0028762: Visualization, Ray tracing - Implement depth-of-field effect
[occt.git] / src / OpenGl / OpenGl_View_Raytrace.cxx
1 // Created on: 2015-02-20
2 // Created by: Denis BOGOLEPOV
3 // Copyright (c) 2015 OPEN CASCADE SAS
4 //
5 // This file is part of Open CASCADE Technology software library.
6 //
7 // This library is free software; you can redistribute it and/or modify it under
8 // the terms of the GNU Lesser General Public License version 2.1 as published
9 // by the Free Software Foundation, with special exception defined in the file
10 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
11 // distribution for complete text of the license and disclaimer of any warranty.
12 //
13 // Alternatively, this file may be used under the terms of Open CASCADE
14 // commercial license or contractual agreement.
15
16 #include <OpenGl_View.hxx>
17
18 #include <Graphic3d_TextureParams.hxx>
19 #include <OpenGl_PrimitiveArray.hxx>
20 #include <OpenGl_VertexBuffer.hxx>
21 #include <OpenGl_GlCore44.hxx>
22 #include <OSD_Protection.hxx>
23 #include <OSD_File.hxx>
24
25 #include "../Shaders/Shaders_RaytraceBase_vs.pxx"
26 #include "../Shaders/Shaders_RaytraceBase_fs.pxx"
27 #include "../Shaders/Shaders_PathtraceBase_fs.pxx"
28 #include "../Shaders/Shaders_RaytraceRender_fs.pxx"
29 #include "../Shaders/Shaders_RaytraceSmooth_fs.pxx"
30 #include "../Shaders/Shaders_Display_fs.pxx"
31
32 using namespace OpenGl_Raytrace;
33
34 //! Use this macro to output ray-tracing debug info
35 // #define RAY_TRACE_PRINT_INFO
36
37 #ifdef RAY_TRACE_PRINT_INFO
38   #include <OSD_Timer.hxx>
39 #endif
40
41 namespace
42 {
43   static const OpenGl_Vec4 THE_WHITE_COLOR (1.0f, 1.0f, 1.0f, 1.0f);
44   static const OpenGl_Vec4 THE_BLACK_COLOR (0.0f, 0.0f, 0.0f, 1.0f);
45
46   //! Operator returning TRUE for positional light sources.
47   struct IsLightPositional
48   {
49     bool operator() (const OpenGl_Light& theLight)
50     {
51       return theLight.Type != Graphic3d_TOLS_DIRECTIONAL;
52     }
53   };
54
55   //! Operator returning TRUE for any non-ambient light sources.
56   struct IsNotAmbient
57   {
58     bool operator() (const OpenGl_Light& theLight)
59     {
60       return theLight.Type != Graphic3d_TOLS_AMBIENT;
61     }
62   };
63 }
64
65 // =======================================================================
66 // function : updateRaytraceGeometry
67 // purpose  : Updates 3D scene geometry for ray-tracing
68 // =======================================================================
69 Standard_Boolean OpenGl_View::updateRaytraceGeometry (const RaytraceUpdateMode      theMode,
70                                                       const Standard_Integer        theViewId,
71                                                       const Handle(OpenGl_Context)& theGlContext)
72 {
73   // In 'check' mode (OpenGl_GUM_CHECK) the scene geometry is analyzed for
74   // modifications. This is light-weight procedure performed on each frame
75   if (theMode == OpenGl_GUM_CHECK)
76   {
77     if (myRaytraceLayerListState != myZLayers.ModificationStateOfRaytracable())
78     {
79       return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
80     }
81   }
82   else if (theMode == OpenGl_GUM_PREPARE)
83   {
84     myRaytraceGeometry.ClearMaterials();
85
86     myArrayToTrianglesMap.clear();
87
88     myIsRaytraceDataValid = Standard_False;
89   }
90
91   // The set of processed structures (reflected to ray-tracing)
92   // This set is used to remove out-of-date records from the
93   // hash map of structures
94   std::set<const OpenGl_Structure*> anElements;
95
96   // Set to store all currently visible OpenGL primitive arrays
97   // applicable for ray-tracing
98   std::set<Standard_Size> anArrayIDs;
99
100   // Set to store all non-raytracable elements allowing tracking
101   // of changes in OpenGL scene (only for path tracing)
102   std::set<Standard_Integer> aNonRaytraceIDs;
103
104   const OpenGl_Layer& aLayer = myZLayers.Layer (Graphic3d_ZLayerId_Default);
105
106   if (aLayer.NbStructures() != 0)
107   {
108     const OpenGl_ArrayOfIndexedMapOfStructure& aStructArray = aLayer.ArrayOfStructures();
109
110     for (Standard_Integer anIndex = 0; anIndex < aStructArray.Length(); ++anIndex)
111     {
112       for (OpenGl_IndexedMapOfStructure::Iterator aStructIt (aStructArray (anIndex)); aStructIt.More(); aStructIt.Next())
113       {
114         const OpenGl_Structure* aStructure = aStructIt.Value();
115
116         if (theMode == OpenGl_GUM_CHECK)
117         {
118           if (toUpdateStructure (aStructure))
119           {
120             return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
121           }
122           else if (aStructure->IsVisible() && myRaytraceParameters.GlobalIllumination)
123           {
124             aNonRaytraceIDs.insert (aStructure->highlight ? aStructure->Id : -aStructure->Id);
125           }
126         }
127         else if (theMode == OpenGl_GUM_PREPARE)
128         {
129           if (!aStructure->IsRaytracable() || !aStructure->IsVisible())
130           {
131             continue;
132           }
133           else if (!aStructure->ViewAffinity.IsNull() && !aStructure->ViewAffinity->IsVisible (theViewId))
134           {
135             continue;
136           }
137
138           for (OpenGl_Structure::GroupIterator aGroupIter (aStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
139           {
140             // Extract OpenGL elements from the group (primitives arrays)
141             for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
142             {
143               OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
144
145               if (aPrimArray != NULL)
146               {
147                 anArrayIDs.insert (aPrimArray->GetUID());
148               }
149             }
150           }
151         }
152         else if (theMode == OpenGl_GUM_REBUILD)
153         {
154           if (!aStructure->IsRaytracable())
155           {
156             continue;
157           }
158           else if (addRaytraceStructure (aStructure, theGlContext))
159           {
160             anElements.insert (aStructure); // structure was processed
161           }
162         }
163       }
164     }
165   }
166
167   if (theMode == OpenGl_GUM_PREPARE)
168   {
169     BVH_ObjectSet<Standard_ShortReal, 3>::BVH_ObjectList anUnchangedObjects;
170
171     // Filter out unchanged objects so only their transformations and materials
172     // will be updated (and newly added objects will be processed from scratch)
173     for (Standard_Integer anObjIdx = 0; anObjIdx < myRaytraceGeometry.Size(); ++anObjIdx)
174     {
175       OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
176         myRaytraceGeometry.Objects().ChangeValue (anObjIdx).operator->());
177
178       if (aTriangleSet == NULL)
179       {
180         continue;
181       }
182
183       if (anArrayIDs.find (aTriangleSet->AssociatedPArrayID()) != anArrayIDs.end())
184       {
185         anUnchangedObjects.Append (myRaytraceGeometry.Objects().Value (anObjIdx));
186
187         myArrayToTrianglesMap[aTriangleSet->AssociatedPArrayID()] = aTriangleSet;
188       }
189     }
190
191     myRaytraceGeometry.Objects() = anUnchangedObjects;
192
193     return updateRaytraceGeometry (OpenGl_GUM_REBUILD, theViewId, theGlContext);
194   }
195   else if (theMode == OpenGl_GUM_REBUILD)
196   {
197     // Actualize the hash map of structures - remove out-of-date records
198     std::map<const OpenGl_Structure*, StructState>::iterator anIter = myStructureStates.begin();
199
200     while (anIter != myStructureStates.end())
201     {
202       if (anElements.find (anIter->first) == anElements.end())
203       {
204         myStructureStates.erase (anIter++);
205       }
206       else
207       {
208         ++anIter;
209       }
210     }
211
212     // Actualize OpenGL layer list state
213     myRaytraceLayerListState = myZLayers.ModificationStateOfRaytracable();
214
215     // Rebuild two-level acceleration structure
216     myRaytraceGeometry.ProcessAcceleration();
217
218     myRaytraceSceneRadius = 2.f /* scale factor */ * std::max (
219       myRaytraceGeometry.Box().CornerMin().cwiseAbs().maxComp(),
220       myRaytraceGeometry.Box().CornerMax().cwiseAbs().maxComp());
221
222     const BVH_Vec3f aSize = myRaytraceGeometry.Box().Size();
223
224     myRaytraceSceneEpsilon = Max (1.0e-6f, 1.0e-4f * aSize.Modulus());
225
226     return uploadRaytraceData (theGlContext);
227   }
228
229   if (myRaytraceParameters.GlobalIllumination)
230   {
231     Standard_Boolean toRestart =
232       aNonRaytraceIDs.size() != myNonRaytraceStructureIDs.size();
233
234     for (std::set<Standard_Integer>::iterator anID = aNonRaytraceIDs.begin(); anID != aNonRaytraceIDs.end() && !toRestart; ++anID)
235     {
236       if (myNonRaytraceStructureIDs.find (*anID) == myNonRaytraceStructureIDs.end())
237       {
238         toRestart = Standard_True;
239       }
240     }
241
242     if (toRestart)
243     {
244       myAccumFrames = 0;
245     }
246
247     myNonRaytraceStructureIDs = aNonRaytraceIDs;
248   }
249
250   return Standard_True;
251 }
252
253 // =======================================================================
254 // function : toUpdateStructure
255 // purpose  : Checks to see if the structure is modified
256 // =======================================================================
257 Standard_Boolean OpenGl_View::toUpdateStructure (const OpenGl_Structure* theStructure)
258 {
259   if (!theStructure->IsRaytracable())
260   {
261     if (theStructure->ModificationState() > 0)
262     {
263       theStructure->ResetModificationState();
264
265       return Standard_True; // ray-trace element was removed - need to rebuild
266     }
267
268     return Standard_False; // did not contain ray-trace elements
269   }
270
271   std::map<const OpenGl_Structure*, StructState>::iterator aStructState = myStructureStates.find (theStructure);
272
273   if (aStructState == myStructureStates.end() || aStructState->second.StructureState != theStructure->ModificationState())
274   {
275     return Standard_True;
276   }
277   else if (theStructure->InstancedStructure() != NULL)
278   {
279     return aStructState->second.InstancedState != theStructure->InstancedStructure()->ModificationState();
280   }
281
282   return Standard_False;
283 }
284
285 // =======================================================================
286 // function : buildTextureTransform
287 // purpose  : Constructs texture transformation matrix
288 // =======================================================================
289 void buildTextureTransform (const Handle(Graphic3d_TextureParams)& theParams, BVH_Mat4f& theMatrix)
290 {
291   theMatrix.InitIdentity();
292
293   // Apply scaling
294   const Graphic3d_Vec2& aScale = theParams->Scale();
295
296   theMatrix.ChangeValue (0, 0) *= aScale.x();
297   theMatrix.ChangeValue (1, 0) *= aScale.x();
298   theMatrix.ChangeValue (2, 0) *= aScale.x();
299   theMatrix.ChangeValue (3, 0) *= aScale.x();
300
301   theMatrix.ChangeValue (0, 1) *= aScale.y();
302   theMatrix.ChangeValue (1, 1) *= aScale.y();
303   theMatrix.ChangeValue (2, 1) *= aScale.y();
304   theMatrix.ChangeValue (3, 1) *= aScale.y();
305
306   // Apply translation
307   const Graphic3d_Vec2 aTrans = -theParams->Translation();
308
309   theMatrix.ChangeValue (0, 3) = theMatrix.GetValue (0, 0) * aTrans.x() +
310                                  theMatrix.GetValue (0, 1) * aTrans.y();
311
312   theMatrix.ChangeValue (1, 3) = theMatrix.GetValue (1, 0) * aTrans.x() +
313                                  theMatrix.GetValue (1, 1) * aTrans.y();
314
315   theMatrix.ChangeValue (2, 3) = theMatrix.GetValue (2, 0) * aTrans.x() +
316                                  theMatrix.GetValue (2, 1) * aTrans.y();
317
318   // Apply rotation
319   const Standard_ShortReal aSin = std::sin (
320     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
321   const Standard_ShortReal aCos = std::cos (
322     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
323
324   BVH_Mat4f aRotationMat;
325   aRotationMat.SetValue (0, 0,  aCos);
326   aRotationMat.SetValue (1, 1,  aCos);
327   aRotationMat.SetValue (0, 1, -aSin);
328   aRotationMat.SetValue (1, 0,  aSin);
329
330   theMatrix = theMatrix * aRotationMat;
331 }
332
333 // =======================================================================
334 // function : convertMaterial
335 // purpose  : Creates ray-tracing material properties
336 // =======================================================================
337 OpenGl_RaytraceMaterial OpenGl_View::convertMaterial (const OpenGl_AspectFace*      theAspect,
338                                                       const Handle(OpenGl_Context)& theGlContext)
339 {
340   OpenGl_RaytraceMaterial theMaterial;
341
342   const Graphic3d_MaterialAspect& aSrcMat = theAspect->Aspect()->FrontMaterial();
343   const OpenGl_Vec3& aMatCol  = theAspect->Aspect()->InteriorColor();
344   const bool         isPhysic = aSrcMat.MaterialType (Graphic3d_MATERIAL_PHYSIC);
345   const float        aShine   = 128.0f * float(aSrcMat.Shininess());
346
347   // ambient component
348   if (aSrcMat.ReflectionMode (Graphic3d_TOR_AMBIENT))
349   {
350     const OpenGl_Vec3& aSrcAmb = isPhysic ? aSrcMat.AmbientColor() : aMatCol;
351     theMaterial.Ambient = BVH_Vec4f (aSrcAmb * (float )aSrcMat.Ambient(),  1.0f);
352   }
353   else
354   {
355     theMaterial.Ambient = THE_BLACK_COLOR;
356   }
357
358   // diffusion component
359   if (aSrcMat.ReflectionMode (Graphic3d_TOR_DIFFUSE))
360   {
361     const OpenGl_Vec3& aSrcDif = isPhysic ? aSrcMat.DiffuseColor() : aMatCol;
362     theMaterial.Diffuse = BVH_Vec4f (aSrcDif * (float )aSrcMat.Diffuse(), -1.0f); // -1 is no texture
363   }
364   else
365   {
366     theMaterial.Diffuse = BVH_Vec4f (THE_BLACK_COLOR.rgb(), -1.0f);
367   }
368
369   // specular component
370   if (aSrcMat.ReflectionMode (Graphic3d_TOR_SPECULAR))
371   {
372     const OpenGl_Vec3& aSrcSpe  = aSrcMat.SpecularColor();
373     const OpenGl_Vec3& aSrcSpe2 = isPhysic ? aSrcSpe : THE_WHITE_COLOR.rgb();
374     theMaterial.Specular = BVH_Vec4f (aSrcSpe2 * (float )aSrcMat.Specular(), aShine);
375
376     const Standard_ShortReal aMaxRefl = Max (theMaterial.Diffuse.x() + theMaterial.Specular.x(),
377                                         Max (theMaterial.Diffuse.y() + theMaterial.Specular.y(),
378                                              theMaterial.Diffuse.z() + theMaterial.Specular.z()));
379
380     const Standard_ShortReal aReflectionScale = 0.75f / aMaxRefl;
381
382     // ignore isPhysic here
383     theMaterial.Reflection = BVH_Vec4f (aSrcSpe * (float )aSrcMat.Specular() * aReflectionScale, 0.0f);
384   }
385   else
386   {
387     theMaterial.Specular = BVH_Vec4f (THE_BLACK_COLOR.rgb(), aShine);
388   }
389
390   // emission component
391   if (aSrcMat.ReflectionMode (Graphic3d_TOR_EMISSION))
392   {
393     const OpenGl_Vec3& aSrcEms = isPhysic ? aSrcMat.EmissiveColor() : aMatCol;
394     theMaterial.Emission = BVH_Vec4f (aSrcEms * (float )aSrcMat.Emissive(), 1.0f);
395   }
396   else
397   {
398     theMaterial.Emission = THE_BLACK_COLOR;
399   }
400
401   const float anIndex = (float )aSrcMat.RefractionIndex();
402   theMaterial.Transparency = BVH_Vec4f (aSrcMat.Alpha(), aSrcMat.Transparency(),
403                                         anIndex == 0 ? 1.0f : anIndex,
404                                         anIndex == 0 ? 1.0f : 1.0f / anIndex);
405
406   // Serialize physically-based material properties
407   const Graphic3d_BSDF& aBSDF = aSrcMat.BSDF();
408
409   theMaterial.BSDF.Kc = aBSDF.Kc;
410   theMaterial.BSDF.Ks = aBSDF.Ks;
411   theMaterial.BSDF.Kd = BVH_Vec4f (aBSDF.Kd, -1.f); // no texture
412   theMaterial.BSDF.Kt = BVH_Vec4f (aBSDF.Kt,  0.f);
413   theMaterial.BSDF.Le = BVH_Vec4f (aBSDF.Le,  0.f);
414
415   theMaterial.BSDF.Absorption = aBSDF.Absorption;
416
417   theMaterial.BSDF.FresnelCoat = aBSDF.FresnelCoat.Serialize ();
418   theMaterial.BSDF.FresnelBase = aBSDF.FresnelBase.Serialize ();
419
420   // Handle material textures
421   if (theAspect->Aspect()->ToMapTexture())
422   {
423     if (theGlContext->HasRayTracingTextures())
424     {
425       buildTextureTransform (theAspect->TextureParams(), theMaterial.TextureTransform);
426
427       // write texture ID to diffuse w-component
428       theMaterial.Diffuse.w() = theMaterial.BSDF.Kd.w() =
429         static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (theAspect->TextureRes (theGlContext)));
430     }
431     else if (!myIsRaytraceWarnTextures)
432     {
433       const TCollection_ExtendedString aWarnMessage =
434         "Warning: texturing in Ray-Trace requires GL_ARB_bindless_texture extension which is missing. "
435         "Please try to update graphics card driver. At the moment textures will be ignored.";
436
437       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
438         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_HIGH, aWarnMessage);
439
440       myIsRaytraceWarnTextures = Standard_True;
441     }
442   }
443
444   return theMaterial;
445 }
446
447 // =======================================================================
448 // function : addRaytraceStructure
449 // purpose  : Adds OpenGL structure to ray-traced scene geometry
450 // =======================================================================
451 Standard_Boolean OpenGl_View::addRaytraceStructure (const OpenGl_Structure*       theStructure,
452                                                     const Handle(OpenGl_Context)& theGlContext)
453 {
454   if (!theStructure->IsVisible())
455   {
456     myStructureStates[theStructure] = StructState (theStructure);
457
458     return Standard_True;
459   }
460
461   // Get structure material
462   OpenGl_RaytraceMaterial aDefaultMaterial;
463   Standard_Boolean aResult = addRaytraceGroups (theStructure, aDefaultMaterial, theStructure->Transformation(), theGlContext);
464
465   // Process all connected OpenGL structures
466   const OpenGl_Structure* anInstanced = theStructure->InstancedStructure();
467
468   if (anInstanced != NULL && anInstanced->IsRaytracable())
469   {
470     aResult &= addRaytraceGroups (anInstanced, aDefaultMaterial, theStructure->Transformation(), theGlContext);
471   }
472
473   myStructureStates[theStructure] = StructState (theStructure);
474
475   return aResult;
476 }
477
478 // =======================================================================
479 // function : addRaytraceGroups
480 // purpose  : Adds OpenGL groups to ray-traced scene geometry
481 // =======================================================================
482 Standard_Boolean OpenGl_View::addRaytraceGroups (const OpenGl_Structure*        theStructure,
483                                                  const OpenGl_RaytraceMaterial& theStructMat,
484                                                  const Handle(Geom_Transformation)& theTrsf,
485                                                  const Handle(OpenGl_Context)&  theGlContext)
486 {
487   OpenGl_Mat4 aMat4;
488   for (OpenGl_Structure::GroupIterator aGroupIter (theStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
489   {
490     // Get group material
491     OpenGl_RaytraceMaterial aGroupMaterial;
492     if (aGroupIter.Value()->AspectFace() != NULL)
493     {
494       aGroupMaterial = convertMaterial (
495         aGroupIter.Value()->AspectFace(), theGlContext);
496     }
497
498     Standard_Integer aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
499
500     // Use group material if available, otherwise use structure material
501     myRaytraceGeometry.Materials.push_back (
502       aGroupIter.Value()->AspectFace() != NULL ? aGroupMaterial : theStructMat);
503
504     // Add OpenGL elements from group (extract primitives arrays and aspects)
505     for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
506     {
507       OpenGl_AspectFace* anAspect = dynamic_cast<OpenGl_AspectFace*> (aNode->elem);
508
509       if (anAspect != NULL)
510       {
511         aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
512
513         OpenGl_RaytraceMaterial aMaterial = convertMaterial (anAspect, theGlContext);
514
515         myRaytraceGeometry.Materials.push_back (aMaterial);
516       }
517       else
518       {
519         OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
520
521         if (aPrimArray != NULL)
522         {
523           std::map<Standard_Size, OpenGl_TriangleSet*>::iterator aSetIter = myArrayToTrianglesMap.find (aPrimArray->GetUID());
524
525           if (aSetIter != myArrayToTrianglesMap.end())
526           {
527             OpenGl_TriangleSet* aSet = aSetIter->second;
528             opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
529             if (!theTrsf.IsNull())
530             {
531               theTrsf->Trsf().GetMat4 (aMat4);
532               aTransform->SetTransform (aMat4);
533             }
534
535             aSet->SetProperties (aTransform);
536             if (aSet->MaterialIndex() != OpenGl_TriangleSet::INVALID_MATERIAL && aSet->MaterialIndex() != aMatID)
537             {
538               aSet->SetMaterialIndex (aMatID);
539             }
540           }
541           else
542           {
543             if (Handle(OpenGl_TriangleSet) aSet = addRaytracePrimitiveArray (aPrimArray, aMatID, 0))
544             {
545               opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
546               if (!theTrsf.IsNull())
547               {
548                 theTrsf->Trsf().GetMat4 (aMat4);
549                 aTransform->SetTransform (aMat4);
550               }
551
552               aSet->SetProperties (aTransform);
553               myRaytraceGeometry.Objects().Append (aSet);
554             }
555           }
556         }
557       }
558     }
559   }
560
561   return Standard_True;
562 }
563
564 // =======================================================================
565 // function : addRaytracePrimitiveArray
566 // purpose  : Adds OpenGL primitive array to ray-traced scene geometry
567 // =======================================================================
568 Handle(OpenGl_TriangleSet) OpenGl_View::addRaytracePrimitiveArray (const OpenGl_PrimitiveArray* theArray,
569                                                                    const Standard_Integer       theMaterial,
570                                                                    const OpenGl_Mat4*           theTransform)
571 {
572   const Handle(Graphic3d_BoundBuffer)& aBounds   = theArray->Bounds();
573   const Handle(Graphic3d_IndexBuffer)& anIndices = theArray->Indices();
574   const Handle(Graphic3d_Buffer)&      anAttribs = theArray->Attributes();
575
576   if (theArray->DrawMode() < GL_TRIANGLES
577   #ifndef GL_ES_VERSION_2_0
578    || theArray->DrawMode() > GL_POLYGON
579   #else
580    || theArray->DrawMode() > GL_TRIANGLE_FAN
581   #endif
582    || anAttribs.IsNull())
583   {
584     return Handle(OpenGl_TriangleSet)();
585   }
586
587   OpenGl_Mat4 aNormalMatrix;
588   if (theTransform != NULL)
589   {
590     Standard_ASSERT_RETURN (theTransform->Inverted (aNormalMatrix),
591       "Error: Failed to compute normal transformation matrix", NULL);
592
593     aNormalMatrix.Transpose();
594   }
595
596   Handle(OpenGl_TriangleSet) aSet = new OpenGl_TriangleSet (theArray->GetUID(), myRaytraceBVHBuilder);
597   {
598     aSet->Vertices.reserve (anAttribs->NbElements);
599     aSet->Normals.reserve  (anAttribs->NbElements);
600     aSet->TexCrds.reserve  (anAttribs->NbElements);
601
602     const size_t aVertFrom = aSet->Vertices.size();
603     for (Standard_Integer anAttribIter = 0; anAttribIter < anAttribs->NbAttributes; ++anAttribIter)
604     {
605       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute       (anAttribIter);
606       const size_t               anOffset = anAttribs->AttributeOffset (anAttribIter);
607       if (anAttrib.Id == Graphic3d_TOA_POS)
608       {
609         if (anAttrib.DataType == Graphic3d_TOD_VEC3
610          || anAttrib.DataType == Graphic3d_TOD_VEC4)
611         {
612           for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
613           {
614             aSet->Vertices.push_back (
615               *reinterpret_cast<const Graphic3d_Vec3*> (anAttribs->value (aVertIter) + anOffset));
616           }
617         }
618         else if (anAttrib.DataType == Graphic3d_TOD_VEC2)
619         {
620           for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
621           {
622             const Standard_ShortReal* aCoords =
623               reinterpret_cast<const Standard_ShortReal*> (anAttribs->value (aVertIter) + anOffset);
624
625             aSet->Vertices.push_back (BVH_Vec3f (aCoords[0], aCoords[1], 0.0f));
626           }
627         }
628       }
629       else if (anAttrib.Id == Graphic3d_TOA_NORM)
630       {
631         if (anAttrib.DataType == Graphic3d_TOD_VEC3
632          || anAttrib.DataType == Graphic3d_TOD_VEC4)
633         {
634           for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
635           {
636             aSet->Normals.push_back (
637               *reinterpret_cast<const Graphic3d_Vec3*> (anAttribs->value (aVertIter) + anOffset));
638           }
639         }
640       }
641       else if (anAttrib.Id == Graphic3d_TOA_UV)
642       {
643         if (anAttrib.DataType == Graphic3d_TOD_VEC2)
644         {
645           for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
646           {
647             aSet->TexCrds.push_back (
648               *reinterpret_cast<const Graphic3d_Vec2*> (anAttribs->value (aVertIter) + anOffset));
649           }
650         }
651       }
652     }
653
654     if (aSet->Normals.size() != aSet->Vertices.size())
655     {
656       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
657       {
658         aSet->Normals.push_back (BVH_Vec3f());
659       }
660     }
661
662     if (aSet->TexCrds.size() != aSet->Vertices.size())
663     {
664       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
665       {
666         aSet->TexCrds.push_back (BVH_Vec2f());
667       }
668     }
669
670     if (theTransform != NULL)
671     {
672       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Vertices.size(); ++aVertIter)
673       {
674         BVH_Vec3f& aVertex = aSet->Vertices[aVertIter];
675
676         BVH_Vec4f aTransVertex = *theTransform *
677           BVH_Vec4f (aVertex.x(), aVertex.y(), aVertex.z(), 1.f);
678
679         aVertex = BVH_Vec3f (aTransVertex.x(), aTransVertex.y(), aTransVertex.z());
680       }
681       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Normals.size(); ++aVertIter)
682       {
683         BVH_Vec3f& aNormal = aSet->Normals[aVertIter];
684
685         BVH_Vec4f aTransNormal = aNormalMatrix *
686           BVH_Vec4f (aNormal.x(), aNormal.y(), aNormal.z(), 0.f);
687
688         aNormal = BVH_Vec3f (aTransNormal.x(), aTransNormal.y(), aTransNormal.z());
689       }
690     }
691
692     if (!aBounds.IsNull())
693     {
694       for (Standard_Integer aBound = 0, aBoundStart = 0; aBound < aBounds->NbBounds; ++aBound)
695       {
696         const Standard_Integer aVertNum = aBounds->Bounds[aBound];
697
698         if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, aBoundStart, *theArray))
699         {
700           aSet.Nullify();
701           return Handle(OpenGl_TriangleSet)();
702         }
703
704         aBoundStart += aVertNum;
705       }
706     }
707     else
708     {
709       const Standard_Integer aVertNum = !anIndices.IsNull() ? anIndices->NbElements : anAttribs->NbElements;
710
711       if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, 0, *theArray))
712       {
713         aSet.Nullify();
714         return Handle(OpenGl_TriangleSet)();
715       }
716     }
717   }
718
719   if (aSet->Size() != 0)
720   {
721     aSet->MarkDirty();
722   }
723
724   return aSet;
725 }
726
727 // =======================================================================
728 // function : addRaytraceVertexIndices
729 // purpose  : Adds vertex indices to ray-traced scene geometry
730 // =======================================================================
731 Standard_Boolean OpenGl_View::addRaytraceVertexIndices (OpenGl_TriangleSet&                  theSet,
732                                                         const Standard_Integer               theMatID,
733                                                         const Standard_Integer               theCount,
734                                                         const Standard_Integer               theOffset,
735                                                         const OpenGl_PrimitiveArray&         theArray)
736 {
737   switch (theArray.DrawMode())
738   {
739     case GL_TRIANGLES:      return addRaytraceTriangleArray        (theSet, theMatID, theCount, theOffset, theArray.Indices());
740     case GL_TRIANGLE_FAN:   return addRaytraceTriangleFanArray     (theSet, theMatID, theCount, theOffset, theArray.Indices());
741     case GL_TRIANGLE_STRIP: return addRaytraceTriangleStripArray   (theSet, theMatID, theCount, theOffset, theArray.Indices());
742   #if !defined(GL_ES_VERSION_2_0)
743     case GL_QUAD_STRIP:     return addRaytraceQuadrangleStripArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
744     case GL_QUADS:          return addRaytraceQuadrangleArray      (theSet, theMatID, theCount, theOffset, theArray.Indices());
745     case GL_POLYGON:        return addRaytracePolygonArray         (theSet, theMatID, theCount, theOffset, theArray.Indices());
746   #endif
747   }
748
749   return Standard_False;
750 }
751
752 // =======================================================================
753 // function : addRaytraceTriangleArray
754 // purpose  : Adds OpenGL triangle array to ray-traced scene geometry
755 // =======================================================================
756 Standard_Boolean OpenGl_View::addRaytraceTriangleArray (OpenGl_TriangleSet&                  theSet,
757                                                         const Standard_Integer               theMatID,
758                                                         const Standard_Integer               theCount,
759                                                         const Standard_Integer               theOffset,
760                                                         const Handle(Graphic3d_IndexBuffer)& theIndices)
761 {
762   if (theCount < 3)
763   {
764     return Standard_True;
765   }
766
767   theSet.Elements.reserve (theSet.Elements.size() + theCount / 3);
768
769   if (!theIndices.IsNull())
770   {
771     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
772     {
773       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
774                                             theIndices->Index (aVert + 1),
775                                             theIndices->Index (aVert + 2),
776                                             theMatID));
777     }
778   }
779   else
780   {
781     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
782     {
783       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2, theMatID));
784     }
785   }
786
787   return Standard_True;
788 }
789
790 // =======================================================================
791 // function : addRaytraceTriangleFanArray
792 // purpose  : Adds OpenGL triangle fan array to ray-traced scene geometry
793 // =======================================================================
794 Standard_Boolean OpenGl_View::addRaytraceTriangleFanArray (OpenGl_TriangleSet&                  theSet,
795                                                            const Standard_Integer               theMatID,
796                                                            const Standard_Integer               theCount,
797                                                            const Standard_Integer               theOffset,
798                                                            const Handle(Graphic3d_IndexBuffer)& theIndices)
799 {
800   if (theCount < 3)
801   {
802     return Standard_True;
803   }
804
805   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
806
807   if (!theIndices.IsNull())
808   {
809     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
810     {
811       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
812                                             theIndices->Index (aVert + 1),
813                                             theIndices->Index (aVert + 2),
814                                             theMatID));
815     }
816   }
817   else
818   {
819     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
820     {
821       theSet.Elements.push_back (BVH_Vec4i (theOffset,
822                                             aVert + 1,
823                                             aVert + 2,
824                                             theMatID));
825     }
826   }
827
828   return Standard_True;
829 }
830
831 // =======================================================================
832 // function : addRaytraceTriangleStripArray
833 // purpose  : Adds OpenGL triangle strip array to ray-traced scene geometry
834 // =======================================================================
835 Standard_Boolean OpenGl_View::addRaytraceTriangleStripArray (OpenGl_TriangleSet&                  theSet,
836                                                              const Standard_Integer               theMatID,
837                                                              const Standard_Integer               theCount,
838                                                              const Standard_Integer               theOffset,
839                                                              const Handle(Graphic3d_IndexBuffer)& theIndices)
840 {
841   if (theCount < 3)
842   {
843     return Standard_True;
844   }
845
846   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
847
848   if (!theIndices.IsNull())
849   {
850     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
851     {
852       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + (aCW ? 1 : 0)),
853                                             theIndices->Index (aVert + (aCW ? 0 : 1)),
854                                             theIndices->Index (aVert + 2),
855                                             theMatID));
856     }
857   }
858   else
859   {
860     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
861     {
862       theSet.Elements.push_back (BVH_Vec4i (aVert + (aCW ? 1 : 0),
863                                             aVert + (aCW ? 0 : 1),
864                                             aVert + 2,
865                                             theMatID));
866     }
867   }
868
869   return Standard_True;
870 }
871
872 // =======================================================================
873 // function : addRaytraceQuadrangleArray
874 // purpose  : Adds OpenGL quad array to ray-traced scene geometry
875 // =======================================================================
876 Standard_Boolean OpenGl_View::addRaytraceQuadrangleArray (OpenGl_TriangleSet&                  theSet,
877                                                           const Standard_Integer               theMatID,
878                                                           const Standard_Integer               theCount,
879                                                           const Standard_Integer               theOffset,
880                                                           const Handle(Graphic3d_IndexBuffer)& theIndices)
881 {
882   if (theCount < 4)
883   {
884     return Standard_True;
885   }
886
887   theSet.Elements.reserve (theSet.Elements.size() + theCount / 2);
888
889   if (!theIndices.IsNull())
890   {
891     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
892     {
893       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
894                                             theIndices->Index (aVert + 1),
895                                             theIndices->Index (aVert + 2),
896                                             theMatID));
897       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
898                                             theIndices->Index (aVert + 2),
899                                             theIndices->Index (aVert + 3),
900                                             theMatID));
901     }
902   }
903   else
904   {
905     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
906     {
907       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2,
908                                             theMatID));
909       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 2, aVert + 3,
910                                             theMatID));
911     }
912   }
913
914   return Standard_True;
915 }
916
917 // =======================================================================
918 // function : addRaytraceQuadrangleStripArray
919 // purpose  : Adds OpenGL quad strip array to ray-traced scene geometry
920 // =======================================================================
921 Standard_Boolean OpenGl_View::addRaytraceQuadrangleStripArray (OpenGl_TriangleSet&                  theSet,
922                                                                const Standard_Integer               theMatID,
923                                                                const Standard_Integer               theCount,
924                                                                const Standard_Integer               theOffset,
925                                                                const Handle(Graphic3d_IndexBuffer)& theIndices)
926 {
927   if (theCount < 4)
928   {
929     return Standard_True;
930   }
931
932   theSet.Elements.reserve (theSet.Elements.size() + 2 * theCount - 6);
933
934   if (!theIndices.IsNull())
935   {
936     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
937     {
938       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
939                                             theIndices->Index (aVert + 1),
940                                             theIndices->Index (aVert + 2),
941                                             theMatID));
942
943       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 1),
944                                             theIndices->Index (aVert + 3),
945                                             theIndices->Index (aVert + 2),
946                                             theMatID));
947     }
948   }
949   else
950   {
951     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
952     {
953       theSet.Elements.push_back (BVH_Vec4i (aVert + 0,
954                                             aVert + 1,
955                                             aVert + 2,
956                                             theMatID));
957
958       theSet.Elements.push_back (BVH_Vec4i (aVert + 1,
959                                             aVert + 3,
960                                             aVert + 2,
961                                             theMatID));
962     }
963   }
964
965   return Standard_True;
966 }
967
968 // =======================================================================
969 // function : addRaytracePolygonArray
970 // purpose  : Adds OpenGL polygon array to ray-traced scene geometry
971 // =======================================================================
972 Standard_Boolean OpenGl_View::addRaytracePolygonArray (OpenGl_TriangleSet&                  theSet,
973                                                        const Standard_Integer               theMatID,
974                                                        const Standard_Integer               theCount,
975                                                        const Standard_Integer               theOffset,
976                                                        const Handle(Graphic3d_IndexBuffer)& theIndices)
977 {
978   if (theCount < 3)
979   {
980     return Standard_True;
981   }
982
983   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
984
985   if (!theIndices.IsNull())
986   {
987     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
988     {
989       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
990                                             theIndices->Index (aVert + 1),
991                                             theIndices->Index (aVert + 2),
992                                             theMatID));
993     }
994   }
995   else
996   {
997     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
998     {
999       theSet.Elements.push_back (BVH_Vec4i (theOffset,
1000                                             aVert + 1,
1001                                             aVert + 2,
1002                                             theMatID));
1003     }
1004   }
1005
1006   return Standard_True;
1007 }
1008
1009 const TCollection_AsciiString OpenGl_View::ShaderSource::EMPTY_PREFIX;
1010
1011 // =======================================================================
1012 // function : Source
1013 // purpose  : Returns shader source combined with prefix
1014 // =======================================================================
1015 TCollection_AsciiString OpenGl_View::ShaderSource::Source() const
1016 {
1017   const TCollection_AsciiString aVersion = "#version 140";
1018
1019   if (myPrefix.IsEmpty())
1020   {
1021     return aVersion + "\n" + mySource;
1022   }
1023
1024   return aVersion + "\n" + myPrefix + "\n" + mySource;
1025 }
1026
1027 // =======================================================================
1028 // function : LoadFromFiles
1029 // purpose  : Loads shader source from specified files
1030 // =======================================================================
1031 Standard_Boolean OpenGl_View::ShaderSource::LoadFromFiles (const TCollection_AsciiString* theFileNames,
1032                                                            const TCollection_AsciiString& thePrefix)
1033 {
1034   myError.Clear();
1035   mySource.Clear();
1036   myPrefix = thePrefix;
1037
1038   TCollection_AsciiString aMissingFiles;
1039   for (Standard_Integer anIndex = 0; !theFileNames[anIndex].IsEmpty(); ++anIndex)
1040   {
1041     OSD_File aFile (theFileNames[anIndex]);
1042     if (aFile.Exists())
1043     {
1044       aFile.Open (OSD_ReadOnly, OSD_Protection());
1045     }
1046     if (!aFile.IsOpen())
1047     {
1048       if (!aMissingFiles.IsEmpty())
1049       {
1050         aMissingFiles += ", ";
1051       }
1052       aMissingFiles += TCollection_AsciiString("'") + theFileNames[anIndex] + "'";
1053       continue;
1054     }
1055     else if (!aMissingFiles.IsEmpty())
1056     {
1057       aFile.Close();
1058       continue;
1059     }
1060
1061     TCollection_AsciiString aSource;
1062     aFile.Read (aSource, (Standard_Integer) aFile.Size());
1063     if (!aSource.IsEmpty())
1064     {
1065       mySource += TCollection_AsciiString ("\n") + aSource;
1066     }
1067     aFile.Close();
1068   }
1069
1070   if (!aMissingFiles.IsEmpty())
1071   {
1072     myError = TCollection_AsciiString("Shader files ") + aMissingFiles + " are missing or inaccessible";
1073     return Standard_False;
1074   }
1075   return Standard_True;
1076 }
1077
1078 // =======================================================================
1079 // function : LoadFromStrings
1080 // purpose  :
1081 // =======================================================================
1082 Standard_Boolean OpenGl_View::ShaderSource::LoadFromStrings (const TCollection_AsciiString* theStrings,
1083                                                              const TCollection_AsciiString& thePrefix)
1084 {
1085   myError.Clear();
1086   mySource.Clear();
1087   myPrefix = thePrefix;
1088
1089   for (Standard_Integer anIndex = 0; !theStrings[anIndex].IsEmpty(); ++anIndex)
1090   {
1091     TCollection_AsciiString aSource = theStrings[anIndex];
1092     if (!aSource.IsEmpty())
1093     {
1094       mySource += TCollection_AsciiString ("\n") + aSource;
1095     }
1096   }
1097   return Standard_True;
1098 }
1099
1100 // =======================================================================
1101 // function : generateShaderPrefix
1102 // purpose  : Generates shader prefix based on current ray-tracing options
1103 // =======================================================================
1104 TCollection_AsciiString OpenGl_View::generateShaderPrefix (const Handle(OpenGl_Context)& theGlContext) const
1105 {
1106   TCollection_AsciiString aPrefixString =
1107     TCollection_AsciiString ("#define STACK_SIZE ") + TCollection_AsciiString (myRaytraceParameters.StackSize) + "\n" +
1108     TCollection_AsciiString ("#define NB_BOUNCES ") + TCollection_AsciiString (myRaytraceParameters.NbBounces);
1109
1110   if (myRaytraceParameters.TransparentShadows)
1111   {
1112     aPrefixString += TCollection_AsciiString ("\n#define TRANSPARENT_SHADOWS");
1113   }
1114
1115   // If OpenGL driver supports bindless textures and texturing
1116   // is actually used, activate texturing in ray-tracing mode
1117   if (myRaytraceParameters.UseBindlessTextures && theGlContext->arbTexBindless != NULL)
1118   {
1119     aPrefixString += TCollection_AsciiString ("\n#define USE_TEXTURES") +
1120       TCollection_AsciiString ("\n#define MAX_TEX_NUMBER ") + TCollection_AsciiString (OpenGl_RaytraceGeometry::MAX_TEX_NUMBER);
1121   }
1122
1123   if (myRaytraceParameters.GlobalIllumination) // path tracing activated
1124   {
1125     aPrefixString += TCollection_AsciiString ("\n#define PATH_TRACING");
1126
1127     if (myRaytraceParameters.AdaptiveScreenSampling) // adaptive screen sampling requested
1128     {
1129       // to activate the feature we need OpenGL 4.4 and GL_NV_shader_atomic_float extension
1130       if (theGlContext->IsGlGreaterEqual (4, 4) && theGlContext->CheckExtension ("GL_NV_shader_atomic_float"))
1131       {
1132         aPrefixString += TCollection_AsciiString ("\n#define ADAPTIVE_SAMPLING") +
1133           TCollection_AsciiString ("\n#define BLOCK_SIZE ") + TCollection_AsciiString (OpenGl_TileSampler::TileSize());
1134       }
1135     }
1136
1137     if (myRaytraceParameters.TwoSidedBsdfModels) // two-sided BSDFs requested
1138     {
1139       aPrefixString += TCollection_AsciiString ("\n#define TWO_SIDED_BXDF");
1140     }
1141
1142     switch (myRaytraceParameters.ToneMappingMethod)
1143     {
1144       case Graphic3d_ToneMappingMethod_Disabled:
1145         break;
1146       case Graphic3d_ToneMappingMethod_Filmic:
1147         aPrefixString += TCollection_AsciiString ("\n#define TONE_MAPPING_FILMIC");
1148         break;
1149     }
1150   }
1151
1152   if (myRaytraceParameters.DepthOfField)
1153   {
1154     aPrefixString += TCollection_AsciiString("\n#define DEPTH_OF_FIELD");
1155   }
1156
1157   return aPrefixString;
1158 }
1159
1160 // =======================================================================
1161 // function : safeFailBack
1162 // purpose  : Performs safe exit when shaders initialization fails
1163 // =======================================================================
1164 Standard_Boolean OpenGl_View::safeFailBack (const TCollection_ExtendedString& theMessage,
1165                                             const Handle(OpenGl_Context)&     theGlContext)
1166 {
1167   theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1168     GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, theMessage);
1169
1170   myRaytraceInitStatus = OpenGl_RT_FAIL;
1171
1172   releaseRaytraceResources (theGlContext);
1173
1174   return Standard_False;
1175 }
1176
1177 // =======================================================================
1178 // function : initShader
1179 // purpose  : Creates new shader object with specified source
1180 // =======================================================================
1181 Handle(OpenGl_ShaderObject) OpenGl_View::initShader (const GLenum                  theType,
1182                                                      const ShaderSource&           theSource,
1183                                                      const Handle(OpenGl_Context)& theGlContext)
1184 {
1185   Handle(OpenGl_ShaderObject) aShader = new OpenGl_ShaderObject (theType);
1186
1187   if (!aShader->Create (theGlContext))
1188   {
1189     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to create ") +
1190       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object";
1191
1192     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1193       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1194
1195     aShader->Release (theGlContext.operator->());
1196
1197     return Handle(OpenGl_ShaderObject)();
1198   }
1199
1200   if (!aShader->LoadSource (theGlContext, theSource.Source()))
1201   {
1202     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to set ") +
1203       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader source";
1204
1205     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1206       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1207
1208     aShader->Release (theGlContext.operator->());
1209
1210     return Handle(OpenGl_ShaderObject)();
1211   }
1212
1213   TCollection_AsciiString aBuildLog;
1214
1215   if (!aShader->Compile (theGlContext))
1216   {
1217     aShader->FetchInfoLog (theGlContext, aBuildLog);
1218
1219     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to compile ") +
1220       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object:\n" + aBuildLog;
1221
1222     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1223       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1224
1225     aShader->Release (theGlContext.operator->());
1226
1227 #ifdef RAY_TRACE_PRINT_INFO
1228     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1229 #endif
1230
1231     return Handle(OpenGl_ShaderObject)();
1232   }
1233   else if (theGlContext->caps->glslWarnings)
1234   {
1235     aShader->FetchInfoLog (theGlContext, aBuildLog);
1236
1237     if (!aBuildLog.IsEmpty() && !aBuildLog.IsEqual ("No errors.\n"))
1238     {
1239       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (theType == GL_VERTEX_SHADER ?
1240         "Vertex" : "Fragment") + " shader was compiled with following warnings:\n" + aBuildLog;
1241
1242       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1243         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1244     }
1245
1246 #ifdef RAY_TRACE_PRINT_INFO
1247     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1248 #endif
1249   }
1250
1251   return aShader;
1252 }
1253
1254 // =======================================================================
1255 // function : initProgram
1256 // purpose  : Creates GLSL program from the given shader objects
1257 // =======================================================================
1258 Handle(OpenGl_ShaderProgram) OpenGl_View::initProgram (const Handle(OpenGl_Context)&      theGlContext,
1259                                                        const Handle(OpenGl_ShaderObject)& theVertShader,
1260                                                        const Handle(OpenGl_ShaderObject)& theFragShader)
1261 {
1262   Handle(OpenGl_ShaderProgram) aProgram = new OpenGl_ShaderProgram;
1263
1264   if (!aProgram->Create (theGlContext))
1265   {
1266     theVertShader->Release (theGlContext.operator->());
1267
1268     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1269       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to create shader program");
1270
1271     return Handle(OpenGl_ShaderProgram)();
1272   }
1273
1274   if (!aProgram->AttachShader (theGlContext, theVertShader)
1275    || !aProgram->AttachShader (theGlContext, theFragShader))
1276   {
1277     theVertShader->Release (theGlContext.operator->());
1278
1279     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1280       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to attach shader objects");
1281
1282     return Handle(OpenGl_ShaderProgram)();
1283   }
1284
1285   aProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1286
1287   TCollection_AsciiString aLinkLog;
1288
1289   if (!aProgram->Link (theGlContext))
1290   {
1291     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1292
1293     const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1294       "Failed to link shader program:\n") + aLinkLog;
1295
1296     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1297       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1298
1299     return Handle(OpenGl_ShaderProgram)();
1300   }
1301   else if (theGlContext->caps->glslWarnings)
1302   {
1303     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1304     if (!aLinkLog.IsEmpty() && !aLinkLog.IsEqual ("No errors.\n"))
1305     {
1306       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1307         "Shader program was linked with following warnings:\n") + aLinkLog;
1308
1309       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1310         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1311     }
1312   }
1313
1314   return aProgram;
1315 }
1316
1317 // =======================================================================
1318 // function : initRaytraceResources
1319 // purpose  : Initializes OpenGL/GLSL shader programs
1320 // =======================================================================
1321 Standard_Boolean OpenGl_View::initRaytraceResources (const Handle(OpenGl_Context)& theGlContext)
1322 {
1323   if (myRaytraceInitStatus == OpenGl_RT_FAIL)
1324   {
1325     return Standard_False;
1326   }
1327
1328   Standard_Boolean aToRebuildShaders = Standard_False;
1329
1330   if (myRenderParams.RebuildRayTracingShaders) // requires complete re-initialization
1331   {
1332     myRaytraceInitStatus = OpenGl_RT_NONE;
1333     releaseRaytraceResources (theGlContext, Standard_True);
1334     myRenderParams.RebuildRayTracingShaders = Standard_False; // clear rebuilding flag
1335   }
1336
1337   if (myRaytraceInitStatus == OpenGl_RT_INIT)
1338   {
1339     if (!myIsRaytraceDataValid)
1340     {
1341       return Standard_True;
1342     }
1343
1344     const Standard_Integer aRequiredStackSize =
1345       myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth();
1346
1347     if (myRaytraceParameters.StackSize < aRequiredStackSize)
1348     {
1349       myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1350
1351       aToRebuildShaders = Standard_True;
1352     }
1353     else
1354     {
1355       if (aRequiredStackSize < myRaytraceParameters.StackSize)
1356       {
1357         if (myRaytraceParameters.StackSize > THE_DEFAULT_STACK_SIZE)
1358         {
1359           myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1360           aToRebuildShaders = Standard_True;
1361         }
1362       }
1363     }
1364
1365     Standard_Integer aNbTilesX = 8;
1366     Standard_Integer aNbTilesY = 8;
1367
1368     for (Standard_Integer anIdx = 0; aNbTilesX * aNbTilesY < myRenderParams.NbRayTracingTiles; ++anIdx)
1369     {
1370       (anIdx % 2 == 0 ? aNbTilesX : aNbTilesY) <<= 1;
1371     }
1372
1373     if (myRenderParams.RaytracingDepth             != myRaytraceParameters.NbBounces
1374      || myRenderParams.IsTransparentShadowEnabled  != myRaytraceParameters.TransparentShadows
1375      || myRenderParams.IsGlobalIlluminationEnabled != myRaytraceParameters.GlobalIllumination
1376      || myRenderParams.TwoSidedBsdfModels          != myRaytraceParameters.TwoSidedBsdfModels
1377      || myRaytraceGeometry.HasTextures()           != myRaytraceParameters.UseBindlessTextures
1378      || aNbTilesX                                  != myRaytraceParameters.NbTilesX
1379      || aNbTilesY                                  != myRaytraceParameters.NbTilesY)
1380     {
1381       myRaytraceParameters.NbBounces           = myRenderParams.RaytracingDepth;
1382       myRaytraceParameters.TransparentShadows  = myRenderParams.IsTransparentShadowEnabled;
1383       myRaytraceParameters.GlobalIllumination  = myRenderParams.IsGlobalIlluminationEnabled;
1384       myRaytraceParameters.TwoSidedBsdfModels  = myRenderParams.TwoSidedBsdfModels;
1385       myRaytraceParameters.UseBindlessTextures = myRaytraceGeometry.HasTextures();
1386
1387 #ifdef RAY_TRACE_PRINT_INFO
1388       if (aNbTilesX != myRaytraceParameters.NbTilesX
1389        || aNbTilesY != myRaytraceParameters.NbTilesY)
1390       {
1391         std::cout << "Number of tiles X: " << aNbTilesX << "\n";
1392         std::cout << "Number of tiles Y: " << aNbTilesY << "\n";
1393       }
1394 #endif
1395
1396       myRaytraceParameters.NbTilesX = aNbTilesX;
1397       myRaytraceParameters.NbTilesY = aNbTilesY;
1398
1399       aToRebuildShaders = Standard_True;
1400     }
1401
1402     if (myRenderParams.AdaptiveScreenSampling != myRaytraceParameters.AdaptiveScreenSampling)
1403     {
1404       myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling;
1405       if (myRenderParams.AdaptiveScreenSampling) // adaptive sampling was requested
1406       {
1407         if (!theGlContext->HasRayTracingAdaptiveSampling())
1408         {
1409           // disable the feature if it is not supported
1410           myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling = Standard_False;
1411           theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW,
1412                                      "Adaptive sampling not supported (OpenGL 4.4 or GL_NV_shader_atomic_float is missing)");
1413         }
1414       }
1415
1416       aToRebuildShaders = Standard_True;
1417     }
1418
1419     const bool toEnableDof = !myCamera->IsOrthographic() && myRaytraceParameters.GlobalIllumination;
1420     if (myRaytraceParameters.DepthOfField != toEnableDof)
1421     {
1422       myRaytraceParameters.DepthOfField = toEnableDof;
1423       aToRebuildShaders = Standard_True;
1424     }
1425
1426     if (myRenderParams.ToneMappingMethod != myRaytraceParameters.ToneMappingMethod)
1427     {
1428       myRaytraceParameters.ToneMappingMethod = myRenderParams.ToneMappingMethod;
1429       aToRebuildShaders = true;
1430     }
1431
1432     if (aToRebuildShaders)
1433     {
1434       // Reject accumulated frames
1435       myAccumFrames = 0;
1436
1437       // Environment map should be updated
1438       myToUpdateEnvironmentMap = Standard_True;
1439
1440       const TCollection_AsciiString aPrefixString = generateShaderPrefix (theGlContext);
1441
1442 #ifdef RAY_TRACE_PRINT_INFO
1443       std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1444 #endif
1445
1446       myRaytraceShaderSource.SetPrefix (aPrefixString);
1447       myPostFSAAShaderSource.SetPrefix (aPrefixString);
1448       myOutImageShaderSource.SetPrefix (aPrefixString);
1449
1450       if (!myRaytraceShader->LoadSource (theGlContext, myRaytraceShaderSource.Source())
1451        || !myPostFSAAShader->LoadSource (theGlContext, myPostFSAAShaderSource.Source())
1452        || !myOutImageShader->LoadSource (theGlContext, myOutImageShaderSource.Source()))
1453       {
1454         return safeFailBack ("Failed to load source into ray-tracing fragment shaders", theGlContext);
1455       }
1456
1457       TCollection_AsciiString aLog;
1458
1459       if (!myRaytraceShader->Compile (theGlContext)
1460        || !myPostFSAAShader->Compile (theGlContext)
1461        || !myOutImageShader->Compile (theGlContext))
1462       {
1463 #ifdef RAY_TRACE_PRINT_INFO
1464         myRaytraceShader->FetchInfoLog (theGlContext, aLog);
1465
1466         if (!aLog.IsEmpty())
1467         {
1468           std::cout << "Failed to compile ray-tracing shader: " << aLog << "\n";
1469         }
1470 #endif
1471         return safeFailBack ("Failed to compile ray-tracing fragment shaders", theGlContext);
1472       }
1473
1474       myRaytraceProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1475       myPostFSAAProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1476       myOutImageProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1477
1478       if (!myRaytraceProgram->Link (theGlContext)
1479        || !myPostFSAAProgram->Link (theGlContext)
1480        || !myOutImageProgram->Link (theGlContext))
1481       {
1482 #ifdef RAY_TRACE_PRINT_INFO
1483         myRaytraceProgram->FetchInfoLog (theGlContext, aLog);
1484
1485         if (!aLog.IsEmpty())
1486         {
1487           std::cout << "Failed to compile ray-tracing shader: " << aLog << "\n";
1488         }
1489 #endif
1490         return safeFailBack ("Failed to initialize vertex attributes for ray-tracing program", theGlContext);
1491       }
1492     }
1493   }
1494
1495   if (myRaytraceInitStatus == OpenGl_RT_NONE)
1496   {
1497     myAccumFrames = 0; // accumulation should be restarted
1498
1499     if (!theGlContext->IsGlGreaterEqual (3, 1))
1500     {
1501       return safeFailBack ("Ray-tracing requires OpenGL 3.1 and higher", theGlContext);
1502     }
1503     else if (!theGlContext->arbTboRGB32)
1504     {
1505       return safeFailBack ("Ray-tracing requires OpenGL 4.0+ or GL_ARB_texture_buffer_object_rgb32 extension", theGlContext);
1506     }
1507     else if (!theGlContext->arbFBOBlit)
1508     {
1509       return safeFailBack ("Ray-tracing requires EXT_framebuffer_blit extension", theGlContext);
1510     }
1511
1512     myRaytraceParameters.NbBounces = myRenderParams.RaytracingDepth;
1513
1514     const TCollection_AsciiString aShaderFolder = Graphic3d_ShaderProgram::ShadersFolder();
1515     if (myIsRaytraceDataValid)
1516     {
1517       myRaytraceParameters.StackSize = Max (THE_DEFAULT_STACK_SIZE,
1518         myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth());
1519     }
1520
1521     const TCollection_AsciiString aPrefixString  = generateShaderPrefix (theGlContext);
1522
1523 #ifdef RAY_TRACE_PRINT_INFO
1524     std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1525 #endif
1526
1527     ShaderSource aBasicVertShaderSrc;
1528     {
1529       if (!aShaderFolder.IsEmpty())
1530       {
1531         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.vs", "" };
1532         if (!aBasicVertShaderSrc.LoadFromFiles (aFiles))
1533         {
1534           return safeFailBack (aBasicVertShaderSrc.ErrorDescription(), theGlContext);
1535         }
1536       }
1537       else
1538       {
1539         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_vs, "" };
1540         aBasicVertShaderSrc.LoadFromStrings (aSrcShaders);
1541       }
1542     }
1543
1544     {
1545       if (!aShaderFolder.IsEmpty())
1546       {
1547         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs",
1548                                                    aShaderFolder + "/PathtraceBase.fs",
1549                                                    aShaderFolder + "/RaytraceRender.fs",
1550                                                    "" };
1551         if (!myRaytraceShaderSource.LoadFromFiles (aFiles, aPrefixString))
1552         {
1553           return safeFailBack (myRaytraceShaderSource.ErrorDescription(), theGlContext);
1554         }
1555       }
1556       else
1557       {
1558         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs,
1559                                                         Shaders_PathtraceBase_fs,
1560                                                         Shaders_RaytraceRender_fs,
1561                                                         "" };
1562         myRaytraceShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1563       }
1564
1565       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1566       if (aBasicVertShader.IsNull())
1567       {
1568         return safeFailBack ("Failed to initialize ray-trace vertex shader", theGlContext);
1569       }
1570
1571       myRaytraceShader = initShader (GL_FRAGMENT_SHADER, myRaytraceShaderSource, theGlContext);
1572       if (myRaytraceShader.IsNull())
1573       {
1574         aBasicVertShader->Release (theGlContext.operator->());
1575         return safeFailBack ("Failed to initialize ray-trace fragment shader", theGlContext);
1576       }
1577
1578       myRaytraceProgram = initProgram (theGlContext, aBasicVertShader, myRaytraceShader);
1579       if (myRaytraceProgram.IsNull())
1580       {
1581         return safeFailBack ("Failed to initialize ray-trace shader program", theGlContext);
1582       }
1583     }
1584
1585     {
1586       if (!aShaderFolder.IsEmpty())
1587       {
1588         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs", aShaderFolder + "/RaytraceSmooth.fs", "" };
1589         if (!myPostFSAAShaderSource.LoadFromFiles (aFiles, aPrefixString))
1590         {
1591           return safeFailBack (myPostFSAAShaderSource.ErrorDescription(), theGlContext);
1592         }
1593       }
1594       else
1595       {
1596         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs, Shaders_RaytraceSmooth_fs, "" };
1597         myPostFSAAShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1598       }
1599
1600       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1601       if (aBasicVertShader.IsNull())
1602       {
1603         return safeFailBack ("Failed to initialize FSAA vertex shader", theGlContext);
1604       }
1605
1606       myPostFSAAShader = initShader (GL_FRAGMENT_SHADER, myPostFSAAShaderSource, theGlContext);
1607       if (myPostFSAAShader.IsNull())
1608       {
1609         aBasicVertShader->Release (theGlContext.operator->());
1610         return safeFailBack ("Failed to initialize FSAA fragment shader", theGlContext);
1611       }
1612
1613       myPostFSAAProgram = initProgram (theGlContext, aBasicVertShader, myPostFSAAShader);
1614       if (myPostFSAAProgram.IsNull())
1615       {
1616         return safeFailBack ("Failed to initialize FSAA shader program", theGlContext);
1617       }
1618     }
1619
1620     {
1621       if (!aShaderFolder.IsEmpty())
1622       {
1623         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/Display.fs", "" };
1624         if (!myOutImageShaderSource.LoadFromFiles (aFiles, aPrefixString))
1625         {
1626           return safeFailBack (myOutImageShaderSource.ErrorDescription(), theGlContext);
1627         }
1628       }
1629       else
1630       {
1631         const TCollection_AsciiString aSrcShaders[] = { Shaders_Display_fs, "" };
1632         myOutImageShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1633       }
1634
1635       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1636       if (aBasicVertShader.IsNull())
1637       {
1638         return safeFailBack ("Failed to set vertex shader source", theGlContext);
1639       }
1640
1641       myOutImageShader = initShader (GL_FRAGMENT_SHADER, myOutImageShaderSource, theGlContext);
1642       if (myOutImageShader.IsNull())
1643       {
1644         aBasicVertShader->Release (theGlContext.operator->());
1645         return safeFailBack ("Failed to set display fragment shader source", theGlContext);
1646       }
1647
1648       myOutImageProgram = initProgram (theGlContext, aBasicVertShader, myOutImageShader);
1649       if (myOutImageProgram.IsNull())
1650       {
1651         return safeFailBack ("Failed to initialize display shader program", theGlContext);
1652       }
1653     }
1654   }
1655
1656   if (myRaytraceInitStatus == OpenGl_RT_NONE || aToRebuildShaders)
1657   {
1658     for (Standard_Integer anIndex = 0; anIndex < 2; ++anIndex)
1659     {
1660       Handle(OpenGl_ShaderProgram)& aShaderProgram =
1661         (anIndex == 0) ? myRaytraceProgram : myPostFSAAProgram;
1662
1663       theGlContext->BindProgram (aShaderProgram);
1664
1665       aShaderProgram->SetSampler (theGlContext,
1666         "uSceneMinPointTexture", OpenGl_RT_SceneMinPointTexture);
1667       aShaderProgram->SetSampler (theGlContext,
1668         "uSceneMaxPointTexture", OpenGl_RT_SceneMaxPointTexture);
1669       aShaderProgram->SetSampler (theGlContext,
1670         "uSceneNodeInfoTexture", OpenGl_RT_SceneNodeInfoTexture);
1671       aShaderProgram->SetSampler (theGlContext,
1672         "uGeometryVertexTexture", OpenGl_RT_GeometryVertexTexture);
1673       aShaderProgram->SetSampler (theGlContext,
1674         "uGeometryNormalTexture", OpenGl_RT_GeometryNormalTexture);
1675       aShaderProgram->SetSampler (theGlContext,
1676         "uGeometryTexCrdTexture", OpenGl_RT_GeometryTexCrdTexture);
1677       aShaderProgram->SetSampler (theGlContext,
1678         "uGeometryTriangTexture", OpenGl_RT_GeometryTriangTexture);
1679       aShaderProgram->SetSampler (theGlContext, 
1680         "uSceneTransformTexture", OpenGl_RT_SceneTransformTexture);
1681       aShaderProgram->SetSampler (theGlContext,
1682         "uEnvironmentMapTexture", OpenGl_RT_EnvironmentMapTexture);
1683       aShaderProgram->SetSampler (theGlContext,
1684         "uRaytraceMaterialTexture", OpenGl_RT_RaytraceMaterialTexture);
1685       aShaderProgram->SetSampler (theGlContext,
1686         "uRaytraceLightSrcTexture", OpenGl_RT_RaytraceLightSrcTexture);
1687
1688       if (anIndex == 1)
1689       {
1690         aShaderProgram->SetSampler (theGlContext,
1691           "uFSAAInputTexture", OpenGl_RT_FsaaInputTexture);
1692       }
1693       else
1694       {
1695         aShaderProgram->SetSampler (theGlContext,
1696           "uAccumTexture", OpenGl_RT_PrevAccumTexture);
1697       }
1698
1699       myUniformLocations[anIndex][OpenGl_RT_aPosition] =
1700         aShaderProgram->GetAttributeLocation (theGlContext, "occVertex");
1701
1702       myUniformLocations[anIndex][OpenGl_RT_uOriginLB] =
1703         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLB");
1704       myUniformLocations[anIndex][OpenGl_RT_uOriginRB] =
1705         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRB");
1706       myUniformLocations[anIndex][OpenGl_RT_uOriginLT] =
1707         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLT");
1708       myUniformLocations[anIndex][OpenGl_RT_uOriginRT] =
1709         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRT");
1710       myUniformLocations[anIndex][OpenGl_RT_uDirectLB] =
1711         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLB");
1712       myUniformLocations[anIndex][OpenGl_RT_uDirectRB] =
1713         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRB");
1714       myUniformLocations[anIndex][OpenGl_RT_uDirectLT] =
1715         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLT");
1716       myUniformLocations[anIndex][OpenGl_RT_uDirectRT] =
1717         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRT");
1718       myUniformLocations[anIndex][OpenGl_RT_uViewPrMat] =
1719         aShaderProgram->GetUniformLocation (theGlContext, "uViewMat");
1720       myUniformLocations[anIndex][OpenGl_RT_uUnviewMat] =
1721         aShaderProgram->GetUniformLocation (theGlContext, "uUnviewMat");
1722
1723       myUniformLocations[anIndex][OpenGl_RT_uSceneRad] =
1724         aShaderProgram->GetUniformLocation (theGlContext, "uSceneRadius");
1725       myUniformLocations[anIndex][OpenGl_RT_uSceneEps] =
1726         aShaderProgram->GetUniformLocation (theGlContext, "uSceneEpsilon");
1727       myUniformLocations[anIndex][OpenGl_RT_uLightCount] =
1728         aShaderProgram->GetUniformLocation (theGlContext, "uLightCount");
1729       myUniformLocations[anIndex][OpenGl_RT_uLightAmbnt] =
1730         aShaderProgram->GetUniformLocation (theGlContext, "uGlobalAmbient");
1731
1732       myUniformLocations[anIndex][OpenGl_RT_uOffsetX] =
1733         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetX");
1734       myUniformLocations[anIndex][OpenGl_RT_uOffsetY] =
1735         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetY");
1736       myUniformLocations[anIndex][OpenGl_RT_uSamples] =
1737         aShaderProgram->GetUniformLocation (theGlContext, "uSamples");
1738
1739       myUniformLocations[anIndex][OpenGl_RT_uTexSamplersArray] =
1740         aShaderProgram->GetUniformLocation (theGlContext, "uTextureSamplers");
1741
1742       myUniformLocations[anIndex][OpenGl_RT_uShadowsEnabled] =
1743         aShaderProgram->GetUniformLocation (theGlContext, "uShadowsEnabled");
1744       myUniformLocations[anIndex][OpenGl_RT_uReflectEnabled] =
1745         aShaderProgram->GetUniformLocation (theGlContext, "uReflectEnabled");
1746       myUniformLocations[anIndex][OpenGl_RT_uSphereMapEnabled] =
1747         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapEnabled");
1748       myUniformLocations[anIndex][OpenGl_RT_uSphereMapForBack] =
1749         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapForBack");
1750       myUniformLocations[anIndex][OpenGl_RT_uBlockedRngEnabled] =
1751         aShaderProgram->GetUniformLocation (theGlContext, "uBlockedRngEnabled");
1752
1753       myUniformLocations[anIndex][OpenGl_RT_uWinSizeX] =
1754         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeX");
1755       myUniformLocations[anIndex][OpenGl_RT_uWinSizeY] =
1756         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeY");
1757
1758       myUniformLocations[anIndex][OpenGl_RT_uAccumSamples] =
1759         aShaderProgram->GetUniformLocation (theGlContext, "uAccumSamples");
1760       myUniformLocations[anIndex][OpenGl_RT_uFrameRndSeed] =
1761         aShaderProgram->GetUniformLocation (theGlContext, "uFrameRndSeed");
1762
1763       myUniformLocations[anIndex][OpenGl_RT_uRenderImage] =
1764         aShaderProgram->GetUniformLocation (theGlContext, "uRenderImage");
1765       myUniformLocations[anIndex][OpenGl_RT_uOffsetImage] =
1766         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetImage");
1767
1768       myUniformLocations[anIndex][OpenGl_RT_uBackColorTop] =
1769         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorTop");
1770       myUniformLocations[anIndex][OpenGl_RT_uBackColorBot] =
1771         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorBot");
1772
1773       myUniformLocations[anIndex][OpenGl_RT_uMaxRadiance] =
1774         aShaderProgram->GetUniformLocation (theGlContext, "uMaxRadiance");
1775     }
1776
1777     theGlContext->BindProgram (myOutImageProgram);
1778
1779     myOutImageProgram->SetSampler (theGlContext,
1780       "uInputTexture", OpenGl_RT_PrevAccumTexture);
1781
1782     myOutImageProgram->SetSampler (theGlContext,
1783       "uDepthTexture", OpenGl_RT_RaytraceDepthTexture);
1784
1785     theGlContext->BindProgram (NULL);
1786   }
1787
1788   if (myRaytraceInitStatus != OpenGl_RT_NONE)
1789   {
1790     return myRaytraceInitStatus == OpenGl_RT_INIT;
1791   }
1792
1793   const GLfloat aVertices[] = { -1.f, -1.f,  0.f,
1794                                 -1.f,  1.f,  0.f,
1795                                  1.f,  1.f,  0.f,
1796                                  1.f,  1.f,  0.f,
1797                                  1.f, -1.f,  0.f,
1798                                 -1.f, -1.f,  0.f };
1799
1800   myRaytraceScreenQuad.Init (theGlContext, 3, 6, aVertices);
1801
1802   myRaytraceInitStatus = OpenGl_RT_INIT; // initialized in normal way
1803
1804   return Standard_True;
1805 }
1806
1807 // =======================================================================
1808 // function : nullifyResource
1809 // purpose  : Releases OpenGL resource
1810 // =======================================================================
1811 template <class T>
1812 inline void nullifyResource (const Handle(OpenGl_Context)& theGlContext, Handle(T)& theResource)
1813 {
1814   if (!theResource.IsNull())
1815   {
1816     theResource->Release (theGlContext.operator->());
1817     theResource.Nullify();
1818   }
1819 }
1820
1821 // =======================================================================
1822 // function : releaseRaytraceResources
1823 // purpose  : Releases OpenGL/GLSL shader programs
1824 // =======================================================================
1825 void OpenGl_View::releaseRaytraceResources (const Handle(OpenGl_Context)& theGlContext, const Standard_Boolean theToRebuild)
1826 {
1827   // release shader resources
1828   nullifyResource (theGlContext, myRaytraceShader);
1829   nullifyResource (theGlContext, myPostFSAAShader);
1830
1831   nullifyResource (theGlContext, myRaytraceProgram);
1832   nullifyResource (theGlContext, myPostFSAAProgram);
1833   nullifyResource (theGlContext, myOutImageProgram);
1834
1835   if (!theToRebuild) // complete release
1836   {
1837     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1838     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1839     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1840     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1841
1842     nullifyResource (theGlContext, myRaytraceOutputTexture[0]);
1843     nullifyResource (theGlContext, myRaytraceOutputTexture[1]);
1844
1845     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[0]);
1846     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[1]);
1847     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[0]);
1848     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[1]);
1849
1850     nullifyResource (theGlContext, mySceneNodeInfoTexture);
1851     nullifyResource (theGlContext, mySceneMinPointTexture);
1852     nullifyResource (theGlContext, mySceneMaxPointTexture);
1853
1854     nullifyResource (theGlContext, myGeometryVertexTexture);
1855     nullifyResource (theGlContext, myGeometryNormalTexture);
1856     nullifyResource (theGlContext, myGeometryTexCrdTexture);
1857     nullifyResource (theGlContext, myGeometryTriangTexture);
1858     nullifyResource (theGlContext, mySceneTransformTexture);
1859
1860     nullifyResource (theGlContext, myRaytraceLightSrcTexture);
1861     nullifyResource (theGlContext, myRaytraceMaterialTexture);
1862
1863     myRaytraceGeometry.ReleaseResources (theGlContext);
1864
1865     if (myRaytraceScreenQuad.IsValid ())
1866     {
1867       myRaytraceScreenQuad.Release (theGlContext.operator->());
1868     }
1869   }
1870 }
1871
1872 // =======================================================================
1873 // function : updateRaytraceBuffers
1874 // purpose  : Updates auxiliary OpenGL frame buffers.
1875 // =======================================================================
1876 Standard_Boolean OpenGl_View::updateRaytraceBuffers (const Standard_Integer        theSizeX,
1877                                                      const Standard_Integer        theSizeY,
1878                                                      const Handle(OpenGl_Context)& theGlContext)
1879 {
1880   // Auxiliary buffers are not used
1881   if (!myRaytraceParameters.GlobalIllumination && !myRenderParams.IsAntialiasingEnabled)
1882   {
1883     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1884     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1885     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1886     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1887
1888     return Standard_True;
1889   }
1890
1891   if (myRaytraceParameters.AdaptiveScreenSampling)
1892   {
1893     const Standard_Integer aSizeX = std::max (myRaytraceParameters.NbTilesX * 64, theSizeX);
1894     const Standard_Integer aSizeY = std::max (myRaytraceParameters.NbTilesY * 64, theSizeY);
1895
1896     myRaytraceFBO1[0]->InitLazy (theGlContext, aSizeX, aSizeY, GL_RGBA32F, myFboDepthFormat);
1897     myRaytraceFBO2[0]->InitLazy (theGlContext, aSizeX, aSizeY, GL_RGBA32F, myFboDepthFormat);
1898
1899     if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
1900     {
1901       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1902       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1903     }
1904   }
1905   else // non-adaptive mode
1906   {
1907     if (myRaytraceFBO1[0]->GetSizeX() != theSizeX
1908      || myRaytraceFBO1[0]->GetSizeY() != theSizeY)
1909     {
1910       myAccumFrames = 0; // accumulation should be restarted
1911     }
1912
1913     myRaytraceFBO1[0]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1914     myRaytraceFBO2[0]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1915
1916     // Init second set of buffers for stereographic rendering
1917     if (myCamera->ProjectionType() == Graphic3d_Camera::Projection_Stereo)
1918     {
1919       myRaytraceFBO1[1]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1920       myRaytraceFBO2[1]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1921     }
1922     else if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
1923     {
1924       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1925       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1926     }
1927   }
1928
1929   myTileSampler.SetSize (theSizeX, theSizeY);
1930
1931   if (myRaytraceTileOffsetsTexture[0].IsNull()
1932    || myRaytraceTileOffsetsTexture[1].IsNull())
1933   {
1934     myRaytraceOutputTexture[0] = new OpenGl_Texture();
1935     myRaytraceOutputTexture[1] = new OpenGl_Texture();
1936
1937     myRaytraceTileOffsetsTexture[0] = new OpenGl_Texture();
1938     myRaytraceTileOffsetsTexture[1] = new OpenGl_Texture();
1939     myRaytraceVisualErrorTexture[0] = new OpenGl_Texture();
1940     myRaytraceVisualErrorTexture[1] = new OpenGl_Texture();
1941   }
1942
1943   if (myRaytraceOutputTexture[0]->SizeX() / 3 != theSizeX
1944    || myRaytraceOutputTexture[0]->SizeY() / 2 != theSizeY)
1945   {
1946     myAccumFrames = 0;
1947
1948     // Due to limitations of OpenGL image load-store extension
1949     // atomic operations are supported only for single-channel
1950     // images, so we define GL_R32F image. It is used as array
1951     // of 6D floating point vectors:
1952     // 0 - R color channel
1953     // 1 - G color channel
1954     // 2 - B color channel
1955     // 3 - hit time transformed into OpenGL NDC space
1956     // 4 - luminance accumulated for odd samples only
1957     myRaytraceOutputTexture[0]->InitRectangle (theGlContext,
1958       theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
1959
1960     // workaround for some NVIDIA drivers
1961     myRaytraceVisualErrorTexture[0]->Release (theGlContext.operator->());
1962     myRaytraceTileOffsetsTexture[0]->Release (theGlContext.operator->());
1963
1964     myRaytraceVisualErrorTexture[0]->Init (theGlContext,
1965       GL_R32I, GL_RED_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1966
1967     myRaytraceTileOffsetsTexture[0]->Init (theGlContext,
1968       GL_RG32I, GL_RG_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1969   }
1970
1971   if (myCamera->ProjectionType() == Graphic3d_Camera::Projection_Stereo)
1972   {
1973     if (myRaytraceOutputTexture[1]->SizeX() / 3 != theSizeX
1974      || myRaytraceOutputTexture[1]->SizeY() / 2 != theSizeY)
1975     {
1976       myRaytraceOutputTexture[1]->InitRectangle (theGlContext,
1977         theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
1978
1979       myRaytraceVisualErrorTexture[1]->Release (theGlContext.operator->());
1980       myRaytraceTileOffsetsTexture[1]->Release (theGlContext.operator->());
1981
1982       myRaytraceVisualErrorTexture[1]->Init (theGlContext,
1983         GL_R32I, GL_RED_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1984
1985       myRaytraceTileOffsetsTexture[1]->Init (theGlContext,
1986         GL_RG32I, GL_RG_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1987     }
1988   }
1989   else
1990   {
1991     myRaytraceOutputTexture[1]->Release (theGlContext.operator->());
1992   }
1993
1994   return Standard_True;
1995 }
1996
1997 // =======================================================================
1998 // function : updateCamera
1999 // purpose  : Generates viewing rays for corners of screen quad
2000 // =======================================================================
2001 void OpenGl_View::updateCamera (const OpenGl_Mat4& theOrientation,
2002                                 const OpenGl_Mat4& theViewMapping,
2003                                 OpenGl_Vec3*       theOrigins,
2004                                 OpenGl_Vec3*       theDirects,
2005                                 OpenGl_Mat4&       theViewPr,
2006                                 OpenGl_Mat4&       theUnview)
2007 {
2008   // compute view-projection matrix
2009   theViewPr = theViewMapping * theOrientation;
2010
2011   // compute inverse view-projection matrix
2012   theViewPr.Inverted (theUnview);
2013
2014   Standard_Integer aOriginIndex = 0;
2015   Standard_Integer aDirectIndex = 0;
2016
2017   for (Standard_Integer aY = -1; aY <= 1; aY += 2)
2018   {
2019     for (Standard_Integer aX = -1; aX <= 1; aX += 2)
2020     {
2021       OpenGl_Vec4 aOrigin (GLfloat(aX),
2022                            GLfloat(aY),
2023                            -1.0f,
2024                            1.0f);
2025
2026       aOrigin = theUnview * aOrigin;
2027
2028       aOrigin.x() = aOrigin.x() / aOrigin.w();
2029       aOrigin.y() = aOrigin.y() / aOrigin.w();
2030       aOrigin.z() = aOrigin.z() / aOrigin.w();
2031
2032       OpenGl_Vec4 aDirect (GLfloat(aX),
2033                            GLfloat(aY),
2034                            1.0f,
2035                            1.0f);
2036
2037       aDirect = theUnview * aDirect;
2038
2039       aDirect.x() = aDirect.x() / aDirect.w();
2040       aDirect.y() = aDirect.y() / aDirect.w();
2041       aDirect.z() = aDirect.z() / aDirect.w();
2042
2043       aDirect = aDirect - aOrigin;
2044
2045       theOrigins[aOriginIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aOrigin.x()),
2046                                                 static_cast<GLfloat> (aOrigin.y()),
2047                                                 static_cast<GLfloat> (aOrigin.z()));
2048
2049       theDirects[aDirectIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aDirect.x()),
2050                                                 static_cast<GLfloat> (aDirect.y()),
2051                                                 static_cast<GLfloat> (aDirect.z()));
2052     }
2053   }
2054 }
2055
2056 // =======================================================================
2057 // function : updatePerspCameraPT
2058 // purpose  : Generates viewing rays (path tracing, perspective camera)
2059 // =======================================================================
2060 void OpenGl_View::updatePerspCameraPT (const OpenGl_Mat4&           theOrientation,
2061                                        const OpenGl_Mat4&           theViewMapping,
2062                                        Graphic3d_Camera::Projection theProjection,
2063                                        OpenGl_Mat4&                 theViewPr,
2064                                        OpenGl_Mat4&                 theUnview,
2065                                        const int                    theWinSizeX,
2066                                        const int                    theWinSizeY)
2067 {
2068   // compute view-projection matrix
2069   theViewPr = theViewMapping * theOrientation;
2070
2071   // compute inverse view-projection matrix
2072   theViewPr.Inverted(theUnview);
2073   
2074   // get camera stereo params
2075   float anIOD = myCamera->GetIODType() == Graphic3d_Camera::IODType_Relative
2076     ? static_cast<float> (myCamera->IOD() * myCamera->Distance())
2077     : static_cast<float> (myCamera->IOD());
2078
2079   float aZFocus = myCamera->ZFocusType() == Graphic3d_Camera::FocusType_Relative
2080     ? static_cast<float> (myCamera->ZFocus() * myCamera->Distance())
2081     : static_cast<float> (myCamera->ZFocus());
2082
2083   // get camera view vectors
2084   const gp_Pnt anOrig = myCamera->Eye();
2085
2086   myEyeOrig = OpenGl_Vec3 (static_cast<float> (anOrig.X()),
2087                            static_cast<float> (anOrig.Y()),
2088                            static_cast<float> (anOrig.Z()));
2089
2090   const gp_Dir aView = myCamera->Direction();
2091
2092   OpenGl_Vec3 anEyeViewMono = OpenGl_Vec3 (static_cast<float> (aView.X()),
2093                                            static_cast<float> (aView.Y()),
2094                                            static_cast<float> (aView.Z()));
2095
2096   const gp_Dir anUp = myCamera->Up();
2097
2098   myEyeVert = OpenGl_Vec3 (static_cast<float> (anUp.X()),
2099                            static_cast<float> (anUp.Y()),
2100                            static_cast<float> (anUp.Z()));
2101
2102   myEyeSide = OpenGl_Vec3::Cross (anEyeViewMono, myEyeVert);
2103
2104   const double aScaleY = tan (myCamera->FOVy() / 360 * M_PI);
2105   const double aScaleX = theWinSizeX * aScaleY / theWinSizeY;
2106  
2107   myEyeSize = OpenGl_Vec2 (static_cast<float> (aScaleX),
2108                            static_cast<float> (aScaleY));
2109
2110   if (theProjection == Graphic3d_Camera::Projection_Perspective)
2111   {
2112     myEyeView = anEyeViewMono;
2113   }
2114   else // stereo camera
2115   {
2116     // compute z-focus point
2117     OpenGl_Vec3 aZFocusPoint = myEyeOrig + anEyeViewMono * aZFocus;
2118
2119     // compute stereo camera shift
2120     float aDx = theProjection == Graphic3d_Camera::Projection_MonoRightEye ? 0.5f * anIOD : -0.5f * anIOD;
2121     myEyeOrig += myEyeSide.Normalized() * aDx;
2122
2123     // estimate new camera direction vector and correct its length
2124     myEyeView = (aZFocusPoint - myEyeOrig).Normalized();
2125     myEyeView *= 1.f / anEyeViewMono.Dot (myEyeView);
2126   }
2127 }
2128
2129 // =======================================================================
2130 // function : uploadRaytraceData
2131 // purpose  : Uploads ray-trace data to the GPU
2132 // =======================================================================
2133 Standard_Boolean OpenGl_View::uploadRaytraceData (const Handle(OpenGl_Context)& theGlContext)
2134 {
2135   if (!theGlContext->IsGlGreaterEqual (3, 1))
2136   {
2137 #ifdef RAY_TRACE_PRINT_INFO
2138     std::cout << "Error: OpenGL version is less than 3.1" << std::endl;
2139 #endif
2140     return Standard_False;
2141   }
2142
2143   myAccumFrames = 0; // accumulation should be restarted
2144
2145   /////////////////////////////////////////////////////////////////////////////
2146   // Prepare OpenGL textures
2147
2148   if (theGlContext->arbTexBindless != NULL)
2149   {
2150     // If OpenGL driver supports bindless textures we need
2151     // to get unique 64- bit handles for using on the GPU
2152     if (!myRaytraceGeometry.UpdateTextureHandles (theGlContext))
2153     {
2154 #ifdef RAY_TRACE_PRINT_INFO
2155       std::cout << "Error: Failed to get OpenGL texture handles" << std::endl;
2156 #endif
2157       return Standard_False;
2158     }
2159   }
2160
2161   /////////////////////////////////////////////////////////////////////////////
2162   // Create OpenGL BVH buffers
2163
2164   if (mySceneNodeInfoTexture.IsNull()) // create scene BVH buffers
2165   {
2166     mySceneNodeInfoTexture  = new OpenGl_TextureBufferArb;
2167     mySceneMinPointTexture  = new OpenGl_TextureBufferArb;
2168     mySceneMaxPointTexture  = new OpenGl_TextureBufferArb;
2169     mySceneTransformTexture = new OpenGl_TextureBufferArb;
2170
2171     if (!mySceneNodeInfoTexture->Create  (theGlContext)
2172      || !mySceneMinPointTexture->Create  (theGlContext)
2173      || !mySceneMaxPointTexture->Create  (theGlContext)
2174      || !mySceneTransformTexture->Create (theGlContext))
2175     {
2176 #ifdef RAY_TRACE_PRINT_INFO
2177       std::cout << "Error: Failed to create scene BVH buffers" << std::endl;
2178 #endif
2179       return Standard_False;
2180     }
2181   }
2182
2183   if (myGeometryVertexTexture.IsNull()) // create geometry buffers
2184   {
2185     myGeometryVertexTexture = new OpenGl_TextureBufferArb;
2186     myGeometryNormalTexture = new OpenGl_TextureBufferArb;
2187     myGeometryTexCrdTexture = new OpenGl_TextureBufferArb;
2188     myGeometryTriangTexture = new OpenGl_TextureBufferArb;
2189
2190     if (!myGeometryVertexTexture->Create (theGlContext)
2191      || !myGeometryNormalTexture->Create (theGlContext)
2192      || !myGeometryTexCrdTexture->Create (theGlContext)
2193      || !myGeometryTriangTexture->Create (theGlContext))
2194     {
2195 #ifdef RAY_TRACE_PRINT_INFO
2196       std::cout << "Error: Failed to create buffers for triangulation data" << std::endl;
2197 #endif
2198       return Standard_False;
2199     }
2200   }
2201
2202   if (myRaytraceMaterialTexture.IsNull()) // create material buffer
2203   {
2204     myRaytraceMaterialTexture = new OpenGl_TextureBufferArb;
2205
2206     if (!myRaytraceMaterialTexture->Create (theGlContext))
2207     {
2208 #ifdef RAY_TRACE_PRINT_INFO
2209       std::cout << "Error: Failed to create buffers for material data" << std::endl;
2210 #endif
2211       return Standard_False;
2212     }
2213   }
2214   
2215   /////////////////////////////////////////////////////////////////////////////
2216   // Write transform buffer
2217
2218   BVH_Mat4f* aNodeTransforms = new BVH_Mat4f[myRaytraceGeometry.Size()];
2219
2220   bool aResult = true;
2221
2222   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2223   {
2224     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2225       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2226
2227     const BVH_Transform<Standard_ShortReal, 4>* aTransform = dynamic_cast<const BVH_Transform<Standard_ShortReal, 4>* > (aTriangleSet->Properties().get());
2228     Standard_ASSERT_RETURN (aTransform != NULL,
2229       "OpenGl_TriangleSet does not contain transform", Standard_False);
2230
2231     aNodeTransforms[anElemIndex] = aTransform->Inversed();
2232   }
2233
2234   aResult &= mySceneTransformTexture->Init (theGlContext, 4,
2235     myRaytraceGeometry.Size() * 4, reinterpret_cast<const GLfloat*> (aNodeTransforms));
2236
2237   delete [] aNodeTransforms;
2238
2239   /////////////////////////////////////////////////////////////////////////////
2240   // Write geometry and bottom-level BVH buffers
2241
2242   Standard_Size aTotalVerticesNb = 0;
2243   Standard_Size aTotalElementsNb = 0;
2244   Standard_Size aTotalBVHNodesNb = 0;
2245
2246   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2247   {
2248     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2249       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2250
2251     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2252       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2253
2254     aTotalVerticesNb += aTriangleSet->Vertices.size();
2255     aTotalElementsNb += aTriangleSet->Elements.size();
2256
2257     Standard_ASSERT_RETURN (!aTriangleSet->QuadBVH().IsNull(),
2258       "Error: Failed to get bottom-level BVH of OpenGL element", Standard_False);
2259
2260     aTotalBVHNodesNb += aTriangleSet->QuadBVH()->NodeInfoBuffer().size();
2261   }
2262
2263   aTotalBVHNodesNb += myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size();
2264
2265   if (aTotalBVHNodesNb != 0)
2266   {
2267     aResult &= mySceneNodeInfoTexture->Init (
2268       theGlContext, 4, GLsizei (aTotalBVHNodesNb), static_cast<const GLuint*>  (NULL));
2269     aResult &= mySceneMinPointTexture->Init (
2270       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2271     aResult &= mySceneMaxPointTexture->Init (
2272       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2273   }
2274
2275   if (!aResult)
2276   {
2277 #ifdef RAY_TRACE_PRINT_INFO
2278     std::cout << "Error: Failed to upload buffers for bottom-level scene BVH" << std::endl;
2279 #endif
2280     return Standard_False;
2281   }
2282
2283   if (aTotalElementsNb != 0)
2284   {
2285     aResult &= myGeometryTriangTexture->Init (
2286       theGlContext, 4, GLsizei (aTotalElementsNb), static_cast<const GLuint*> (NULL));
2287   }
2288
2289   if (aTotalVerticesNb != 0)
2290   {
2291     aResult &= myGeometryVertexTexture->Init (
2292       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2293     aResult &= myGeometryNormalTexture->Init (
2294       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2295     aResult &= myGeometryTexCrdTexture->Init (
2296       theGlContext, 2, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2297   }
2298
2299   if (!aResult)
2300   {
2301 #ifdef RAY_TRACE_PRINT_INFO
2302     std::cout << "Error: Failed to upload buffers for scene geometry" << std::endl;
2303 #endif
2304     return Standard_False;
2305   }
2306
2307   const QuadBvhHandle& aBVH = myRaytraceGeometry.QuadBVH();
2308
2309   if (aBVH->Length() > 0)
2310   {
2311     aResult &= mySceneNodeInfoTexture->SubData (theGlContext, 0, aBVH->Length(),
2312       reinterpret_cast<const GLuint*> (&aBVH->NodeInfoBuffer().front()));
2313     aResult &= mySceneMinPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2314       reinterpret_cast<const GLfloat*> (&aBVH->MinPointBuffer().front()));
2315     aResult &= mySceneMaxPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2316       reinterpret_cast<const GLfloat*> (&aBVH->MaxPointBuffer().front()));
2317   }
2318
2319   for (Standard_Integer aNodeIdx = 0; aNodeIdx < aBVH->Length(); ++aNodeIdx)
2320   {
2321     if (!aBVH->IsOuter (aNodeIdx))
2322       continue;
2323
2324     OpenGl_TriangleSet* aTriangleSet = myRaytraceGeometry.TriangleSet (aNodeIdx);
2325
2326     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2327       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2328
2329     Standard_Integer aBVHOffset = myRaytraceGeometry.AccelerationOffset (aNodeIdx);
2330
2331     Standard_ASSERT_RETURN (aBVHOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2332       "Error: Failed to get offset for bottom-level BVH", Standard_False);
2333
2334     const Standard_Integer aBvhBuffersSize = aTriangleSet->QuadBVH()->Length();
2335
2336     if (aBvhBuffersSize != 0)
2337     {
2338       aResult &= mySceneNodeInfoTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2339         reinterpret_cast<const GLuint*> (&aTriangleSet->QuadBVH()->NodeInfoBuffer().front()));
2340       aResult &= mySceneMinPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2341         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MinPointBuffer().front()));
2342       aResult &= mySceneMaxPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2343         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MaxPointBuffer().front()));
2344
2345       if (!aResult)
2346       {
2347 #ifdef RAY_TRACE_PRINT_INFO
2348         std::cout << "Error: Failed to upload buffers for bottom-level scene BVHs" << std::endl;
2349 #endif
2350         return Standard_False;
2351       }
2352     }
2353
2354     const Standard_Integer aVerticesOffset = myRaytraceGeometry.VerticesOffset (aNodeIdx);
2355
2356     Standard_ASSERT_RETURN (aVerticesOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2357       "Error: Failed to get offset for triangulation vertices of OpenGL element", Standard_False);
2358
2359     if (!aTriangleSet->Vertices.empty())
2360     {
2361       aResult &= myGeometryNormalTexture->SubData (theGlContext, aVerticesOffset,
2362         GLsizei (aTriangleSet->Normals.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Normals.front()));
2363       aResult &= myGeometryTexCrdTexture->SubData (theGlContext, aVerticesOffset,
2364         GLsizei (aTriangleSet->TexCrds.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->TexCrds.front()));
2365       aResult &= myGeometryVertexTexture->SubData (theGlContext, aVerticesOffset,
2366         GLsizei (aTriangleSet->Vertices.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Vertices.front()));
2367     }
2368
2369     const Standard_Integer anElementsOffset = myRaytraceGeometry.ElementsOffset (aNodeIdx);
2370
2371     Standard_ASSERT_RETURN (anElementsOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2372       "Error: Failed to get offset for triangulation elements of OpenGL element", Standard_False);
2373
2374     if (!aTriangleSet->Elements.empty())
2375     {
2376       aResult &= myGeometryTriangTexture->SubData (theGlContext, anElementsOffset, GLsizei (aTriangleSet->Elements.size()),
2377                                                    reinterpret_cast<const GLuint*> (&aTriangleSet->Elements.front()));
2378     }
2379
2380     if (!aResult)
2381     {
2382 #ifdef RAY_TRACE_PRINT_INFO
2383       std::cout << "Error: Failed to upload triangulation buffers for OpenGL element" << std::endl;
2384 #endif
2385       return Standard_False;
2386     }
2387   }
2388
2389   /////////////////////////////////////////////////////////////////////////////
2390   // Write material buffer
2391
2392   if (myRaytraceGeometry.Materials.size() != 0)
2393   {
2394     aResult &= myRaytraceMaterialTexture->Init (theGlContext, 4,
2395       GLsizei (myRaytraceGeometry.Materials.size() * 19), myRaytraceGeometry.Materials.front().Packed());
2396
2397     if (!aResult)
2398     {
2399 #ifdef RAY_TRACE_PRINT_INFO
2400       std::cout << "Error: Failed to upload material buffer" << std::endl;
2401 #endif
2402       return Standard_False;
2403     }
2404   }
2405
2406   myIsRaytraceDataValid = myRaytraceGeometry.Objects().Size() != 0;
2407
2408 #ifdef RAY_TRACE_PRINT_INFO
2409
2410   Standard_ShortReal aMemTrgUsed = 0.f;
2411   Standard_ShortReal aMemBvhUsed = 0.f;
2412
2413   for (Standard_Integer anElemIdx = 0; anElemIdx < myRaytraceGeometry.Size(); ++anElemIdx)
2414   {
2415     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (myRaytraceGeometry.Objects()(anElemIdx).get());
2416
2417     aMemTrgUsed += static_cast<Standard_ShortReal> (
2418       aTriangleSet->Vertices.size() * sizeof (BVH_Vec3f));
2419     aMemTrgUsed += static_cast<Standard_ShortReal> (
2420       aTriangleSet->Normals.size() * sizeof (BVH_Vec3f));
2421     aMemTrgUsed += static_cast<Standard_ShortReal> (
2422       aTriangleSet->TexCrds.size() * sizeof (BVH_Vec2f));
2423     aMemTrgUsed += static_cast<Standard_ShortReal> (
2424       aTriangleSet->Elements.size() * sizeof (BVH_Vec4i));
2425
2426     aMemBvhUsed += static_cast<Standard_ShortReal> (
2427       aTriangleSet->QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2428     aMemBvhUsed += static_cast<Standard_ShortReal> (
2429       aTriangleSet->QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2430     aMemBvhUsed += static_cast<Standard_ShortReal> (
2431       aTriangleSet->QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2432   }
2433
2434   aMemBvhUsed += static_cast<Standard_ShortReal> (
2435     myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2436   aMemBvhUsed += static_cast<Standard_ShortReal> (
2437     myRaytraceGeometry.QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2438   aMemBvhUsed += static_cast<Standard_ShortReal> (
2439     myRaytraceGeometry.QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2440
2441   std::cout << "GPU Memory Used (Mb):\n"
2442     << "\tFor mesh: " << aMemTrgUsed / 1048576 << "\n"
2443     << "\tFor BVHs: " << aMemBvhUsed / 1048576 << "\n";
2444
2445 #endif
2446
2447   return aResult;
2448 }
2449
2450 // =======================================================================
2451 // function : updateRaytraceLightSources
2452 // purpose  : Updates 3D scene light sources for ray-tracing
2453 // =======================================================================
2454 Standard_Boolean OpenGl_View::updateRaytraceLightSources (const OpenGl_Mat4& theInvModelView, const Handle(OpenGl_Context)& theGlContext)
2455 {
2456   std::vector<OpenGl_Light> aLightSources;
2457
2458   if (myShadingModel != Graphic3d_TOSM_NONE)
2459   {
2460     aLightSources.assign (myLights.begin(), myLights.end());
2461
2462     // move positional light sources at the front of the list
2463     std::partition (aLightSources.begin(), aLightSources.end(), IsLightPositional());
2464   }
2465
2466   // get number of 'real' (not ambient) light sources
2467   const size_t aNbLights = std::count_if (aLightSources.begin(), aLightSources.end(), IsNotAmbient());
2468
2469   Standard_Boolean wasUpdated = myRaytraceGeometry.Sources.size () != aNbLights;
2470
2471   if (wasUpdated)
2472   {
2473     myRaytraceGeometry.Sources.resize (aNbLights);
2474   }
2475
2476   myRaytraceGeometry.Ambient = BVH_Vec4f (0.f, 0.f, 0.f, 0.f);
2477
2478   for (size_t aLightIdx = 0, aRealIdx = 0; aLightIdx < aLightSources.size(); ++aLightIdx)
2479   {
2480     const OpenGl_Light& aLight = aLightSources[aLightIdx];
2481
2482     if (aLight.Type == Graphic3d_TOLS_AMBIENT)
2483     {
2484       myRaytraceGeometry.Ambient += BVH_Vec4f (aLight.Color.r() * aLight.Intensity,
2485                                                aLight.Color.g() * aLight.Intensity,
2486                                                aLight.Color.b() * aLight.Intensity,
2487                                                0.0f);
2488       continue;
2489     }
2490
2491     BVH_Vec4f aEmission  (aLight.Color.r() * aLight.Intensity,
2492                           aLight.Color.g() * aLight.Intensity,
2493                           aLight.Color.b() * aLight.Intensity,
2494                           1.0f);
2495
2496     BVH_Vec4f aPosition (-aLight.Direction.x(),
2497                          -aLight.Direction.y(),
2498                          -aLight.Direction.z(),
2499                          0.0f);
2500
2501     if (aLight.Type != Graphic3d_TOLS_DIRECTIONAL)
2502     {
2503       aPosition = BVH_Vec4f (static_cast<float>(aLight.Position.x()),
2504                              static_cast<float>(aLight.Position.y()),
2505                              static_cast<float>(aLight.Position.z()),
2506                              1.0f);
2507
2508       // store smoothing radius in W-component
2509       aEmission.w() = Max (aLight.Smoothness, 0.f);
2510     }
2511     else
2512     {
2513       // store cosine of smoothing angle in W-component
2514       aEmission.w() = cosf (Min (Max (aLight.Smoothness, 0.f), static_cast<Standard_ShortReal> (M_PI / 2.0)));
2515     }
2516
2517     if (aLight.IsHeadlight)
2518     {
2519       aPosition = theInvModelView * aPosition;
2520     }
2521
2522     for (int aK = 0; aK < 4; ++aK)
2523     {
2524       wasUpdated |= (aEmission[aK] != myRaytraceGeometry.Sources[aRealIdx].Emission[aK])
2525                  || (aPosition[aK] != myRaytraceGeometry.Sources[aRealIdx].Position[aK]);
2526     }
2527
2528     if (wasUpdated)
2529     {
2530       myRaytraceGeometry.Sources[aRealIdx] = OpenGl_RaytraceLight (aEmission, aPosition);
2531     }
2532
2533     ++aRealIdx;
2534   }
2535
2536   if (myRaytraceLightSrcTexture.IsNull()) // create light source buffer
2537   {
2538     myRaytraceLightSrcTexture = new OpenGl_TextureBufferArb;
2539   }
2540
2541   if (myRaytraceGeometry.Sources.size() != 0 && wasUpdated)
2542   {
2543     const GLfloat* aDataPtr = myRaytraceGeometry.Sources.front().Packed();
2544     if (!myRaytraceLightSrcTexture->Init (theGlContext, 4, GLsizei (myRaytraceGeometry.Sources.size() * 2), aDataPtr))
2545     {
2546 #ifdef RAY_TRACE_PRINT_INFO
2547       std::cout << "Error: Failed to upload light source buffer" << std::endl;
2548 #endif
2549       return Standard_False;
2550     }
2551
2552     myAccumFrames = 0; // accumulation should be restarted
2553   }
2554
2555   return Standard_True;
2556 }
2557
2558 // =======================================================================
2559 // function : setUniformState
2560 // purpose  : Sets uniform state for the given ray-tracing shader program
2561 // =======================================================================
2562 Standard_Boolean OpenGl_View::setUniformState (const Standard_Integer        theProgramId,
2563                                                const Standard_Integer        theWinSizeX,
2564                                                const Standard_Integer        theWinSizeY,
2565                                                Graphic3d_Camera::Projection  theProjection,
2566                                                const Handle(OpenGl_Context)& theGlContext)
2567 {
2568   // Get projection state
2569   OpenGl_MatrixState<Standard_ShortReal>& aCntxProjectionState = theGlContext->ProjectionState;
2570
2571   OpenGl_Mat4 aViewPrjMat;
2572   OpenGl_Mat4 anUnviewMat;
2573   OpenGl_Vec3 aOrigins[4];
2574   OpenGl_Vec3 aDirects[4];
2575
2576   if (myCamera->IsOrthographic()
2577    || !myRenderParams.IsGlobalIlluminationEnabled)
2578   {
2579     updateCamera (myCamera->OrientationMatrixF(),
2580                   aCntxProjectionState.Current(),
2581                   aOrigins,
2582                   aDirects,
2583                   aViewPrjMat,
2584                   anUnviewMat);
2585   }
2586   else
2587   {
2588     updatePerspCameraPT (myCamera->OrientationMatrixF(),
2589                          aCntxProjectionState.Current(),
2590                          theProjection,
2591                          aViewPrjMat,
2592                          anUnviewMat,
2593                          theWinSizeX,
2594                          theWinSizeY);
2595   }
2596
2597   Handle(OpenGl_ShaderProgram)& theProgram = theProgramId == 0
2598                                            ? myRaytraceProgram
2599                                            : myPostFSAAProgram;
2600
2601   if (theProgram.IsNull())
2602   {
2603     return Standard_False;
2604   }
2605   
2606   theProgram->SetUniform(theGlContext, "uEyeOrig", myEyeOrig);
2607   theProgram->SetUniform(theGlContext, "uEyeView", myEyeView);
2608   theProgram->SetUniform(theGlContext, "uEyeVert", myEyeVert);
2609   theProgram->SetUniform(theGlContext, "uEyeSide", myEyeSide);
2610   theProgram->SetUniform(theGlContext, "uEyeSize", myEyeSize);
2611
2612   theProgram->SetUniform(theGlContext, "uApertureRadius", myRenderParams.CameraApertureRadius);
2613   theProgram->SetUniform(theGlContext, "uFocalPlaneDist", myRenderParams.CameraFocalPlaneDist);
2614   
2615   // Set camera state
2616   theProgram->SetUniform (theGlContext,
2617     myUniformLocations[theProgramId][OpenGl_RT_uOriginLB], aOrigins[0]);
2618   theProgram->SetUniform (theGlContext,
2619     myUniformLocations[theProgramId][OpenGl_RT_uOriginRB], aOrigins[1]);
2620   theProgram->SetUniform (theGlContext,
2621     myUniformLocations[theProgramId][OpenGl_RT_uOriginLT], aOrigins[2]);
2622   theProgram->SetUniform (theGlContext,
2623     myUniformLocations[theProgramId][OpenGl_RT_uOriginRT], aOrigins[3]);
2624   theProgram->SetUniform (theGlContext,
2625     myUniformLocations[theProgramId][OpenGl_RT_uDirectLB], aDirects[0]);
2626   theProgram->SetUniform (theGlContext,
2627     myUniformLocations[theProgramId][OpenGl_RT_uDirectRB], aDirects[1]);
2628   theProgram->SetUniform (theGlContext,
2629     myUniformLocations[theProgramId][OpenGl_RT_uDirectLT], aDirects[2]);
2630   theProgram->SetUniform (theGlContext,
2631     myUniformLocations[theProgramId][OpenGl_RT_uDirectRT], aDirects[3]);
2632   theProgram->SetUniform (theGlContext,
2633     myUniformLocations[theProgramId][OpenGl_RT_uViewPrMat], aViewPrjMat);
2634   theProgram->SetUniform (theGlContext,
2635     myUniformLocations[theProgramId][OpenGl_RT_uUnviewMat], anUnviewMat);
2636
2637   // Set screen dimensions
2638   myRaytraceProgram->SetUniform (theGlContext,
2639     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeX], theWinSizeX);
2640   myRaytraceProgram->SetUniform (theGlContext,
2641     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeY], theWinSizeY);
2642
2643   // Set 3D scene parameters
2644   theProgram->SetUniform (theGlContext,
2645     myUniformLocations[theProgramId][OpenGl_RT_uSceneRad], myRaytraceSceneRadius);
2646   theProgram->SetUniform (theGlContext,
2647     myUniformLocations[theProgramId][OpenGl_RT_uSceneEps], myRaytraceSceneEpsilon);
2648
2649   // Set light source parameters
2650   const Standard_Integer aLightSourceBufferSize =
2651     static_cast<Standard_Integer> (myRaytraceGeometry.Sources.size());
2652   
2653   theProgram->SetUniform (theGlContext,
2654     myUniformLocations[theProgramId][OpenGl_RT_uLightCount], aLightSourceBufferSize);
2655
2656   // Set array of 64-bit texture handles
2657   if (theGlContext->arbTexBindless != NULL && myRaytraceGeometry.HasTextures())
2658   {
2659     const std::vector<GLuint64>& aTextures = myRaytraceGeometry.TextureHandles();
2660
2661     theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uTexSamplersArray],
2662       static_cast<GLsizei> (aTextures.size()), reinterpret_cast<const OpenGl_Vec2u*> (&aTextures.front()));
2663   }
2664
2665   // Set background colors (only gradient background supported)
2666   if (myBgGradientArray != NULL && myBgGradientArray->IsDefined())
2667   {
2668     theProgram->SetUniform (theGlContext,
2669       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], myBgGradientArray->GradientColor (0));
2670     theProgram->SetUniform (theGlContext,
2671       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], myBgGradientArray->GradientColor (1));
2672   }
2673   else
2674   {
2675     const OpenGl_Vec4& aBackColor = myBgColor;
2676
2677     theProgram->SetUniform (theGlContext,
2678       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], aBackColor);
2679     theProgram->SetUniform (theGlContext,
2680       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], aBackColor);
2681   }
2682
2683   // Set environment map parameters
2684   const Standard_Boolean toDisableEnvironmentMap = myTextureEnv.IsNull() || !myTextureEnv->IsValid();
2685   
2686   theProgram->SetUniform (theGlContext,
2687     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapEnabled], toDisableEnvironmentMap ? 0 : 1);
2688
2689   theProgram->SetUniform (theGlContext,
2690     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapForBack], myRenderParams.UseEnvironmentMapBackground ?  1 : 0);
2691
2692   if (myRenderParams.IsGlobalIlluminationEnabled) // GI parameters
2693   {
2694     theProgram->SetUniform (theGlContext,
2695       myUniformLocations[theProgramId][OpenGl_RT_uMaxRadiance], myRenderParams.RadianceClampingValue);
2696
2697     theProgram->SetUniform (theGlContext,
2698       myUniformLocations[theProgramId][OpenGl_RT_uBlockedRngEnabled], myRenderParams.CoherentPathTracingMode ? 1 : 0);
2699
2700     // Check whether we should restart accumulation for run-time parameters
2701     if (myRenderParams.RadianceClampingValue       != myRaytraceParameters.RadianceClampingValue
2702      || myRenderParams.UseEnvironmentMapBackground != myRaytraceParameters.UseEnvMapForBackground)
2703     {
2704       myAccumFrames = 0; // accumulation should be restarted
2705
2706       myRaytraceParameters.RadianceClampingValue  = myRenderParams.RadianceClampingValue;
2707       myRaytraceParameters.UseEnvMapForBackground = myRenderParams.UseEnvironmentMapBackground;
2708     }
2709   }
2710   else // RT parameters
2711   {
2712     // Set ambient light source
2713     theProgram->SetUniform (theGlContext,
2714       myUniformLocations[theProgramId][OpenGl_RT_uLightAmbnt], myRaytraceGeometry.Ambient);
2715
2716     // Enable/disable run-time ray-tracing effects
2717     theProgram->SetUniform (theGlContext,
2718       myUniformLocations[theProgramId][OpenGl_RT_uShadowsEnabled], myRenderParams.IsShadowEnabled ?  1 : 0);
2719     theProgram->SetUniform (theGlContext,
2720       myUniformLocations[theProgramId][OpenGl_RT_uReflectEnabled], myRenderParams.IsReflectionEnabled ?  1 : 0);
2721   }
2722
2723   return Standard_True;
2724 }
2725
2726 // =======================================================================
2727 // function : bindRaytraceTextures
2728 // purpose  : Binds ray-trace textures to corresponding texture units
2729 // =======================================================================
2730 void OpenGl_View::bindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
2731 {
2732   if (myRaytraceParameters.AdaptiveScreenSampling)
2733   {
2734   #if !defined(GL_ES_VERSION_2_0)
2735     theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImageLft,
2736       myRaytraceOutputTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
2737     theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImageRgh,
2738       myRaytraceOutputTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
2739
2740     theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImageLft,
2741       myRaytraceVisualErrorTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
2742     theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImageRgh,
2743       myRaytraceVisualErrorTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
2744     theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImageLft,
2745       myRaytraceTileOffsetsTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
2746     theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImageRgh,
2747       myRaytraceTileOffsetsTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
2748 #endif
2749   }
2750
2751   if (!myTextureEnv.IsNull() && myTextureEnv->IsValid())
2752   {
2753     myTextureEnv->Bind (theGlContext, GL_TEXTURE0 + OpenGl_RT_EnvironmentMapTexture);
2754   }
2755
2756   mySceneMinPointTexture->BindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneMinPointTexture);
2757   mySceneMaxPointTexture->BindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneMaxPointTexture);
2758   mySceneNodeInfoTexture->BindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneNodeInfoTexture);
2759   myGeometryVertexTexture->BindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryVertexTexture);
2760   myGeometryNormalTexture->BindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryNormalTexture);
2761   myGeometryTexCrdTexture->BindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryTexCrdTexture);
2762   myGeometryTriangTexture->BindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryTriangTexture);
2763   mySceneTransformTexture->BindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneTransformTexture);
2764   myRaytraceMaterialTexture->BindTexture (theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceMaterialTexture);
2765   myRaytraceLightSrcTexture->BindTexture (theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceLightSrcTexture);
2766 }
2767
2768 // =======================================================================
2769 // function : unbindRaytraceTextures
2770 // purpose  : Unbinds ray-trace textures from corresponding texture units
2771 // =======================================================================
2772 void OpenGl_View::unbindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
2773 {
2774   mySceneMinPointTexture->UnbindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneMinPointTexture);
2775   mySceneMaxPointTexture->UnbindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneMaxPointTexture);
2776   mySceneNodeInfoTexture->UnbindTexture    (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneNodeInfoTexture);
2777   myGeometryVertexTexture->UnbindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryVertexTexture);
2778   myGeometryNormalTexture->UnbindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryNormalTexture);
2779   myGeometryTexCrdTexture->UnbindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryTexCrdTexture);
2780   myGeometryTriangTexture->UnbindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_GeometryTriangTexture);
2781   mySceneTransformTexture->UnbindTexture   (theGlContext, GL_TEXTURE0 + OpenGl_RT_SceneTransformTexture);
2782   myRaytraceMaterialTexture->UnbindTexture (theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceMaterialTexture);
2783   myRaytraceLightSrcTexture->UnbindTexture (theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceLightSrcTexture);
2784
2785   theGlContext->core15fwd->glActiveTexture (GL_TEXTURE0);
2786 }
2787
2788 // =======================================================================
2789 // function : runRaytraceShaders
2790 // purpose  : Runs ray-tracing shader programs
2791 // =======================================================================
2792 Standard_Boolean OpenGl_View::runRaytraceShaders (const Standard_Integer        theSizeX,
2793                                                   const Standard_Integer        theSizeY,
2794                                                   Graphic3d_Camera::Projection  theProjection,
2795                                                   OpenGl_FrameBuffer*           theReadDrawFbo,
2796                                                   const Handle(OpenGl_Context)& theGlContext)
2797 {
2798   Standard_Boolean aResult = theGlContext->BindProgram (myRaytraceProgram);
2799
2800   aResult &= setUniformState (0,
2801                               theSizeX,
2802                               theSizeY,
2803                               theProjection,
2804                               theGlContext);
2805
2806   if (myRaytraceParameters.GlobalIllumination) // path tracing
2807   {
2808     aResult &= runPathtrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
2809   }
2810   else // Whitted-style ray-tracing
2811   {
2812     aResult &= runRaytrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
2813   }
2814
2815   return aResult;
2816 }
2817
2818 // =======================================================================
2819 // function : runRaytrace
2820 // purpose  : Runs Whitted-style ray-tracing
2821 // =======================================================================
2822 Standard_Boolean OpenGl_View::runRaytrace (const Standard_Integer        theSizeX,
2823                                            const Standard_Integer        theSizeY,
2824                                            Graphic3d_Camera::Projection  theProjection,
2825                                            OpenGl_FrameBuffer*           theReadDrawFbo,
2826                                            const Handle(OpenGl_Context)& theGlContext)
2827 {
2828   Standard_Boolean aResult = Standard_True;
2829
2830   bindRaytraceTextures (theGlContext);
2831
2832   Handle(OpenGl_FrameBuffer) aRenderImageFramebuffer;
2833   Handle(OpenGl_FrameBuffer) aDepthSourceFramebuffer;
2834
2835   // Choose proper set of frame buffers for stereo rendering
2836   const Standard_Integer aFBOIdx (theProjection == Graphic3d_Camera::Projection_MonoRightEye);
2837
2838   if (myRenderParams.IsAntialiasingEnabled) // if second FSAA pass is used
2839   {
2840     myRaytraceFBO1[aFBOIdx]->BindBuffer (theGlContext);
2841
2842     glClear (GL_DEPTH_BUFFER_BIT); // render the image with depth
2843   }
2844
2845   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2846
2847   if (myRenderParams.IsAntialiasingEnabled)
2848   {
2849     glDisable (GL_DEPTH_TEST); // improve jagged edges without depth buffer
2850
2851     // bind ray-tracing output image as input
2852     myRaytraceFBO1[aFBOIdx]->ColorTexture()->Bind (theGlContext, GL_TEXTURE0 + OpenGl_RT_FsaaInputTexture);
2853
2854     aResult &= theGlContext->BindProgram (myPostFSAAProgram);
2855
2856     aResult &= setUniformState (1 /* FSAA ID */,
2857                                 theSizeX,
2858                                 theSizeY,
2859                                 theProjection,
2860                                 theGlContext);
2861
2862     // Perform multi-pass adaptive FSAA using ping-pong technique.
2863     // We use 'FLIPTRI' sampling pattern changing for every pixel
2864     // (3 additional samples per pixel, the 1st sample is already
2865     // available from initial ray-traced image).
2866     for (Standard_Integer anIt = 1; anIt < 4; ++anIt)
2867     {
2868       GLfloat aOffsetX = 1.f / theSizeX;
2869       GLfloat aOffsetY = 1.f / theSizeY;
2870
2871       if (anIt == 1)
2872       {
2873         aOffsetX *= -0.55f;
2874         aOffsetY *=  0.55f;
2875       }
2876       else if (anIt == 2)
2877       {
2878         aOffsetX *=  0.00f;
2879         aOffsetY *= -0.55f;
2880       }
2881       else if (anIt == 3)
2882       {
2883         aOffsetX *= 0.55f;
2884         aOffsetY *= 0.00f;
2885       }
2886
2887       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2888         myUniformLocations[1][OpenGl_RT_uSamples], anIt + 1);
2889       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2890         myUniformLocations[1][OpenGl_RT_uOffsetX], aOffsetX);
2891       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2892         myUniformLocations[1][OpenGl_RT_uOffsetY], aOffsetY);
2893
2894       Handle(OpenGl_FrameBuffer)& aFramebuffer = anIt % 2
2895                                                ? myRaytraceFBO2[aFBOIdx]
2896                                                : myRaytraceFBO1[aFBOIdx];
2897
2898       aFramebuffer->BindBuffer (theGlContext);
2899
2900       // perform adaptive FSAA pass
2901       theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2902
2903       aFramebuffer->ColorTexture()->Bind (theGlContext, GL_TEXTURE0 + OpenGl_RT_FsaaInputTexture);
2904     }
2905
2906     aRenderImageFramebuffer = myRaytraceFBO2[aFBOIdx];
2907     aDepthSourceFramebuffer = myRaytraceFBO1[aFBOIdx];
2908
2909     glEnable (GL_DEPTH_TEST);
2910
2911     // Display filtered image
2912     theGlContext->BindProgram (myOutImageProgram);
2913
2914     if (theReadDrawFbo != NULL)
2915     {
2916       theReadDrawFbo->BindBuffer (theGlContext);
2917     }
2918     else
2919     {
2920       aRenderImageFramebuffer->UnbindBuffer (theGlContext);
2921     }
2922
2923     aRenderImageFramebuffer->ColorTexture()->Bind (
2924       theGlContext, GL_TEXTURE0 + OpenGl_RT_PrevAccumTexture);
2925
2926     aDepthSourceFramebuffer->DepthStencilTexture()->Bind (
2927       theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceDepthTexture);
2928
2929     // copy the output image with depth values
2930     theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2931
2932     aDepthSourceFramebuffer->DepthStencilTexture()->Unbind (
2933       theGlContext, GL_TEXTURE0 + OpenGl_RT_RaytraceDepthTexture);
2934
2935     aRenderImageFramebuffer->ColorTexture()->Unbind (
2936       theGlContext, GL_TEXTURE0 + OpenGl_RT_PrevAccumTexture);
2937   }
2938
2939   unbindRaytraceTextures (theGlContext);
2940
2941   theGlContext->BindProgram (NULL);
2942
2943   return aResult;
2944 }
2945
2946 // =======================================================================
2947 // function : runPathtrace
2948 // purpose  : Runs path tracing shader
2949 // =======================================================================
2950 Standard_Boolean OpenGl_View::runPathtrace (const Standard_Integer              theSizeX,
2951                                             const Standard_Integer              theSizeY,
2952                                             const Graphic3d_Camera::Projection  theProjection,
2953                                             OpenGl_FrameBuffer*                 theReadDrawFbo,
2954                                             const Handle(OpenGl_Context)&       theGlContext)
2955 {
2956   Standard_Boolean aResult = Standard_True;
2957
2958   if (myToUpdateEnvironmentMap) // check whether the map was changed
2959   {
2960     myAccumFrames = myToUpdateEnvironmentMap = 0;
2961   }
2962   
2963   if (myRenderParams.CameraApertureRadius != myPrevCameraApertureRadius
2964    || myRenderParams.CameraFocalPlaneDist != myPrevCameraFocalPlaneDist)
2965   {
2966
2967     myPrevCameraApertureRadius = myRenderParams.CameraApertureRadius;
2968     myPrevCameraFocalPlaneDist = myRenderParams.CameraFocalPlaneDist;
2969
2970     myAccumFrames = 0;
2971   }
2972
2973   // Choose proper set of frame buffers for stereo rendering
2974   const Standard_Integer aFBOIdx (theProjection == Graphic3d_Camera::Projection_MonoRightEye);
2975
2976   if (myRaytraceParameters.AdaptiveScreenSampling)
2977   {
2978     if (myAccumFrames == 0)
2979     {
2980       myTileSampler.Reset(); // reset tile sampler to its initial state
2981
2982       // Adaptive sampling is starting at the second frame
2983       myTileSampler.Upload (theGlContext,
2984                             myRaytraceTileOffsetsTexture[aFBOIdx],
2985                             myRaytraceParameters.NbTilesX,
2986                             myRaytraceParameters.NbTilesY,
2987                             false);
2988     }
2989   }
2990
2991   bindRaytraceTextures (theGlContext);
2992
2993   Handle(OpenGl_FrameBuffer) aRenderImageFramebuffer;
2994   Handle(OpenGl_FrameBuffer) aDepthSourceFramebuffer;
2995   Handle(OpenGl_FrameBuffer) anAccumImageFramebuffer;
2996
2997   const Standard_Integer anImageId = (aFBOIdx != 0)
2998                                    ? OpenGl_RT_OutputImageRgh
2999                                    : OpenGl_RT_OutputImageLft;
3000
3001   const Standard_Integer anErrorId = (aFBOIdx != 0)
3002                                    ? OpenGl_RT_VisualErrorImageRgh
3003                                    : OpenGl_RT_VisualErrorImageLft;
3004
3005   const Standard_Integer anOffsetId = (aFBOIdx != 0)
3006                                     ? OpenGl_RT_TileOffsetsImageRgh
3007                                     : OpenGl_RT_TileOffsetsImageLft;
3008
3009   aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
3010   anAccumImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO2[aFBOIdx] : myRaytraceFBO1[aFBOIdx];
3011
3012   aDepthSourceFramebuffer = aRenderImageFramebuffer;
3013
3014   anAccumImageFramebuffer->ColorTexture()->Bind (
3015     theGlContext, GL_TEXTURE0 + OpenGl_RT_PrevAccumTexture);
3016
3017   aRenderImageFramebuffer->BindBuffer (theGlContext);
3018
3019   if (myAccumFrames == 0)
3020   {
3021     myRNG.SetSeed(); // start RNG from beginning
3022   }
3023
3024   // Clear adaptive screen sampling images
3025   if (myRaytraceParameters.AdaptiveScreenSampling)
3026   {
3027   #if !defined(GL_ES_VERSION_2_0)
3028     if (myAccumFrames == 0 || (myAccumFrames == 1 && myCamera->IsStereo()))
3029     {
3030       theGlContext->core44->glClearTexImage (myRaytraceOutputTexture[aFBOIdx]->TextureId(), 0, GL_RED, GL_FLOAT, NULL);
3031     }
3032
3033     theGlContext->core44->glClearTexImage (myRaytraceVisualErrorTexture[aFBOIdx]->TextureId(), 0, GL_RED_INTEGER, GL_INT, NULL);
3034   #endif
3035   }
3036
3037   // Set frame accumulation weight
3038   myRaytraceProgram->SetUniform (theGlContext,
3039     myUniformLocations[0][OpenGl_RT_uAccumSamples], myAccumFrames);
3040
3041   // Set random number generator seed
3042   myRaytraceProgram->SetUniform (theGlContext,
3043     myUniformLocations[0][OpenGl_RT_uFrameRndSeed], static_cast<Standard_Integer> (myRNG.NextInt() >> 2));
3044
3045   // Set image uniforms for render program
3046   myRaytraceProgram->SetUniform (theGlContext,
3047     myUniformLocations[0][OpenGl_RT_uRenderImage], anImageId);
3048   myRaytraceProgram->SetUniform (theGlContext,
3049     myUniformLocations[0][OpenGl_RT_uOffsetImage], anOffsetId);
3050
3051   glDisable (GL_DEPTH_TEST);
3052
3053   if (myRaytraceParameters.AdaptiveScreenSampling
3054    && ((myAccumFrames > 0 && !myCamera->IsStereo()) || myAccumFrames > 1))
3055   {
3056     glViewport (0,
3057                 0,
3058                 myTileSampler.TileSize() * myRaytraceParameters.NbTilesX,
3059                 myTileSampler.TileSize() * myRaytraceParameters.NbTilesY);
3060   }
3061
3062   // Generate for the given RNG seed
3063   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
3064
3065   if (myRaytraceParameters.AdaptiveScreenSampling
3066    && ((myAccumFrames > 0 && !myCamera->IsStereo()) || myAccumFrames > 1))
3067   {
3068     glViewport (0,
3069                 0,
3070                 theSizeX,
3071                 theSizeY);
3072   }
3073
3074   // Output accumulated path traced image
3075   theGlContext->BindProgram (myOutImageProgram);
3076
3077   if (myRaytraceParameters.AdaptiveScreenSampling)
3078   {
3079     // Set uniforms for display program
3080     myOutImageProgram->SetUniform (theGlContext, "uRenderImage",   anImageId);
3081     myOutImageProgram->SetUniform (theGlContext, "uAccumFrames",   myAccumFrames);
3082     myOutImageProgram->SetUniform (theGlContext, "uVarianceImage", anErrorId);
3083     myOutImageProgram->SetUniform (theGlContext, "uDebugAdaptive", myRenderParams.ShowSamplingTiles ?  1 : 0);
3084   }
3085
3086   if (myRaytraceParameters.GlobalIllumination)
3087   {
3088     myOutImageProgram->SetUniform(theGlContext, "uExposure", myRenderParams.Exposure);
3089     switch (myRaytraceParameters.ToneMappingMethod)
3090     {
3091       case Graphic3d_ToneMappingMethod_Disabled:
3092         break;
3093       case Graphic3d_ToneMappingMethod_Filmic:
3094         myOutImageProgram->SetUniform (theGlContext, "uWhitePoint", myRenderParams.WhitePoint);
3095         break;
3096     }
3097   }
3098
3099   if (theReadDrawFbo != NULL)
3100   {
3101     theReadDrawFbo->BindBuffer (theGlContext);
3102   }
3103   else
3104   {
3105     aRenderImageFramebuffer->UnbindBuffer (theGlContext);
3106   }
3107
3108   aRenderImageFramebuffer->ColorTexture()->Bind (
3109     theGlContext, GL_TEXTURE0 + OpenGl_RT_PrevAccumTexture);
3110
3111   glEnable (GL_DEPTH_TEST);
3112
3113   // Copy accumulated image with correct depth values
3114   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
3115
3116   aRenderImageFramebuffer->ColorTexture()->Unbind (
3117     theGlContext, GL_TEXTURE0 + OpenGl_RT_PrevAccumTexture);
3118
3119   if (myRaytraceParameters.AdaptiveScreenSampling)
3120   {
3121     myRaytraceVisualErrorTexture[aFBOIdx]->Bind (theGlContext);
3122
3123     // Download visual error map from the GPU and build
3124     // adjusted tile offsets for optimal image sampling
3125     myTileSampler.GrabVarianceMap (theGlContext);
3126
3127     myTileSampler.Upload (theGlContext,
3128                           myRaytraceTileOffsetsTexture[aFBOIdx],
3129                           myRaytraceParameters.NbTilesX,
3130                           myRaytraceParameters.NbTilesY,
3131                           myAccumFrames > 0);
3132   }
3133
3134   unbindRaytraceTextures (theGlContext);
3135
3136   theGlContext->BindProgram (NULL);
3137
3138   return aResult;
3139 }
3140
3141 // =======================================================================
3142 // function : raytrace
3143 // purpose  : Redraws the window using OpenGL/GLSL ray-tracing
3144 // =======================================================================
3145 Standard_Boolean OpenGl_View::raytrace (const Standard_Integer        theSizeX,
3146                                         const Standard_Integer        theSizeY,
3147                                         Graphic3d_Camera::Projection  theProjection,
3148                                         OpenGl_FrameBuffer*           theReadDrawFbo,
3149                                         const Handle(OpenGl_Context)& theGlContext)
3150 {
3151   if (!initRaytraceResources (theGlContext))
3152   {
3153     return Standard_False;
3154   }
3155
3156   if (!updateRaytraceBuffers (theSizeX, theSizeY, theGlContext))
3157   {
3158     return Standard_False;
3159   }
3160
3161   OpenGl_Mat4 aLightSourceMatrix;
3162
3163   // Get inversed model-view matrix for transforming lights
3164   myCamera->OrientationMatrixF().Inverted (aLightSourceMatrix);
3165
3166   if (!updateRaytraceLightSources (aLightSourceMatrix, theGlContext))
3167   {
3168     return Standard_False;
3169   }
3170
3171   // Generate image using Whitted-style ray-tracing or path tracing
3172   if (myIsRaytraceDataValid)
3173   {
3174     myRaytraceScreenQuad.BindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3175
3176     if (!myRaytraceGeometry.AcquireTextures (theGlContext))
3177     {
3178       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3179         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to acquire OpenGL image textures");
3180     }
3181
3182     glDisable (GL_BLEND);
3183
3184     const Standard_Boolean aResult = runRaytraceShaders (theSizeX,
3185                                                          theSizeY,
3186                                                          theProjection,
3187                                                          theReadDrawFbo,
3188                                                          theGlContext);
3189
3190     if (!aResult)
3191     {
3192       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3193         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to execute ray-tracing shaders");
3194     }
3195
3196     if (!myRaytraceGeometry.ReleaseTextures (theGlContext))
3197     {
3198       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3199         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to release OpenGL image textures");
3200     }
3201
3202     myRaytraceScreenQuad.UnbindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3203   }
3204
3205   return Standard_True;
3206 }