[1] = pnt.Y(); Result[2] = pnt.Z(); break; case 1: fonct->D1(par, pnt, v1); Result[0] = v1.X(); Result[1] = v1.Y(); Result[2] = v1.Z(); break; case 2: fonct->D2(par, pnt, v1, v2); Result[0] = v2.X(); Result[1] = v2.Y(); Result[2] = v2.Z(); break; default: Result[0] = Result[1] = Result[2] = 0.; *ErrorCode = 3; break; } } Approx_Curve3d::Approx_Curve3d(const Handle(Adaptor3d_HCurve)& Curve, const Standard_Real Tol3d, const GeomAbs_Shape Order, const Standard_Integer MaxSegments, const Standard_Integer MaxDegree) { // Initialisation of input parameters of AdvApprox Standard_Integer Num1DSS=0, Num2DSS=0, Num3DSS=1; Handle(TColStd_HArray1OfReal) OneDTolNul, TwoDTolNul; Handle(TColStd_HArray1OfReal) ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS); ThreeDTol->Init(Tol3d); Standard_Real First = Curve->FirstParameter(); Standard_Real Last = Curve->LastParameter(); Standard_Integer NbInterv_C2 = Curve->NbIntervals(GeomAbs_C2); TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2+1); Curve->Intervals(CutPnts_C2,GeomAbs_C2); Standard_Integer NbInterv_C3 = Curve->NbIntervals(GeomAbs_C3); TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3+1); Curve->Intervals(CutPnts_C3,GeomAbs_C3); AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3); myMaxError = 0; Approx_Curve3d_Eval ev (Curve, First, Last); AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS, OneDTolNul, TwoDTolNul, ThreeDTol, First, Last, Order, MaxDegree, MaxSegments, ev, CutTool); myIsDone = aApprox.IsDone(); myHasResult = aApprox.HasResult(); if (myHasResult) { TColgp_Array1OfPnt Poles(1,aApprox.NbPoles()); aApprox.Poles(1,Poles); Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots(); Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities(); Standard_Integer Degree = aApprox.Degree(); myBSplCurve = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree); myMaxError = aApprox.MaxError(3, 1); } } Handle(Geom_BSplineCurve) Approx_Curve3d::Curve() const { return myBSplCurve; } Standard_Boolean Approx_Curve3d::IsDone() const { return myIsDone; } Standard_Boolean Approx_Curve3d::HasResult() const { return myHasResult; } Standard_Real Approx_Curve3d::MaxError() const { return myMaxError; } void Approx_Curve3d::Dump(Standard_OStream& o) const { o << "******* Dump of ApproxCurve *******" << endl; o << "*******Degree " << Curve()->Degree() << endl; o << "*******NbSegments " << Curve()->NbKnots() - 1 << endl; o << "*******Error " << MaxError() << endl; }