0024002: Overall code and build procedure refactoring -- manual
[occt.git] / src / StepToGeom / StepToGeom_MakeBoundedCurve.cxx
1 // Created on: 1993-07-02
2 // Created by: Martine LANGLOIS
3 // Copyright (c) 1993-1999 Matra Datavision
4 // Copyright (c) 1999-2014 OPEN CASCADE SAS
5 //
6 // This file is part of Open CASCADE Technology software library.
7 //
8 // This library is free software; you can redistribute it and/or modify it under
9 // the terms of the GNU Lesser General Public License version 2.1 as published
10 // by the Free Software Foundation, with special exception defined in the file
11 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12 // distribution for complete text of the license and disclaimer of any warranty.
13 //
14 // Alternatively, this file may be used under the terms of Open CASCADE
15 // commercial license or contractual agreement.
16
17 //:n6 abv 15.02.99: S4132: adding translation of polyline
18 //:p0 abv 19.02.99: management of 'done' flag improved; trimmed_curve treated
19
20 #include <Geom_BSplineCurve.hxx>
21 #include <Geom_TrimmedCurve.hxx>
22 #include <StepGeom_BezierCurve.hxx>
23 #include <StepGeom_BoundedCurve.hxx>
24 #include <StepGeom_BSplineCurveWithKnots.hxx>
25 #include <StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve.hxx>
26 #include <StepGeom_KnotType.hxx>
27 #include <StepGeom_Polyline.hxx>
28 #include <StepGeom_QuasiUniformCurve.hxx>
29 #include <StepGeom_QuasiUniformCurveAndRationalBSplineCurve.hxx>
30 #include <StepGeom_TrimmedCurve.hxx>
31 #include <StepGeom_UniformCurve.hxx>
32 #include <StepGeom_UniformCurveAndRationalBSplineCurve.hxx>
33 #include <StepToGeom_MakeBoundedCurve.hxx>
34 #include <StepToGeom_MakeBSplineCurve.hxx>
35 #include <StepToGeom_MakePolyline.hxx>
36 #include <StepToGeom_MakeTrimmedCurve.hxx>
37 #include <TColStd_HArray1OfInteger.hxx>
38 #include <TColStd_HArray1OfReal.hxx>
39
40 //=============================================================================
41 // Creation d' une BoundedCurve de Geom a partir d' une BoundedCurve de Step
42 //=============================================================================
43 Standard_Boolean StepToGeom_MakeBoundedCurve::Convert
44     (const Handle(StepGeom_BoundedCurve)& SC,
45      Handle(Geom_BoundedCurve)& CC)
46 {
47   if (SC->IsKind(STANDARD_TYPE(StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve))) {
48     const Handle(StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve)
49       Bspli = Handle(StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve)::DownCast(SC);
50         return StepToGeom_MakeBSplineCurve::Convert(Bspli,Handle(Geom_BSplineCurve)::DownCast (CC));
51   }
52   if (SC->IsKind(STANDARD_TYPE(StepGeom_BSplineCurveWithKnots))) {
53     const Handle(StepGeom_BSplineCurveWithKnots)
54       Bspli = Handle(StepGeom_BSplineCurveWithKnots)::DownCast(SC);
55         return StepToGeom_MakeBSplineCurve::Convert(Bspli,Handle(Geom_BSplineCurve)::DownCast (CC));
56   }
57   if (SC->IsKind(STANDARD_TYPE(StepGeom_TrimmedCurve))) {
58     const Handle(StepGeom_TrimmedCurve) L = Handle(StepGeom_TrimmedCurve)::DownCast(SC);
59         return StepToGeom_MakeTrimmedCurve::Convert(L,Handle(Geom_TrimmedCurve)::DownCast (CC));
60   }
61   // STEP BezierCurve, UniformCurve and QuasiUniformCurve are transformed into
62   // STEP BSplineCurve before being mapped onto CAS.CADE/SF
63   if (SC->IsKind(STANDARD_TYPE(StepGeom_BezierCurve))) {
64     const Handle(StepGeom_BezierCurve) BzC = Handle(StepGeom_BezierCurve)::DownCast(SC);
65     Standard_Integer aDegree = BzC->Degree();
66     if (aDegree < 1 || aDegree > Geom_BSplineCurve::MaxDegree())
67       return Standard_False;
68     const Handle(StepGeom_BSplineCurveWithKnots) BSPL = new StepGeom_BSplineCurveWithKnots;
69     BSPL->SetDegree(aDegree);
70     BSPL->SetControlPointsList(BzC->ControlPointsList());
71     BSPL->SetCurveForm(BzC->CurveForm());
72     BSPL->SetClosedCurve(BzC->ClosedCurve());
73     BSPL->SetSelfIntersect(BzC->SelfIntersect());
74     // Compute Knots and KnotsMultiplicity
75     const Handle(TColStd_HArray1OfInteger) Kmult = new TColStd_HArray1OfInteger(1,2);
76     const Handle(TColStd_HArray1OfReal) Knots = new TColStd_HArray1OfReal(1,2);
77     Kmult->SetValue(1, BzC->Degree() + 1);
78     Kmult->SetValue(2, BzC->Degree() + 1);
79     Knots->SetValue(1, 0.);
80     Knots->SetValue(2, 1.);
81     BSPL->SetKnotMultiplicities(Kmult);
82     BSPL->SetKnots(Knots);
83         return StepToGeom_MakeBSplineCurve::Convert(BSPL,Handle(Geom_BSplineCurve)::DownCast (CC));
84   }
85   if (SC->IsKind(STANDARD_TYPE(StepGeom_UniformCurve))) {
86     const Handle(StepGeom_UniformCurve) UC = Handle(StepGeom_UniformCurve)::DownCast(SC);
87     Standard_Integer aDegree = UC->Degree();
88     if (aDegree < 1 || aDegree > Geom_BSplineCurve::MaxDegree())
89       return Standard_False;
90     const Handle(StepGeom_BSplineCurveWithKnots) BSPL = new StepGeom_BSplineCurveWithKnots;
91     BSPL->SetDegree(aDegree);
92     BSPL->SetControlPointsList(UC->ControlPointsList());
93     BSPL->SetCurveForm(UC->CurveForm());
94     BSPL->SetClosedCurve(UC->ClosedCurve());
95     BSPL->SetSelfIntersect(UC->SelfIntersect());
96     // Compute Knots and KnotsMultiplicity
97     const Standard_Integer nbK = BSPL->NbControlPointsList() + BSPL->Degree() + 1;
98     const Handle(TColStd_HArray1OfInteger) Kmult = new TColStd_HArray1OfInteger(1,nbK);
99     const Handle(TColStd_HArray1OfReal) Knots = new TColStd_HArray1OfReal(1,nbK);
100     for (Standard_Integer iUC = 1 ; iUC <= nbK ; iUC ++) {
101       Kmult->SetValue(iUC, 1);
102       Knots->SetValue(iUC, iUC - 1.);
103     }
104     BSPL->SetKnotMultiplicities(Kmult);
105     BSPL->SetKnots(Knots);
106         return StepToGeom_MakeBSplineCurve::Convert(BSPL,Handle(Geom_BSplineCurve)::DownCast (CC));
107   }
108   if (SC->IsKind(STANDARD_TYPE(StepGeom_QuasiUniformCurve))) {
109     const Handle(StepGeom_QuasiUniformCurve) QUC = 
110       Handle(StepGeom_QuasiUniformCurve)::DownCast(SC);
111     Standard_Integer aDegree = QUC->Degree();
112     if (aDegree < 1 || aDegree > Geom_BSplineCurve::MaxDegree())
113       return Standard_False;
114     const Handle(StepGeom_BSplineCurveWithKnots) BSPL = new StepGeom_BSplineCurveWithKnots;
115     BSPL->SetDegree(aDegree);
116     BSPL->SetControlPointsList(QUC->ControlPointsList());
117     BSPL->SetCurveForm(QUC->CurveForm());
118     BSPL->SetClosedCurve(QUC->ClosedCurve());
119     BSPL->SetSelfIntersect(QUC->SelfIntersect());
120     // Compute Knots and KnotsMultiplicity
121     const Standard_Integer nbK = BSPL->NbControlPointsList() - BSPL->Degree() + 1;
122     const Handle(TColStd_HArray1OfInteger) Kmult = new TColStd_HArray1OfInteger(1,nbK);
123     const Handle(TColStd_HArray1OfReal) Knots = new TColStd_HArray1OfReal(1,nbK);
124     for (Standard_Integer iQUC = 1 ; iQUC <= nbK ; iQUC ++) {
125       Kmult->SetValue(iQUC, 1);
126       Knots->SetValue(iQUC, iQUC - 1.);
127     }
128     Kmult->SetValue(1, BSPL->Degree() + 1);
129     Kmult->SetValue(nbK, BSPL->Degree() + 1);
130     BSPL->SetKnotMultiplicities(Kmult);
131     BSPL->SetKnots(Knots);
132         return StepToGeom_MakeBSplineCurve::Convert(BSPL,Handle(Geom_BSplineCurve)::DownCast (CC));
133   }
134   if (SC->IsKind(STANDARD_TYPE(StepGeom_UniformCurveAndRationalBSplineCurve))) {
135     const Handle(StepGeom_UniformCurveAndRationalBSplineCurve) RUC = 
136       Handle(StepGeom_UniformCurveAndRationalBSplineCurve)::DownCast(SC);
137     Standard_Integer aDegree = RUC->Degree();
138     if (aDegree < 1 || aDegree > Geom_BSplineCurve::MaxDegree())
139       return Standard_False;
140     const Handle(StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve) RBSPL = 
141       new StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve;
142     // Compute Knots and KnotsMultiplicity
143     const Standard_Integer nbK = RUC->NbControlPointsList() + aDegree + 1;
144     const Handle(TColStd_HArray1OfInteger) Kmult = new TColStd_HArray1OfInteger(1,nbK);
145     const Handle(TColStd_HArray1OfReal) Knots = new TColStd_HArray1OfReal(1,nbK);
146     for (Standard_Integer iUC = 1 ; iUC <= nbK ; iUC ++) {
147       Kmult->SetValue(iUC, 1);
148       Knots->SetValue(iUC, iUC - 1.);
149     }
150     // Initialize the BSplineCurveWithKnotsAndRationalBSplineCurve
151     RBSPL->Init(RUC->Name(), aDegree, RUC->ControlPointsList(), RUC->CurveForm(),
152                 RUC->ClosedCurve(), RUC->SelfIntersect(), Kmult, Knots, StepGeom_ktUnspecified,
153                 RUC->WeightsData());
154         return StepToGeom_MakeBSplineCurve::Convert(RBSPL,Handle(Geom_BSplineCurve)::DownCast (CC));
155   }
156   if (SC->IsKind(STANDARD_TYPE(StepGeom_QuasiUniformCurveAndRationalBSplineCurve))) {
157     const Handle(StepGeom_QuasiUniformCurveAndRationalBSplineCurve) RQUC = 
158       Handle(StepGeom_QuasiUniformCurveAndRationalBSplineCurve)::DownCast(SC);
159     Standard_Integer aDegree = RQUC->Degree();
160     if (aDegree < 1 || aDegree > Geom_BSplineCurve::MaxDegree())
161       return Standard_False;
162     const Handle(StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve) RBSPL = 
163       new StepGeom_BSplineCurveWithKnotsAndRationalBSplineCurve;
164     // Compute Knots and KnotsMultiplicity
165     const Standard_Integer nbK = RQUC->NbControlPointsList() - aDegree + 1;
166     const Handle(TColStd_HArray1OfInteger) Kmult = new TColStd_HArray1OfInteger(1,nbK);
167     const Handle(TColStd_HArray1OfReal) Knots = new TColStd_HArray1OfReal(1,nbK);
168     for (Standard_Integer iRQUC = 1 ; iRQUC <= nbK ; iRQUC ++) {
169       Kmult->SetValue(iRQUC, 1);
170       Knots->SetValue(iRQUC, iRQUC - 1.);
171     }
172     Kmult->SetValue(1, aDegree + 1);
173     Kmult->SetValue(nbK, aDegree + 1);
174     // Initialize the BSplineCurveWithKnotsAndRationalBSplineCurve
175     RBSPL->Init(RQUC->Name(), aDegree, RQUC->ControlPointsList(), RQUC->CurveForm(),
176                 RQUC->ClosedCurve(), RQUC->SelfIntersect(), Kmult, Knots, StepGeom_ktUnspecified,
177                 RQUC->WeightsData());
178         return StepToGeom_MakeBSplineCurve::Convert(RBSPL,Handle(Geom_BSplineCurve)::DownCast (CC));
179   }
180   if (SC->IsKind(STANDARD_TYPE(StepGeom_Polyline))) { //:n6 abv 15 Feb 99
181     const Handle(StepGeom_Polyline) PL = Handle(StepGeom_Polyline)::DownCast (SC);
182     return StepToGeom_MakePolyline::Convert(PL,Handle(Geom_BSplineCurve)::DownCast (CC));
183   }
184   return Standard_False;
185 }