1 #ifdef ADAPTIVE_SAMPLING
2 #extension GL_ARB_shader_image_load_store : require
4 #ifdef ADAPTIVE_SAMPLING_ATOMIC
5 #extension GL_NV_shader_atomic_float : require
9 #extension GL_ARB_bindless_texture : require
12 //! Normalized pixel coordinates.
15 //! Sub-pixel offset in X direction for FSAA.
16 uniform float uOffsetX = 0.f;
17 //! Sub-pixel offset in Y direction for FSAA.
18 uniform float uOffsetY = 0.f;
20 //! Origin of viewing ray in left-top corner.
21 uniform vec3 uOriginLT;
22 //! Origin of viewing ray in left-bottom corner.
23 uniform vec3 uOriginLB;
24 //! Origin of viewing ray in right-top corner.
25 uniform vec3 uOriginRT;
26 //! Origin of viewing ray in right-bottom corner.
27 uniform vec3 uOriginRB;
29 //! Width of the rendering window.
30 uniform int uWinSizeX;
31 //! Height of the rendering window.
32 uniform int uWinSizeY;
34 //! Direction of viewing ray in left-top corner.
35 uniform vec3 uDirectLT;
36 //! Direction of viewing ray in left-bottom corner.
37 uniform vec3 uDirectLB;
38 //! Direction of viewing ray in right-top corner.
39 uniform vec3 uDirectRT;
40 //! Direction of viewing ray in right-bottom corner.
41 uniform vec3 uDirectRB;
43 //! Inverse model-view-projection matrix.
44 uniform mat4 uUnviewMat;
46 //! Model-view-projection matrix.
47 uniform mat4 uViewMat;
49 //! Texture buffer of data records of bottom-level BVH nodes.
50 uniform isamplerBuffer uSceneNodeInfoTexture;
51 //! Texture buffer of minimum points of bottom-level BVH nodes.
52 uniform samplerBuffer uSceneMinPointTexture;
53 //! Texture buffer of maximum points of bottom-level BVH nodes.
54 uniform samplerBuffer uSceneMaxPointTexture;
55 //! Texture buffer of transformations of high-level BVH nodes.
56 uniform samplerBuffer uSceneTransformTexture;
58 //! Texture buffer of vertex coords.
59 uniform samplerBuffer uGeometryVertexTexture;
60 //! Texture buffer of vertex normals.
61 uniform samplerBuffer uGeometryNormalTexture;
63 //! Texture buffer of per-vertex UV-coordinates.
64 uniform samplerBuffer uGeometryTexCrdTexture;
66 //! Texture buffer of triangle indices.
67 uniform isamplerBuffer uGeometryTriangTexture;
69 //! Texture buffer of material properties.
70 uniform samplerBuffer uRaytraceMaterialTexture;
71 //! Texture buffer of light source properties.
72 uniform samplerBuffer uRaytraceLightSrcTexture;
74 #ifdef BACKGROUND_CUBEMAP
75 //! Environment cubemap texture.
76 uniform samplerCube uEnvMapTexture;
77 //! Coefficient of Y controlling horizontal flip of cubemap
79 //! Coefficient of Z controlling vertical flip of cubemap
82 //! Environment map texture.
83 uniform sampler2D uEnvMapTexture;
86 //! Total number of light sources.
87 uniform int uLightCount;
88 //! Intensity of global ambient light.
89 uniform vec4 uGlobalAmbient;
91 //! Enables/disables hard shadows.
92 uniform int uShadowsEnabled;
93 //! Enables/disables specular reflections.
94 uniform int uReflectEnabled;
95 //! Enables/disables environment map lighting.
96 uniform int uEnvMapEnabled;
97 //! Enables/disables environment map background.
98 uniform int uEnvMapForBack;
100 //! Radius of bounding sphere of the scene.
101 uniform float uSceneRadius;
102 //! Scene epsilon to prevent self-intersections.
103 uniform float uSceneEpsilon;
106 //! Unique 64-bit handles of OpenGL textures.
107 uniform uvec2 uTextureSamplers[MAX_TEX_NUMBER];
110 #ifdef ADAPTIVE_SAMPLING
111 //! OpenGL image used for accumulating rendering result.
112 volatile restrict layout(r32f) uniform image2D uRenderImage;
114 #ifdef ADAPTIVE_SAMPLING_ATOMIC
115 //! OpenGL image storing offsets of sampled pixels blocks.
116 coherent restrict layout(rg32i) uniform iimage2D uOffsetImage;
118 //! OpenGL image defining per-tile amount of samples.
119 volatile restrict layout(r32i) uniform iimage2D uTilesImage;
122 //! Screen space tile size.
123 uniform ivec2 uTileSize;
126 //! Top color of gradient background.
127 uniform vec4 uBackColorTop = vec4 (0.0);
128 //! Bottom color of gradient background.
129 uniform vec4 uBackColorBot = vec4 (0.0);
131 //! Aperture radius of camera used for depth-of-field
132 uniform float uApertureRadius = 0.f;
134 //! Focal distance of camera used for depth-of field
135 uniform float uFocalPlaneDist = 10.f;
137 //! Camera position used for projective mode
138 uniform vec3 uEyeOrig;
140 //! Camera view direction used for projective mode
141 uniform vec3 uEyeView;
143 //! Camera's screen vertical direction used for projective mode
144 uniform vec3 uEyeVert;
146 //! Camera's screen horizontal direction used for projective mode
147 uniform vec3 uEyeSide;
149 //! Camera's screen size used for projective mode
150 uniform vec2 uEyeSize;
152 /////////////////////////////////////////////////////////////////////////////////////////
153 // Specific data types
155 //! Stores ray parameters.
163 //! Stores intersection parameters.
173 //! Stores triangle's vertex indexes and vertexes itself
181 /////////////////////////////////////////////////////////////////////////////////////////
182 // Some useful constants
184 #define MAXFLOAT 1e15f
186 #define SMALL vec3 (exp2 (-80.0f))
188 #define ZERO vec3 (0.0f, 0.0f, 0.0f)
189 #define UNIT vec3 (1.0f, 1.0f, 1.0f)
191 #define AXIS_X vec3 (1.0f, 0.0f, 0.0f)
192 #define AXIS_Y vec3 (0.0f, 1.0f, 0.0f)
193 #define AXIS_Z vec3 (0.0f, 0.0f, 1.0f)
195 #define M_PI 3.141592653f
196 #define M_2_PI 6.283185307f
197 #define M_PI_2 1.570796327f
199 #define LUMA vec3 (0.2126f, 0.7152f, 0.0722f)
201 // =======================================================================
202 // function : MatrixRowMultiplyDir
203 // purpose : Multiplies a vector by matrix
204 // =======================================================================
205 vec3 MatrixRowMultiplyDir (in vec3 v,
210 return vec3 (dot (m0.xyz, v),
215 //! 32-bit state of random number generator.
218 // =======================================================================
219 // function : SeedRand
220 // purpose : Applies hash function by Thomas Wang to randomize seeds
221 // (see http://www.burtleburtle.net/bob/hash/integer.html)
222 // =======================================================================
223 void SeedRand (in int theSeed, in int theSizeX, in int theRadius)
225 RandState = uint (int (gl_FragCoord.y) / theRadius * theSizeX + int (gl_FragCoord.x) / theRadius + theSeed);
227 RandState = (RandState + 0x479ab41du) + (RandState << 8);
228 RandState = (RandState ^ 0xe4aa10ceu) ^ (RandState >> 5);
229 RandState = (RandState + 0x9942f0a6u) - (RandState << 14);
230 RandState = (RandState ^ 0x5aedd67du) ^ (RandState >> 3);
231 RandState = (RandState + 0x17bea992u) + (RandState << 7);
234 // =======================================================================
235 // function : RandInt
236 // purpose : Generates integer using Xorshift algorithm by G. Marsaglia
237 // =======================================================================
240 RandState ^= (RandState << 13);
241 RandState ^= (RandState >> 17);
242 RandState ^= (RandState << 5);
247 // =======================================================================
248 // function : RandFloat
249 // purpose : Generates a random float in 0 <= x < 1 range
250 // =======================================================================
253 return float (RandInt()) * (1.f / 4294967296.f);
256 // =======================================================================
257 // function : MatrixColMultiplyPnt
258 // purpose : Multiplies a vector by matrix
259 // =======================================================================
260 vec3 MatrixColMultiplyPnt (in vec3 v,
266 return vec3 (m0.x * v.x + m1.x * v.y + m2.x * v.z + m3.x,
267 m0.y * v.x + m1.y * v.y + m2.y * v.z + m3.y,
268 m0.z * v.x + m1.z * v.y + m2.z * v.z + m3.z);
271 // =======================================================================
272 // function : MatrixColMultiplyDir
273 // purpose : Multiplies a vector by matrix
274 // =======================================================================
275 vec3 MatrixColMultiplyDir (in vec3 v,
280 return vec3 (m0.x * v.x + m1.x * v.y + m2.x * v.z,
281 m0.y * v.x + m1.y * v.y + m2.y * v.z,
282 m0.z * v.x + m1.z * v.y + m2.z * v.z);
285 //=======================================================================
286 // function : InverseDirection
287 // purpose : Returns safely inverted direction of the given one
288 //=======================================================================
289 vec3 InverseDirection (in vec3 theInput)
291 vec3 anInverse = 1.f / max (abs (theInput), SMALL);
293 return mix (-anInverse, anInverse, step (ZERO, theInput));
296 //=======================================================================
297 // function : BackgroundColor
298 // purpose : Returns color of gradient background
299 //=======================================================================
300 vec4 BackgroundColor()
302 #ifdef ADAPTIVE_SAMPLING_ATOMIC
304 ivec2 aFragCoord = ivec2 (gl_FragCoord.xy);
306 ivec2 aTileXY = imageLoad (uOffsetImage, aFragCoord / uTileSize).xy * uTileSize;
308 aTileXY.y += aFragCoord.y % min (uWinSizeY - aTileXY.y, uTileSize.y);
310 return mix (uBackColorBot, uBackColorTop, float (aTileXY.y) / uWinSizeY);
314 return mix (uBackColorBot, uBackColorTop, vPixel.y);
319 /////////////////////////////////////////////////////////////////////////////////////////
320 // Functions for compute ray-object intersection
322 //=======================================================================
323 // function : sampleUniformDisk
325 //=======================================================================
326 vec2 sampleUniformDisk ()
330 float aKsi1 = 2.f * RandFloat () - 1.f;
331 float aKsi2 = 2.f * RandFloat () - 1.f;
336 aPoint = vec2 (aKsi1, (M_PI / 4.f) * (0.f + aKsi2 / aKsi1));
338 aPoint = vec2 (aKsi2, (M_PI / 4.f) * (2.f - aKsi1 / aKsi2));
343 aPoint = vec2 (-aKsi1, (M_PI / 4.f) * (4.f + aKsi2 / aKsi1));
345 aPoint = vec2 (-aKsi2, (M_PI / 4.f) * (6.f - aKsi1 / aKsi2));
348 return vec2 (sin (aPoint.y), cos (aPoint.y)) * aPoint.x;
351 // =======================================================================
352 // function : GenerateRay
354 // =======================================================================
355 SRay GenerateRay (in vec2 thePixel)
357 #ifndef DEPTH_OF_FIELD
359 vec3 aP0 = mix (uOriginLB, uOriginRB, thePixel.x);
360 vec3 aP1 = mix (uOriginLT, uOriginRT, thePixel.x);
362 vec3 aD0 = mix (uDirectLB, uDirectRB, thePixel.x);
363 vec3 aD1 = mix (uDirectLT, uDirectRT, thePixel.x);
365 vec3 aDirection = normalize (mix (aD0, aD1, thePixel.y));
367 return SRay (mix (aP0, aP1, thePixel.y), aDirection);
371 vec2 aPixel = uEyeSize * (thePixel - vec2 (0.5f)) * 2.f;
373 vec2 aAperturePnt = sampleUniformDisk () * uApertureRadius;
375 vec3 aLocalDir = normalize (vec3 (
376 aPixel * uFocalPlaneDist - aAperturePnt, uFocalPlaneDist));
378 vec3 aOrigin = uEyeOrig +
379 uEyeSide * aAperturePnt.x +
380 uEyeVert * aAperturePnt.y;
382 vec3 aDirect = uEyeView * aLocalDir.z +
383 uEyeSide * aLocalDir.x +
384 uEyeVert * aLocalDir.y;
386 return SRay (aOrigin, aDirect);
391 // =======================================================================
392 // function : IntersectSphere
393 // purpose : Computes ray-sphere intersection
394 // =======================================================================
395 float IntersectSphere (in SRay theRay, in float theRadius)
397 float aDdotD = dot (theRay.Direct, theRay.Direct);
398 float aDdotO = dot (theRay.Direct, theRay.Origin);
399 float aOdotO = dot (theRay.Origin, theRay.Origin);
401 float aD = aDdotO * aDdotO - aDdotD * (aOdotO - theRadius * theRadius);
405 float aTime = (sqrt (aD) - aDdotO) * (1.0f / aDdotD);
407 return aTime > 0.0f ? aTime : MAXFLOAT;
413 // =======================================================================
414 // function : IntersectTriangle
415 // purpose : Computes ray-triangle intersection (branchless version)
416 // =======================================================================
417 void IntersectTriangle (in SRay theRay,
424 vec3 aToTrg = thePnt0 - theRay.Origin;
426 vec3 aEdge0 = thePnt1 - thePnt0;
427 vec3 aEdge1 = thePnt0 - thePnt2;
429 theNorm = cross (aEdge1, aEdge0);
431 vec3 theVect = cross (theRay.Direct, aToTrg);
433 theUVT = vec3 (dot (theNorm, aToTrg),
434 dot (theVect, aEdge1),
435 dot (theVect, aEdge0)) * (1.f / dot (theNorm, theRay.Direct));
437 theUVT.x = any (lessThan (theUVT, ZERO)) || (theUVT.y + theUVT.z) > 1.f ? MAXFLOAT : theUVT.x;
440 #define EMPTY_ROOT ivec4(0)
442 //! Utility structure containing information about
443 //! currently traversing sub-tree of scene's BVH.
449 //! Inversed ray direction.
452 //! Parameters of sub-root node.
456 #define MATERIAL_AMBN(index) (19 * index + 0)
457 #define MATERIAL_DIFF(index) (19 * index + 1)
458 #define MATERIAL_SPEC(index) (19 * index + 2)
459 #define MATERIAL_EMIS(index) (19 * index + 3)
460 #define MATERIAL_REFL(index) (19 * index + 4)
461 #define MATERIAL_REFR(index) (19 * index + 5)
462 #define MATERIAL_TRAN(index) (19 * index + 6)
463 #define MATERIAL_TRS1(index) (19 * index + 7)
464 #define MATERIAL_TRS2(index) (19 * index + 8)
465 #define MATERIAL_TRS3(index) (19 * index + 9)
467 #define TRS_OFFSET(treelet) treelet.SubData.x
468 #define BVH_OFFSET(treelet) treelet.SubData.y
469 #define VRT_OFFSET(treelet) treelet.SubData.z
470 #define TRG_OFFSET(treelet) treelet.SubData.w
472 //! Identifies the absence of intersection.
473 #define INVALID_HIT ivec4 (-1)
475 //! Global stack shared between traversal functions.
476 int Stack[STACK_SIZE];
478 // =======================================================================
481 // =======================================================================
482 int pop (inout int theHead)
484 int aData = Stack[theHead];
486 int aMask = aData >> 26;
487 int aNode = aMask & 0x3;
491 if ((aMask & 0x3) == aNode)
497 aMask |= (aMask << 2) & 0x30;
499 Stack[theHead] = (aData & 0x03FFFFFF) | (aMask << 26);
502 return (aData & 0x03FFFFFF) + aNode;
505 // =======================================================================
506 // function : SceneNearestHit
507 // purpose : Finds intersection with nearest scene triangle
508 // =======================================================================
509 STriangle SceneNearestHit (in SRay theRay, in vec3 theInverse, inout SIntersect theHit, out int theTrsfId)
511 STriangle aTriangle = STriangle (INVALID_HIT, vec3[](vec3(0.0), vec3(0.0), vec3(0.0)));
513 int aNode = 0; // node to traverse
514 int aHead = -1; // pointer of stack
515 int aStop = -1; // BVH level switch
517 SSubTree aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
519 for (bool toContinue = true; toContinue; /* none */)
521 ivec4 aData = texelFetch (uSceneNodeInfoTexture, aNode);
523 if (aData.x == 0) // if inner node
525 aData.y += BVH_OFFSET (aSubTree);
527 vec4 aHitTimes = vec4 (MAXFLOAT,
532 vec3 aRayOriginInverse = -aSubTree.TrsfRay.Origin * aSubTree.Inverse;
534 vec3 aNodeMin0 = texelFetch (uSceneMinPointTexture, aData.y + 0).xyz * aSubTree.Inverse + aRayOriginInverse;
535 vec3 aNodeMin1 = texelFetch (uSceneMinPointTexture, aData.y + 1).xyz * aSubTree.Inverse + aRayOriginInverse;
536 vec3 aNodeMin2 = texelFetch (uSceneMinPointTexture, aData.y + min (2, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
537 vec3 aNodeMin3 = texelFetch (uSceneMinPointTexture, aData.y + min (3, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
538 vec3 aNodeMax0 = texelFetch (uSceneMaxPointTexture, aData.y + 0).xyz * aSubTree.Inverse + aRayOriginInverse;
539 vec3 aNodeMax1 = texelFetch (uSceneMaxPointTexture, aData.y + 1).xyz * aSubTree.Inverse + aRayOriginInverse;
540 vec3 aNodeMax2 = texelFetch (uSceneMaxPointTexture, aData.y + min (2, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
541 vec3 aNodeMax3 = texelFetch (uSceneMaxPointTexture, aData.y + min (3, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
543 vec3 aTimeMax = max (aNodeMin0, aNodeMax0);
544 vec3 aTimeMin = min (aNodeMin0, aNodeMax0);
546 float aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
547 float aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
549 aHitTimes.x = (aTimeEnter <= aTimeLeave && aTimeEnter <= theHit.Time && aTimeLeave >= 0.f) ? aTimeEnter : MAXFLOAT;
551 aTimeMax = max (aNodeMin1, aNodeMax1);
552 aTimeMin = min (aNodeMin1, aNodeMax1);
554 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
555 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
557 aHitTimes.y = (aTimeEnter <= aTimeLeave && aTimeEnter <= theHit.Time && aTimeLeave >= 0.f) ? aTimeEnter : MAXFLOAT;
559 aTimeMax = max (aNodeMin2, aNodeMax2);
560 aTimeMin = min (aNodeMin2, aNodeMax2);
562 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
563 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
565 aHitTimes.z = (aTimeEnter <= aTimeLeave && aTimeEnter <= theHit.Time && aTimeLeave >= 0.f && aData.z > 1) ? aTimeEnter : MAXFLOAT;
567 aTimeMax = max (aNodeMin3, aNodeMax3);
568 aTimeMin = min (aNodeMin3, aNodeMax3);
570 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
571 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
573 aHitTimes.w = (aTimeEnter <= aTimeLeave && aTimeEnter <= theHit.Time && aTimeLeave >= 0.f && aData.z > 2) ? aTimeEnter : MAXFLOAT;
575 ivec4 aChildren = ivec4 (0, 1, 2, 3);
577 aChildren.xy = aHitTimes.y < aHitTimes.x ? aChildren.yx : aChildren.xy;
578 aHitTimes.xy = aHitTimes.y < aHitTimes.x ? aHitTimes.yx : aHitTimes.xy;
579 aChildren.zw = aHitTimes.w < aHitTimes.z ? aChildren.wz : aChildren.zw;
580 aHitTimes.zw = aHitTimes.w < aHitTimes.z ? aHitTimes.wz : aHitTimes.zw;
581 aChildren.xz = aHitTimes.z < aHitTimes.x ? aChildren.zx : aChildren.xz;
582 aHitTimes.xz = aHitTimes.z < aHitTimes.x ? aHitTimes.zx : aHitTimes.xz;
583 aChildren.yw = aHitTimes.w < aHitTimes.y ? aChildren.wy : aChildren.yw;
584 aHitTimes.yw = aHitTimes.w < aHitTimes.y ? aHitTimes.wy : aHitTimes.yw;
585 aChildren.yz = aHitTimes.z < aHitTimes.y ? aChildren.zy : aChildren.yz;
586 aHitTimes.yz = aHitTimes.z < aHitTimes.y ? aHitTimes.zy : aHitTimes.yz;
588 if (aHitTimes.x != MAXFLOAT)
590 int aHitMask = (aHitTimes.w != MAXFLOAT ? aChildren.w : aChildren.z) << 2
591 | (aHitTimes.z != MAXFLOAT ? aChildren.z : aChildren.y);
593 if (aHitTimes.y != MAXFLOAT)
594 Stack[++aHead] = aData.y | (aHitMask << 2 | aChildren.y) << 26;
596 aNode = aData.y + aChildren.x;
600 toContinue = (aHead >= 0);
602 if (aHead == aStop) // go to top-level BVH
604 aStop = -1; aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
611 else if (aData.x < 0) // leaf node (contains triangles)
616 for (int anIdx = aData.y; anIdx <= aData.z; ++anIdx)
618 ivec4 aTriIndex = texelFetch (uGeometryTriangTexture, anIdx + TRG_OFFSET (aSubTree));
621 aPoints[0] = texelFetch (uGeometryVertexTexture, aTriIndex.x += VRT_OFFSET (aSubTree)).xyz;
622 aPoints[1] = texelFetch (uGeometryVertexTexture, aTriIndex.y += VRT_OFFSET (aSubTree)).xyz;
623 aPoints[2] = texelFetch (uGeometryVertexTexture, aTriIndex.z += VRT_OFFSET (aSubTree)).xyz;
625 IntersectTriangle (aSubTree.TrsfRay, aPoints[0], aPoints[1], aPoints[2], aTimeUV, aNormal);
627 if (aTimeUV.x < theHit.Time)
629 aTriangle.TriIndex = aTriIndex;
630 for (int i = 0; i < 3; ++i)
632 aTriangle.Points[i] = aPoints[i];
635 theTrsfId = TRS_OFFSET (aSubTree);
637 theHit = SIntersect (aTimeUV.x, aTimeUV.yz, aNormal);
641 toContinue = (aHead >= 0);
643 if (aHead == aStop) // go to top-level BVH
645 aStop = -1; aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
651 else if (aData.x > 0) // switch node
653 aSubTree.SubData = ivec4 (4 * aData.x - 4, aData.yzw); // store BVH sub-root
655 vec4 aInvTransf0 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 0);
656 vec4 aInvTransf1 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 1);
657 vec4 aInvTransf2 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 2);
658 vec4 aInvTransf3 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 3);
660 aSubTree.TrsfRay.Direct = MatrixColMultiplyDir (theRay.Direct,
665 aSubTree.Inverse = mix (-UNIT, UNIT, step (ZERO, aSubTree.TrsfRay.Direct)) /
666 max (abs (aSubTree.TrsfRay.Direct), SMALL);
668 aSubTree.TrsfRay.Origin = MatrixColMultiplyPnt (theRay.Origin,
674 aNode = BVH_OFFSET (aSubTree); // go to sub-root node
676 aStop = aHead; // store current stack pointer
683 // =======================================================================
684 // function : SceneAnyHit
685 // purpose : Finds intersection with any scene triangle
686 // =======================================================================
687 float SceneAnyHit (in SRay theRay, in vec3 theInverse, in float theDistance)
691 int aNode = 0; // node to traverse
692 int aHead = -1; // pointer of stack
693 int aStop = -1; // BVH level switch
695 SSubTree aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
697 for (bool toContinue = true; toContinue; /* none */)
699 ivec4 aData = texelFetch (uSceneNodeInfoTexture, aNode);
701 if (aData.x == 0) // if inner node
703 aData.y += BVH_OFFSET (aSubTree);
705 vec4 aHitTimes = vec4 (MAXFLOAT,
710 vec3 aRayOriginInverse = -aSubTree.TrsfRay.Origin * aSubTree.Inverse;
712 vec3 aNodeMin0 = texelFetch (uSceneMinPointTexture, aData.y + 0).xyz * aSubTree.Inverse + aRayOriginInverse;
713 vec3 aNodeMin1 = texelFetch (uSceneMinPointTexture, aData.y + 1).xyz * aSubTree.Inverse + aRayOriginInverse;
714 vec3 aNodeMin2 = texelFetch (uSceneMinPointTexture, aData.y + min (2, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
715 vec3 aNodeMin3 = texelFetch (uSceneMinPointTexture, aData.y + min (3, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
716 vec3 aNodeMax0 = texelFetch (uSceneMaxPointTexture, aData.y + 0).xyz * aSubTree.Inverse + aRayOriginInverse;
717 vec3 aNodeMax1 = texelFetch (uSceneMaxPointTexture, aData.y + 1).xyz * aSubTree.Inverse + aRayOriginInverse;
718 vec3 aNodeMax2 = texelFetch (uSceneMaxPointTexture, aData.y + min (2, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
719 vec3 aNodeMax3 = texelFetch (uSceneMaxPointTexture, aData.y + min (3, aData.z)).xyz * aSubTree.Inverse + aRayOriginInverse;
721 vec3 aTimeMax = max (aNodeMin0, aNodeMax0);
722 vec3 aTimeMin = min (aNodeMin0, aNodeMax0);
724 float aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
725 float aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
727 aHitTimes.x = (aTimeEnter <= aTimeLeave && aTimeEnter <= theDistance && aTimeLeave >= 0.f) ? aTimeEnter : MAXFLOAT;
729 aTimeMax = max (aNodeMin1, aNodeMax1);
730 aTimeMin = min (aNodeMin1, aNodeMax1);
732 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
733 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
735 aHitTimes.y = (aTimeEnter <= aTimeLeave && aTimeEnter <= theDistance && aTimeLeave >= 0.f) ? aTimeEnter : MAXFLOAT;
737 aTimeMax = max (aNodeMin2, aNodeMax2);
738 aTimeMin = min (aNodeMin2, aNodeMax2);
740 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
741 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
743 aHitTimes.z = (aTimeEnter <= aTimeLeave && aTimeEnter <= theDistance && aTimeLeave >= 0.f && aData.z > 1) ? aTimeEnter : MAXFLOAT;
745 aTimeMax = max (aNodeMin3, aNodeMax3);
746 aTimeMin = min (aNodeMin3, aNodeMax3);
748 aTimeLeave = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
749 aTimeEnter = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
751 aHitTimes.w = (aTimeEnter <= aTimeLeave && aTimeEnter <= theDistance && aTimeLeave >= 0.f && aData.z > 2) ? aTimeEnter : MAXFLOAT;
753 ivec4 aChildren = ivec4 (0, 1, 2, 3);
755 aChildren.xy = aHitTimes.y < aHitTimes.x ? aChildren.yx : aChildren.xy;
756 aHitTimes.xy = aHitTimes.y < aHitTimes.x ? aHitTimes.yx : aHitTimes.xy;
757 aChildren.zw = aHitTimes.w < aHitTimes.z ? aChildren.wz : aChildren.zw;
758 aHitTimes.zw = aHitTimes.w < aHitTimes.z ? aHitTimes.wz : aHitTimes.zw;
759 aChildren.xz = aHitTimes.z < aHitTimes.x ? aChildren.zx : aChildren.xz;
760 aHitTimes.xz = aHitTimes.z < aHitTimes.x ? aHitTimes.zx : aHitTimes.xz;
761 aChildren.yw = aHitTimes.w < aHitTimes.y ? aChildren.wy : aChildren.yw;
762 aHitTimes.yw = aHitTimes.w < aHitTimes.y ? aHitTimes.wy : aHitTimes.yw;
763 aChildren.yz = aHitTimes.z < aHitTimes.y ? aChildren.zy : aChildren.yz;
764 aHitTimes.yz = aHitTimes.z < aHitTimes.y ? aHitTimes.zy : aHitTimes.yz;
766 if (aHitTimes.x != MAXFLOAT)
768 int aHitMask = (aHitTimes.w != MAXFLOAT ? aChildren.w : aChildren.z) << 2
769 | (aHitTimes.z != MAXFLOAT ? aChildren.z : aChildren.y);
771 if (aHitTimes.y != MAXFLOAT)
772 Stack[++aHead] = aData.y | (aHitMask << 2 | aChildren.y) << 26;
774 aNode = aData.y + aChildren.x;
778 toContinue = (aHead >= 0);
780 if (aHead == aStop) // go to top-level BVH
782 aStop = -1; aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
789 else if (aData.x < 0) // leaf node
794 for (int anIdx = aData.y; anIdx <= aData.z; ++anIdx)
796 ivec4 aTriangle = texelFetch (uGeometryTriangTexture, anIdx + TRG_OFFSET (aSubTree));
798 vec3 aPoint0 = texelFetch (uGeometryVertexTexture, aTriangle.x += VRT_OFFSET (aSubTree)).xyz;
799 vec3 aPoint1 = texelFetch (uGeometryVertexTexture, aTriangle.y += VRT_OFFSET (aSubTree)).xyz;
800 vec3 aPoint2 = texelFetch (uGeometryVertexTexture, aTriangle.z += VRT_OFFSET (aSubTree)).xyz;
802 IntersectTriangle (aSubTree.TrsfRay, aPoint0, aPoint1, aPoint2, aTimeUV, aNormal);
804 #ifdef TRANSPARENT_SHADOWS
805 if (aTimeUV.x < theDistance)
807 aFactor *= 1.f - texelFetch (uRaytraceMaterialTexture, MATERIAL_TRAN (aTriangle.w)).x;
810 if (aTimeUV.x < theDistance)
817 toContinue = (aHead >= 0) && (aFactor > 0.1f);
819 if (aHead == aStop) // go to top-level BVH
821 aStop = -1; aSubTree = SSubTree (theRay, theInverse, EMPTY_ROOT);
827 else if (aData.x > 0) // switch node
829 aSubTree.SubData = ivec4 (4 * aData.x - 4, aData.yzw); // store BVH sub-root
831 vec4 aInvTransf0 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 0);
832 vec4 aInvTransf1 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 1);
833 vec4 aInvTransf2 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 2);
834 vec4 aInvTransf3 = texelFetch (uSceneTransformTexture, TRS_OFFSET (aSubTree) + 3);
836 aSubTree.TrsfRay.Direct = MatrixColMultiplyDir (theRay.Direct,
841 aSubTree.TrsfRay.Origin = MatrixColMultiplyPnt (theRay.Origin,
847 aSubTree.Inverse = mix (-UNIT, UNIT, step (ZERO, aSubTree.TrsfRay.Direct)) / max (abs (aSubTree.TrsfRay.Direct), SMALL);
849 aNode = BVH_OFFSET (aSubTree); // go to sub-root node
851 aStop = aHead; // store current stack pointer
858 #define PI 3.1415926f
860 // =======================================================================
861 // function : Latlong
862 // purpose : Converts world direction to environment texture coordinates
863 // =======================================================================
864 vec2 Latlong (in vec3 thePoint, in float theRadius)
866 float aPsi = acos (-thePoint.z / theRadius);
868 float aPhi = atan (thePoint.y, thePoint.x) + PI;
870 return vec2 (aPhi * 0.1591549f,
874 #ifdef BACKGROUND_CUBEMAP
875 //! Transform texture coordinates for cubemap lookup.
876 vec3 cubemapVectorTransform (in vec3 theVec, in float theRadius)
878 vec3 aVec = theVec.yzx;
879 aVec.y *= float(uYCoeff);
880 aVec.z *= float(uZCoeff);
885 // =======================================================================
886 // function : SmoothNormal
887 // purpose : Interpolates normal across the triangle
888 // =======================================================================
889 vec3 SmoothNormal (in vec2 theUV, in ivec4 theTriangle)
891 vec3 aNormal0 = texelFetch (uGeometryNormalTexture, theTriangle.x).xyz;
892 vec3 aNormal1 = texelFetch (uGeometryNormalTexture, theTriangle.y).xyz;
893 vec3 aNormal2 = texelFetch (uGeometryNormalTexture, theTriangle.z).xyz;
895 return normalize (aNormal1 * theUV.x +
897 aNormal0 * (1.0f - theUV.x - theUV.y));
900 #define POLYGON_OFFSET_UNIT 0.f
901 #define POLYGON_OFFSET_FACTOR 1.f
902 #define POLYGON_OFFSET_SCALE 0.006f
904 // =======================================================================
905 // function : PolygonOffset
906 // purpose : Computes OpenGL polygon offset
907 // =======================================================================
908 float PolygonOffset (in vec3 theNormal, in vec3 thePoint)
910 vec4 aProjectedNorm = vec4 (theNormal, -dot (theNormal, thePoint)) * uUnviewMat;
912 float aPolygonOffset = POLYGON_OFFSET_UNIT;
914 if (aProjectedNorm.z * aProjectedNorm.z > 1e-20f)
916 aProjectedNorm.xy *= 1.f / aProjectedNorm.z;
918 aPolygonOffset += POLYGON_OFFSET_FACTOR * max (abs (aProjectedNorm.x),
919 abs (aProjectedNorm.y));
922 return aPolygonOffset;
925 // =======================================================================
926 // function : SmoothUV
927 // purpose : Interpolates UV coordinates across the triangle
928 // =======================================================================
930 vec2 SmoothUV (in vec2 theUV, in ivec4 theTriangle, out vec2[3] theUVs)
932 theUVs[0] = texelFetch (uGeometryTexCrdTexture, theTriangle.x).st;
933 theUVs[1] = texelFetch (uGeometryTexCrdTexture, theTriangle.y).st;
934 theUVs[2] = texelFetch (uGeometryTexCrdTexture, theTriangle.z).st;
936 return theUVs[1] * theUV.x +
937 theUVs[2] * theUV.y +
938 theUVs[0] * (1.0f - theUV.x - theUV.y);
941 vec2 SmoothUV (in vec2 theUV, in ivec4 theTriangle)
944 return SmoothUV (theUV, theTriangle, aUVs);
948 // =======================================================================
949 // function : FetchEnvironment
951 // =======================================================================
952 vec4 FetchEnvironment (in vec3 theTexCoord, in float theRadius, in bool theIsBackground)
954 if (uEnvMapEnabled == 0)
957 return theIsBackground ? vec4 (0.0, 0.0, 0.0, 1.0) : uGlobalAmbient;
959 return vec4 (0.0, 0.0, 0.0, 1.0);
963 vec4 anAmbScale = theIsBackground ? vec4(1.0) : uGlobalAmbient;
965 #ifdef BACKGROUND_CUBEMAP
966 textureLod (uEnvMapTexture, cubemapVectorTransform (theTexCoord, theRadius), 0.0);
968 textureLod (uEnvMapTexture, Latlong (theTexCoord, theRadius), 0.0);
970 return anEnvColor * anAmbScale;
973 // =======================================================================
974 // function : Refract
975 // purpose : Computes refraction ray (also handles TIR)
976 // =======================================================================
978 vec3 Refract (in vec3 theInput,
980 in float theRefractIndex,
981 in float theInvRefractIndex)
983 float aNdotI = dot (theInput, theNormal);
985 float anIndex = aNdotI < 0.0f
989 float aSquare = anIndex * anIndex * (1.0f - aNdotI * aNdotI);
993 return reflect (theInput, theNormal);
996 float aNdotT = sqrt (1.0f - aSquare);
998 return normalize (anIndex * theInput -
999 (anIndex * aNdotI + (aNdotI < 0.0f ? aNdotT : -aNdotT)) * theNormal);
1003 #define MIN_SLOPE 0.0001f
1004 #define EPS_SCALE 8.0000f
1006 #define THRESHOLD vec3 (0.1f)
1008 #define INVALID_BOUNCES 1000
1010 #define LIGHT_POS(index) (2 * index + 1)
1011 #define LIGHT_PWR(index) (2 * index + 0)
1013 // =======================================================================
1014 // function : Radiance
1015 // purpose : Computes color along the given ray
1016 // =======================================================================
1017 #ifndef PATH_TRACING
1018 vec4 Radiance (in SRay theRay, in vec3 theInverse)
1020 vec3 aResult = vec3 (0.0f);
1021 vec4 aWeight = vec4 (1.0f);
1025 float aRaytraceDepth = MAXFLOAT;
1026 float aRefractionIdx = 0.0;
1028 for (int aDepth = 0; aDepth < NB_BOUNCES; ++aDepth)
1030 SIntersect aHit = SIntersect (MAXFLOAT, vec2 (ZERO), ZERO);
1032 ivec4 aTriIndex = SceneNearestHit (theRay, theInverse, aHit, aTrsfId).TriIndex;
1034 if (aTriIndex.x == -1)
1036 vec4 aColor = vec4 (0.0);
1038 if (bool(uEnvMapForBack) || aWeight.w == 0.0 /* reflection */)
1040 float aRadius = uSceneRadius;
1041 vec3 aTexCoord = vec3 (0.0);
1043 if (aDepth == 0 || (aRefractionIdx == 1.0 && aWeight.w != 0.0))
1045 vec2 aPixel = uEyeSize * (vPixel - vec2 (0.5)) * 2.0;
1046 vec2 anAperturePnt = sampleUniformDisk() * uApertureRadius;
1047 vec3 aLocalDir = normalize (vec3 (aPixel * uFocalPlaneDist - anAperturePnt, uFocalPlaneDist));
1048 vec3 aDirect = uEyeView * aLocalDir.z +
1049 uEyeSide * aLocalDir.x +
1050 uEyeVert * aLocalDir.y;
1052 aTexCoord = aDirect * uSceneRadius;
1053 aRadius = length (aTexCoord);
1057 float aTime = IntersectSphere (theRay, uSceneRadius);
1058 aTexCoord = theRay.Direct * aTime + theRay.Origin;
1061 aColor = FetchEnvironment (aTexCoord, aRadius, aWeight.w != 0.0);
1065 aColor = BackgroundColor();
1068 aResult += aWeight.xyz * aColor.xyz; aWeight.w *= aColor.w;
1070 break; // terminate path
1073 vec3 aInvTransf0 = texelFetch (uSceneTransformTexture, aTrsfId + 0).xyz;
1074 vec3 aInvTransf1 = texelFetch (uSceneTransformTexture, aTrsfId + 1).xyz;
1075 vec3 aInvTransf2 = texelFetch (uSceneTransformTexture, aTrsfId + 2).xyz;
1077 aHit.Normal = normalize (vec3 (dot (aInvTransf0, aHit.Normal),
1078 dot (aInvTransf1, aHit.Normal),
1079 dot (aInvTransf2, aHit.Normal)));
1081 theRay.Origin += theRay.Direct * aHit.Time; // intersection point
1083 // Evaluate depth on first hit
1086 vec4 aNDCPoint = uViewMat * vec4 (theRay.Origin, 1.f);
1088 float aPolygonOffset = PolygonOffset (aHit.Normal, theRay.Origin);
1089 aRaytraceDepth = (aNDCPoint.z / aNDCPoint.w + aPolygonOffset * POLYGON_OFFSET_SCALE) * 0.5f + 0.5f;
1092 vec3 aNormal = SmoothNormal (aHit.UV, aTriIndex);
1094 aNormal = normalize (vec3 (dot (aInvTransf0, aNormal),
1095 dot (aInvTransf1, aNormal),
1096 dot (aInvTransf2, aNormal)));
1098 vec3 aAmbient = texelFetch (
1099 uRaytraceMaterialTexture, MATERIAL_AMBN (aTriIndex.w)).rgb;
1100 vec4 aDiffuse = texelFetch (
1101 uRaytraceMaterialTexture, MATERIAL_DIFF (aTriIndex.w));
1102 vec4 aSpecular = texelFetch (
1103 uRaytraceMaterialTexture, MATERIAL_SPEC (aTriIndex.w));
1104 vec4 aOpacity = texelFetch (
1105 uRaytraceMaterialTexture, MATERIAL_TRAN (aTriIndex.w));
1108 if (aDiffuse.w >= 0.f)
1110 vec4 aTexCoord = vec4 (SmoothUV (aHit.UV, aTriIndex), 0.f, 1.f);
1112 vec4 aTrsfRow1 = texelFetch (
1113 uRaytraceMaterialTexture, MATERIAL_TRS1 (aTriIndex.w));
1114 vec4 aTrsfRow2 = texelFetch (
1115 uRaytraceMaterialTexture, MATERIAL_TRS2 (aTriIndex.w));
1117 aTexCoord.st = vec2 (dot (aTrsfRow1, aTexCoord),
1118 dot (aTrsfRow2, aTexCoord));
1120 vec4 aTexColor = textureLod (
1121 sampler2D (uTextureSamplers[int(aDiffuse.w)]), aTexCoord.st, 0.f);
1123 aDiffuse.rgb *= aTexColor.rgb;
1124 aAmbient.rgb *= aTexColor.rgb;
1126 // keep refractive index untouched (Z component)
1127 aOpacity.xy = vec2 (aTexColor.w * aOpacity.x, 1.0f - aTexColor.w * aOpacity.x);
1131 vec3 aEmission = texelFetch (
1132 uRaytraceMaterialTexture, MATERIAL_EMIS (aTriIndex.w)).rgb;
1134 float aGeomFactor = dot (aNormal, theRay.Direct);
1136 aResult.xyz += aWeight.xyz * aOpacity.x * (
1137 uGlobalAmbient.xyz * aAmbient * max (abs (aGeomFactor), 0.5f) + aEmission);
1139 vec3 aSidedNormal = mix (aNormal, -aNormal, step (0.0f, aGeomFactor));
1141 for (int aLightIdx = 0; aLightIdx < uLightCount; ++aLightIdx)
1143 vec4 aLight = texelFetch (
1144 uRaytraceLightSrcTexture, LIGHT_POS (aLightIdx));
1146 float aDistance = MAXFLOAT;
1148 if (aLight.w != 0.0f) // point light source
1150 aDistance = length (aLight.xyz -= theRay.Origin);
1152 aLight.xyz *= 1.0f / aDistance;
1155 float aLdotN = dot (aLight.xyz, aSidedNormal);
1157 if (aLdotN > 0.0f) // first check if light source is important
1159 float aVisibility = 1.0f;
1161 if (bool(uShadowsEnabled))
1163 SRay aShadow = SRay (theRay.Origin, aLight.xyz);
1165 aShadow.Origin += uSceneEpsilon * (aLight.xyz +
1166 mix (-aHit.Normal, aHit.Normal, step (0.0f, dot (aHit.Normal, aLight.xyz))));
1168 vec3 aInverse = 1.0f / max (abs (aLight.xyz), SMALL);
1170 aVisibility = SceneAnyHit (
1171 aShadow, mix (-aInverse, aInverse, step (ZERO, aLight.xyz)), aDistance);
1174 if (aVisibility > 0.0f)
1176 vec3 aIntensity = min (UNIT, vec3 (texelFetch (
1177 uRaytraceLightSrcTexture, LIGHT_PWR (aLightIdx))));
1179 float aRdotV = dot (reflect (aLight.xyz, aSidedNormal), theRay.Direct);
1181 aResult.xyz += aWeight.xyz * (aOpacity.x * aVisibility) * aIntensity *
1182 (aDiffuse.xyz * aLdotN + aSpecular.xyz * pow (max (0.f, aRdotV), aSpecular.w));
1187 if (aOpacity.x != 1.0f)
1189 aWeight *= aOpacity.y;
1190 aRefractionIdx = aOpacity.z;
1192 if (aOpacity.z != 1.0f)
1194 theRay.Direct = Refract (theRay.Direct, aNormal, aOpacity.z, aOpacity.w);
1199 aWeight *= bool(uReflectEnabled) ?
1200 texelFetch (uRaytraceMaterialTexture, MATERIAL_REFL (aTriIndex.w)) : vec4 (0.0f);
1202 vec3 aReflect = reflect (theRay.Direct, aNormal);
1204 if (dot (aReflect, aHit.Normal) * dot (theRay.Direct, aHit.Normal) > 0.0f)
1206 aReflect = reflect (theRay.Direct, aHit.Normal);
1209 theRay.Direct = aReflect;
1212 if (all (lessThanEqual (aWeight.xyz, THRESHOLD)))
1214 aDepth = INVALID_BOUNCES;
1216 else if (aOpacity.x == 1.0f || aOpacity.z != 1.0f) // if no simple transparency
1218 theRay.Origin += aHit.Normal * mix (
1219 -uSceneEpsilon, uSceneEpsilon, step (0.0f, dot (aHit.Normal, theRay.Direct)));
1221 theInverse = 1.0f / max (abs (theRay.Direct), SMALL);
1223 theInverse = mix (-theInverse, theInverse, step (ZERO, theRay.Direct));
1226 theRay.Origin += theRay.Direct * uSceneEpsilon;
1229 gl_FragDepth = aRaytraceDepth;
1231 return vec4 (aResult.x,