60322e105952f47969cbe50469cc76dc0bf3baf0
[occt.git] / src / OpenGl / OpenGl_View_Raytrace.cxx
1 // Created on: 2015-02-20
2 // Created by: Denis BOGOLEPOV
3 // Copyright (c) 2015 OPEN CASCADE SAS
4 //
5 // This file is part of Open CASCADE Technology software library.
6 //
7 // This library is free software; you can redistribute it and/or modify it under
8 // the terms of the GNU Lesser General Public License version 2.1 as published
9 // by the Free Software Foundation, with special exception defined in the file
10 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
11 // distribution for complete text of the license and disclaimer of any warranty.
12 //
13 // Alternatively, this file may be used under the terms of Open CASCADE
14 // commercial license or contractual agreement.
15
16 #include <OpenGl_View.hxx>
17
18 #include <Graphic3d_TextureParams.hxx>
19 #include <OpenGl_PrimitiveArray.hxx>
20 #include <OpenGl_VertexBuffer.hxx>
21 #include <OpenGl_GlCore44.hxx>
22 #include <OSD_Protection.hxx>
23 #include <OSD_File.hxx>
24
25 #include "../Shaders/Shaders_RaytraceBase_vs.pxx"
26 #include "../Shaders/Shaders_RaytraceBase_fs.pxx"
27 #include "../Shaders/Shaders_PathtraceBase_fs.pxx"
28 #include "../Shaders/Shaders_RaytraceRender_fs.pxx"
29 #include "../Shaders/Shaders_RaytraceSmooth_fs.pxx"
30 #include "../Shaders/Shaders_Display_fs.pxx"
31
32 using namespace OpenGl_Raytrace;
33
34 //! Use this macro to output ray-tracing debug info
35 // #define RAY_TRACE_PRINT_INFO
36
37 #ifdef RAY_TRACE_PRINT_INFO
38   #include <OSD_Timer.hxx>
39 #endif
40
41 namespace
42 {
43   static const OpenGl_Vec4 THE_WHITE_COLOR (1.0f, 1.0f, 1.0f, 1.0f);
44   static const OpenGl_Vec4 THE_BLACK_COLOR (0.0f, 0.0f, 0.0f, 1.0f);
45 }
46
47 namespace
48 {
49   //! Defines OpenGL texture samplers.
50   static const Graphic3d_TextureUnit OpenGl_RT_EnvironmentMapTexture = Graphic3d_TextureUnit_0;
51
52   static const Graphic3d_TextureUnit OpenGl_RT_SceneNodeInfoTexture  = Graphic3d_TextureUnit_1;
53   static const Graphic3d_TextureUnit OpenGl_RT_SceneMinPointTexture  = Graphic3d_TextureUnit_2;
54   static const Graphic3d_TextureUnit OpenGl_RT_SceneMaxPointTexture  = Graphic3d_TextureUnit_3;
55   static const Graphic3d_TextureUnit OpenGl_RT_SceneTransformTexture = Graphic3d_TextureUnit_4;
56
57   static const Graphic3d_TextureUnit OpenGl_RT_GeometryVertexTexture = Graphic3d_TextureUnit_5;
58   static const Graphic3d_TextureUnit OpenGl_RT_GeometryNormalTexture = Graphic3d_TextureUnit_6;
59   static const Graphic3d_TextureUnit OpenGl_RT_GeometryTexCrdTexture = Graphic3d_TextureUnit_7;
60   static const Graphic3d_TextureUnit OpenGl_RT_GeometryTriangTexture = Graphic3d_TextureUnit_8;
61
62   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceMaterialTexture = Graphic3d_TextureUnit_9;
63   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceLightSrcTexture = Graphic3d_TextureUnit_10;
64
65   static const Graphic3d_TextureUnit OpenGl_RT_FsaaInputTexture = Graphic3d_TextureUnit_11;
66   static const Graphic3d_TextureUnit OpenGl_RT_PrevAccumTexture = Graphic3d_TextureUnit_12;
67
68   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceDepthTexture = Graphic3d_TextureUnit_13;
69 }
70
71 // =======================================================================
72 // function : updateRaytraceGeometry
73 // purpose  : Updates 3D scene geometry for ray-tracing
74 // =======================================================================
75 Standard_Boolean OpenGl_View::updateRaytraceGeometry (const RaytraceUpdateMode      theMode,
76                                                       const Standard_Integer        theViewId,
77                                                       const Handle(OpenGl_Context)& theGlContext)
78 {
79   // In 'check' mode (OpenGl_GUM_CHECK) the scene geometry is analyzed for
80   // modifications. This is light-weight procedure performed on each frame
81   if (theMode == OpenGl_GUM_CHECK)
82   {
83     if (myRaytraceLayerListState != myZLayers.ModificationStateOfRaytracable())
84     {
85       return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
86     }
87   }
88   else if (theMode == OpenGl_GUM_PREPARE)
89   {
90     myRaytraceGeometry.ClearMaterials();
91
92     myArrayToTrianglesMap.clear();
93
94     myIsRaytraceDataValid = Standard_False;
95   }
96
97   // The set of processed structures (reflected to ray-tracing)
98   // This set is used to remove out-of-date records from the
99   // hash map of structures
100   std::set<const OpenGl_Structure*> anElements;
101
102   // Set to store all currently visible OpenGL primitive arrays
103   // applicable for ray-tracing
104   std::set<Standard_Size> anArrayIDs;
105
106   // Set to store all non-raytracable elements allowing tracking
107   // of changes in OpenGL scene (only for path tracing)
108   std::set<Standard_Integer> aNonRaytraceIDs;
109
110   const OpenGl_Layer& aLayer = myZLayers.Layer (Graphic3d_ZLayerId_Default);
111
112   if (aLayer.NbStructures() != 0)
113   {
114     const OpenGl_ArrayOfIndexedMapOfStructure& aStructArray = aLayer.ArrayOfStructures();
115
116     for (Standard_Integer anIndex = 0; anIndex < aStructArray.Length(); ++anIndex)
117     {
118       for (OpenGl_IndexedMapOfStructure::Iterator aStructIt (aStructArray (anIndex)); aStructIt.More(); aStructIt.Next())
119       {
120         const OpenGl_Structure* aStructure = aStructIt.Value();
121
122         if (theMode == OpenGl_GUM_CHECK)
123         {
124           if (toUpdateStructure (aStructure))
125           {
126             return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
127           }
128           else if (aStructure->IsVisible() && myRaytraceParameters.GlobalIllumination)
129           {
130             aNonRaytraceIDs.insert (aStructure->highlight ? aStructure->Id : -aStructure->Id);
131           }
132         }
133         else if (theMode == OpenGl_GUM_PREPARE)
134         {
135           if (!aStructure->IsRaytracable() || !aStructure->IsVisible())
136           {
137             continue;
138           }
139           else if (!aStructure->ViewAffinity.IsNull() && !aStructure->ViewAffinity->IsVisible (theViewId))
140           {
141             continue;
142           }
143
144           for (OpenGl_Structure::GroupIterator aGroupIter (aStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
145           {
146             // Extract OpenGL elements from the group (primitives arrays)
147             for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
148             {
149               OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
150
151               if (aPrimArray != NULL)
152               {
153                 anArrayIDs.insert (aPrimArray->GetUID());
154               }
155             }
156           }
157         }
158         else if (theMode == OpenGl_GUM_REBUILD)
159         {
160           if (!aStructure->IsRaytracable())
161           {
162             continue;
163           }
164           else if (addRaytraceStructure (aStructure, theGlContext))
165           {
166             anElements.insert (aStructure); // structure was processed
167           }
168         }
169       }
170     }
171   }
172
173   if (theMode == OpenGl_GUM_PREPARE)
174   {
175     BVH_ObjectSet<Standard_ShortReal, 3>::BVH_ObjectList anUnchangedObjects;
176
177     // Filter out unchanged objects so only their transformations and materials
178     // will be updated (and newly added objects will be processed from scratch)
179     for (Standard_Integer anObjIdx = 0; anObjIdx < myRaytraceGeometry.Size(); ++anObjIdx)
180     {
181       OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
182         myRaytraceGeometry.Objects().ChangeValue (anObjIdx).operator->());
183
184       if (aTriangleSet == NULL)
185       {
186         continue;
187       }
188
189       if (anArrayIDs.find (aTriangleSet->AssociatedPArrayID()) != anArrayIDs.end())
190       {
191         anUnchangedObjects.Append (myRaytraceGeometry.Objects().Value (anObjIdx));
192
193         myArrayToTrianglesMap[aTriangleSet->AssociatedPArrayID()] = aTriangleSet;
194       }
195     }
196
197     myRaytraceGeometry.Objects() = anUnchangedObjects;
198
199     return updateRaytraceGeometry (OpenGl_GUM_REBUILD, theViewId, theGlContext);
200   }
201   else if (theMode == OpenGl_GUM_REBUILD)
202   {
203     // Actualize the hash map of structures - remove out-of-date records
204     std::map<const OpenGl_Structure*, StructState>::iterator anIter = myStructureStates.begin();
205
206     while (anIter != myStructureStates.end())
207     {
208       if (anElements.find (anIter->first) == anElements.end())
209       {
210         myStructureStates.erase (anIter++);
211       }
212       else
213       {
214         ++anIter;
215       }
216     }
217
218     // Actualize OpenGL layer list state
219     myRaytraceLayerListState = myZLayers.ModificationStateOfRaytracable();
220
221     // Rebuild two-level acceleration structure
222     myRaytraceGeometry.ProcessAcceleration();
223
224     myRaytraceSceneRadius = 2.f /* scale factor */ * std::max (
225       myRaytraceGeometry.Box().CornerMin().cwiseAbs().maxComp(),
226       myRaytraceGeometry.Box().CornerMax().cwiseAbs().maxComp());
227
228     const BVH_Vec3f aSize = myRaytraceGeometry.Box().Size();
229
230     myRaytraceSceneEpsilon = Max (1.0e-6f, 1.0e-4f * aSize.Modulus());
231
232     return uploadRaytraceData (theGlContext);
233   }
234
235   if (myRaytraceParameters.GlobalIllumination)
236   {
237     Standard_Boolean toRestart =
238       aNonRaytraceIDs.size() != myNonRaytraceStructureIDs.size();
239
240     for (std::set<Standard_Integer>::iterator anID = aNonRaytraceIDs.begin(); anID != aNonRaytraceIDs.end() && !toRestart; ++anID)
241     {
242       if (myNonRaytraceStructureIDs.find (*anID) == myNonRaytraceStructureIDs.end())
243       {
244         toRestart = Standard_True;
245       }
246     }
247
248     if (toRestart)
249     {
250       myAccumFrames = 0;
251     }
252
253     myNonRaytraceStructureIDs = aNonRaytraceIDs;
254   }
255
256   return Standard_True;
257 }
258
259 // =======================================================================
260 // function : toUpdateStructure
261 // purpose  : Checks to see if the structure is modified
262 // =======================================================================
263 Standard_Boolean OpenGl_View::toUpdateStructure (const OpenGl_Structure* theStructure)
264 {
265   if (!theStructure->IsRaytracable())
266   {
267     if (theStructure->ModificationState() > 0)
268     {
269       theStructure->ResetModificationState();
270
271       return Standard_True; // ray-trace element was removed - need to rebuild
272     }
273
274     return Standard_False; // did not contain ray-trace elements
275   }
276
277   std::map<const OpenGl_Structure*, StructState>::iterator aStructState = myStructureStates.find (theStructure);
278
279   if (aStructState == myStructureStates.end() || aStructState->second.StructureState != theStructure->ModificationState())
280   {
281     return Standard_True;
282   }
283   else if (theStructure->InstancedStructure() != NULL)
284   {
285     return aStructState->second.InstancedState != theStructure->InstancedStructure()->ModificationState();
286   }
287
288   return Standard_False;
289 }
290
291 // =======================================================================
292 // function : buildTextureTransform
293 // purpose  : Constructs texture transformation matrix
294 // =======================================================================
295 void buildTextureTransform (const Handle(Graphic3d_TextureParams)& theParams, BVH_Mat4f& theMatrix)
296 {
297   theMatrix.InitIdentity();
298   if (theParams.IsNull())
299   {
300     return;
301   }
302
303   // Apply scaling
304   const Graphic3d_Vec2& aScale = theParams->Scale();
305
306   theMatrix.ChangeValue (0, 0) *= aScale.x();
307   theMatrix.ChangeValue (1, 0) *= aScale.x();
308   theMatrix.ChangeValue (2, 0) *= aScale.x();
309   theMatrix.ChangeValue (3, 0) *= aScale.x();
310
311   theMatrix.ChangeValue (0, 1) *= aScale.y();
312   theMatrix.ChangeValue (1, 1) *= aScale.y();
313   theMatrix.ChangeValue (2, 1) *= aScale.y();
314   theMatrix.ChangeValue (3, 1) *= aScale.y();
315
316   // Apply translation
317   const Graphic3d_Vec2 aTrans = -theParams->Translation();
318
319   theMatrix.ChangeValue (0, 3) = theMatrix.GetValue (0, 0) * aTrans.x() +
320                                  theMatrix.GetValue (0, 1) * aTrans.y();
321
322   theMatrix.ChangeValue (1, 3) = theMatrix.GetValue (1, 0) * aTrans.x() +
323                                  theMatrix.GetValue (1, 1) * aTrans.y();
324
325   theMatrix.ChangeValue (2, 3) = theMatrix.GetValue (2, 0) * aTrans.x() +
326                                  theMatrix.GetValue (2, 1) * aTrans.y();
327
328   // Apply rotation
329   const Standard_ShortReal aSin = std::sin (
330     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
331   const Standard_ShortReal aCos = std::cos (
332     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
333
334   BVH_Mat4f aRotationMat;
335   aRotationMat.SetValue (0, 0,  aCos);
336   aRotationMat.SetValue (1, 1,  aCos);
337   aRotationMat.SetValue (0, 1, -aSin);
338   aRotationMat.SetValue (1, 0,  aSin);
339
340   theMatrix = theMatrix * aRotationMat;
341 }
342
343 // =======================================================================
344 // function : convertMaterial
345 // purpose  : Creates ray-tracing material properties
346 // =======================================================================
347 OpenGl_RaytraceMaterial OpenGl_View::convertMaterial (const OpenGl_AspectFace*      theAspect,
348                                                       const Handle(OpenGl_Context)& theGlContext)
349 {
350   OpenGl_RaytraceMaterial theMaterial;
351
352   const Graphic3d_MaterialAspect& aSrcMat = theAspect->Aspect()->FrontMaterial();
353   const OpenGl_Vec3& aMatCol  = theAspect->Aspect()->InteriorColor();
354   const bool         isPhysic = aSrcMat.MaterialType (Graphic3d_MATERIAL_PHYSIC);
355   const float        aShine   = 128.0f * float(aSrcMat.Shininess());
356
357   // ambient component
358   if (aSrcMat.ReflectionMode (Graphic3d_TOR_AMBIENT))
359   {
360     const OpenGl_Vec3& aSrcAmb = isPhysic ? aSrcMat.AmbientColor() : aMatCol;
361     theMaterial.Ambient = BVH_Vec4f (aSrcAmb * (float )aSrcMat.Ambient(),  1.0f);
362   }
363   else
364   {
365     theMaterial.Ambient = THE_BLACK_COLOR;
366   }
367
368   // diffusion component
369   if (aSrcMat.ReflectionMode (Graphic3d_TOR_DIFFUSE))
370   {
371     const OpenGl_Vec3& aSrcDif = isPhysic ? aSrcMat.DiffuseColor() : aMatCol;
372     theMaterial.Diffuse = BVH_Vec4f (aSrcDif * (float )aSrcMat.Diffuse(), -1.0f); // -1 is no texture
373   }
374   else
375   {
376     theMaterial.Diffuse = BVH_Vec4f (THE_BLACK_COLOR.rgb(), -1.0f);
377   }
378
379   // specular component
380   if (aSrcMat.ReflectionMode (Graphic3d_TOR_SPECULAR))
381   {
382     const OpenGl_Vec3& aSrcSpe  = aSrcMat.SpecularColor();
383     const OpenGl_Vec3& aSrcSpe2 = isPhysic ? aSrcSpe : THE_WHITE_COLOR.rgb();
384     theMaterial.Specular = BVH_Vec4f (aSrcSpe2 * (float )aSrcMat.Specular(), aShine);
385
386     const Standard_ShortReal aMaxRefl = Max (theMaterial.Diffuse.x() + theMaterial.Specular.x(),
387                                         Max (theMaterial.Diffuse.y() + theMaterial.Specular.y(),
388                                              theMaterial.Diffuse.z() + theMaterial.Specular.z()));
389
390     const Standard_ShortReal aReflectionScale = 0.75f / aMaxRefl;
391
392     // ignore isPhysic here
393     theMaterial.Reflection = BVH_Vec4f (aSrcSpe * (float )aSrcMat.Specular() * aReflectionScale, 0.0f);
394   }
395   else
396   {
397     theMaterial.Specular = BVH_Vec4f (THE_BLACK_COLOR.rgb(), aShine);
398   }
399
400   // emission component
401   if (aSrcMat.ReflectionMode (Graphic3d_TOR_EMISSION))
402   {
403     const OpenGl_Vec3& aSrcEms = isPhysic ? aSrcMat.EmissiveColor() : aMatCol;
404     theMaterial.Emission = BVH_Vec4f (aSrcEms * (float )aSrcMat.Emissive(), 1.0f);
405   }
406   else
407   {
408     theMaterial.Emission = THE_BLACK_COLOR;
409   }
410
411   const float anIndex = (float )aSrcMat.RefractionIndex();
412   theMaterial.Transparency = BVH_Vec4f (aSrcMat.Alpha(), aSrcMat.Transparency(),
413                                         anIndex == 0 ? 1.0f : anIndex,
414                                         anIndex == 0 ? 1.0f : 1.0f / anIndex);
415
416   // Serialize physically-based material properties
417   const Graphic3d_BSDF& aBSDF = aSrcMat.BSDF();
418
419   theMaterial.BSDF.Kc = aBSDF.Kc;
420   theMaterial.BSDF.Ks = aBSDF.Ks;
421   theMaterial.BSDF.Kd = BVH_Vec4f (aBSDF.Kd, -1.f); // no texture
422   theMaterial.BSDF.Kt = BVH_Vec4f (aBSDF.Kt,  0.f);
423   theMaterial.BSDF.Le = BVH_Vec4f (aBSDF.Le,  0.f);
424
425   theMaterial.BSDF.Absorption = aBSDF.Absorption;
426
427   theMaterial.BSDF.FresnelCoat = aBSDF.FresnelCoat.Serialize ();
428   theMaterial.BSDF.FresnelBase = aBSDF.FresnelBase.Serialize ();
429
430   // Handle material textures
431   if (!theAspect->Aspect()->ToMapTexture())
432   {
433     return theMaterial;
434   }
435
436   const Handle(OpenGl_TextureSet)& aTextureSet = theAspect->TextureSet (theGlContext);
437   if (aTextureSet.IsNull()
438    || aTextureSet->IsEmpty()
439    || aTextureSet->First().IsNull())
440   {
441     return theMaterial;
442   }
443
444   if (theGlContext->HasRayTracingTextures())
445   {
446     const Handle(OpenGl_Texture)& aTexture = aTextureSet->First();
447     buildTextureTransform (aTexture->Sampler()->Parameters(), theMaterial.TextureTransform);
448
449     // write texture ID to diffuse w-component
450     theMaterial.Diffuse.w() = theMaterial.BSDF.Kd.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
451   }
452   else if (!myIsRaytraceWarnTextures)
453   {
454     const TCollection_ExtendedString aWarnMessage =
455       "Warning: texturing in Ray-Trace requires GL_ARB_bindless_texture extension which is missing. "
456       "Please try to update graphics card driver. At the moment textures will be ignored.";
457
458     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
459       GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_HIGH, aWarnMessage);
460
461     myIsRaytraceWarnTextures = Standard_True;
462   }
463
464   return theMaterial;
465 }
466
467 // =======================================================================
468 // function : addRaytraceStructure
469 // purpose  : Adds OpenGL structure to ray-traced scene geometry
470 // =======================================================================
471 Standard_Boolean OpenGl_View::addRaytraceStructure (const OpenGl_Structure*       theStructure,
472                                                     const Handle(OpenGl_Context)& theGlContext)
473 {
474   if (!theStructure->IsVisible())
475   {
476     myStructureStates[theStructure] = StructState (theStructure);
477
478     return Standard_True;
479   }
480
481   // Get structure material
482   OpenGl_RaytraceMaterial aDefaultMaterial;
483   Standard_Boolean aResult = addRaytraceGroups (theStructure, aDefaultMaterial, theStructure->Transformation(), theGlContext);
484
485   // Process all connected OpenGL structures
486   const OpenGl_Structure* anInstanced = theStructure->InstancedStructure();
487
488   if (anInstanced != NULL && anInstanced->IsRaytracable())
489   {
490     aResult &= addRaytraceGroups (anInstanced, aDefaultMaterial, theStructure->Transformation(), theGlContext);
491   }
492
493   myStructureStates[theStructure] = StructState (theStructure);
494
495   return aResult;
496 }
497
498 // =======================================================================
499 // function : addRaytraceGroups
500 // purpose  : Adds OpenGL groups to ray-traced scene geometry
501 // =======================================================================
502 Standard_Boolean OpenGl_View::addRaytraceGroups (const OpenGl_Structure*        theStructure,
503                                                  const OpenGl_RaytraceMaterial& theStructMat,
504                                                  const Handle(Geom_Transformation)& theTrsf,
505                                                  const Handle(OpenGl_Context)&  theGlContext)
506 {
507   OpenGl_Mat4 aMat4;
508   for (OpenGl_Structure::GroupIterator aGroupIter (theStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
509   {
510     // Get group material
511     OpenGl_RaytraceMaterial aGroupMaterial;
512     if (aGroupIter.Value()->AspectFace() != NULL)
513     {
514       aGroupMaterial = convertMaterial (
515         aGroupIter.Value()->AspectFace(), theGlContext);
516     }
517
518     Standard_Integer aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
519
520     // Use group material if available, otherwise use structure material
521     myRaytraceGeometry.Materials.push_back (
522       aGroupIter.Value()->AspectFace() != NULL ? aGroupMaterial : theStructMat);
523
524     // Add OpenGL elements from group (extract primitives arrays and aspects)
525     for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
526     {
527       OpenGl_AspectFace* anAspect = dynamic_cast<OpenGl_AspectFace*> (aNode->elem);
528
529       if (anAspect != NULL)
530       {
531         aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
532
533         OpenGl_RaytraceMaterial aMaterial = convertMaterial (anAspect, theGlContext);
534
535         myRaytraceGeometry.Materials.push_back (aMaterial);
536       }
537       else
538       {
539         OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
540
541         if (aPrimArray != NULL)
542         {
543           std::map<Standard_Size, OpenGl_TriangleSet*>::iterator aSetIter = myArrayToTrianglesMap.find (aPrimArray->GetUID());
544
545           if (aSetIter != myArrayToTrianglesMap.end())
546           {
547             OpenGl_TriangleSet* aSet = aSetIter->second;
548             opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
549             if (!theTrsf.IsNull())
550             {
551               theTrsf->Trsf().GetMat4 (aMat4);
552               aTransform->SetTransform (aMat4);
553             }
554
555             aSet->SetProperties (aTransform);
556             if (aSet->MaterialIndex() != OpenGl_TriangleSet::INVALID_MATERIAL && aSet->MaterialIndex() != aMatID)
557             {
558               aSet->SetMaterialIndex (aMatID);
559             }
560           }
561           else
562           {
563             if (Handle(OpenGl_TriangleSet) aSet = addRaytracePrimitiveArray (aPrimArray, aMatID, 0))
564             {
565               opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
566               if (!theTrsf.IsNull())
567               {
568                 theTrsf->Trsf().GetMat4 (aMat4);
569                 aTransform->SetTransform (aMat4);
570               }
571
572               aSet->SetProperties (aTransform);
573               myRaytraceGeometry.Objects().Append (aSet);
574             }
575           }
576         }
577       }
578     }
579   }
580
581   return Standard_True;
582 }
583
584 // =======================================================================
585 // function : addRaytracePrimitiveArray
586 // purpose  : Adds OpenGL primitive array to ray-traced scene geometry
587 // =======================================================================
588 Handle(OpenGl_TriangleSet) OpenGl_View::addRaytracePrimitiveArray (const OpenGl_PrimitiveArray* theArray,
589                                                                    const Standard_Integer       theMaterial,
590                                                                    const OpenGl_Mat4*           theTransform)
591 {
592   const Handle(Graphic3d_BoundBuffer)& aBounds   = theArray->Bounds();
593   const Handle(Graphic3d_IndexBuffer)& anIndices = theArray->Indices();
594   const Handle(Graphic3d_Buffer)&      anAttribs = theArray->Attributes();
595
596   if (theArray->DrawMode() < GL_TRIANGLES
597   #ifndef GL_ES_VERSION_2_0
598    || theArray->DrawMode() > GL_POLYGON
599   #else
600    || theArray->DrawMode() > GL_TRIANGLE_FAN
601   #endif
602    || anAttribs.IsNull())
603   {
604     return Handle(OpenGl_TriangleSet)();
605   }
606
607   OpenGl_Mat4 aNormalMatrix;
608   if (theTransform != NULL)
609   {
610     Standard_ASSERT_RETURN (theTransform->Inverted (aNormalMatrix),
611       "Error: Failed to compute normal transformation matrix", NULL);
612
613     aNormalMatrix.Transpose();
614   }
615
616   Handle(OpenGl_TriangleSet) aSet = new OpenGl_TriangleSet (theArray->GetUID(), myRaytraceBVHBuilder);
617   {
618     aSet->Vertices.reserve (anAttribs->NbElements);
619     aSet->Normals.reserve  (anAttribs->NbElements);
620     aSet->TexCrds.reserve  (anAttribs->NbElements);
621
622     const size_t aVertFrom = aSet->Vertices.size();
623
624     Standard_Integer anAttribIndex = 0;
625     Standard_Size anAttribStride = 0;
626     if (const Standard_Byte* aPosData = anAttribs->AttributeData (Graphic3d_TOA_POS, anAttribIndex, anAttribStride))
627     {
628       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
629       if (anAttrib.DataType == Graphic3d_TOD_VEC2
630        || anAttrib.DataType == Graphic3d_TOD_VEC3
631        || anAttrib.DataType == Graphic3d_TOD_VEC4)
632       {
633         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
634         {
635           const float* aCoords = reinterpret_cast<const float*> (aPosData + anAttribStride * aVertIter);
636           aSet->Vertices.push_back (BVH_Vec3f (aCoords[0], aCoords[1], anAttrib.DataType != Graphic3d_TOD_VEC2 ? aCoords[2] : 0.0f));
637         }
638       }
639     }
640     if (const Standard_Byte* aNormData = anAttribs->AttributeData (Graphic3d_TOA_NORM, anAttribIndex, anAttribStride))
641     {
642       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
643       if (anAttrib.DataType == Graphic3d_TOD_VEC3
644        || anAttrib.DataType == Graphic3d_TOD_VEC4)
645       {
646         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
647         {
648           aSet->Normals.push_back (*reinterpret_cast<const Graphic3d_Vec3*> (aNormData + anAttribStride * aVertIter));
649         }
650       }
651     }
652     if (const Standard_Byte* aTexData = anAttribs->AttributeData (Graphic3d_TOA_UV, anAttribIndex, anAttribStride))
653     {
654       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
655       if (anAttrib.DataType == Graphic3d_TOD_VEC2)
656       {
657         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
658         {
659           aSet->TexCrds.push_back (*reinterpret_cast<const Graphic3d_Vec2*> (aTexData + anAttribStride * aVertIter));
660         }
661       }
662     }
663
664     if (aSet->Normals.size() != aSet->Vertices.size())
665     {
666       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
667       {
668         aSet->Normals.push_back (BVH_Vec3f());
669       }
670     }
671
672     if (aSet->TexCrds.size() != aSet->Vertices.size())
673     {
674       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
675       {
676         aSet->TexCrds.push_back (BVH_Vec2f());
677       }
678     }
679
680     if (theTransform != NULL)
681     {
682       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Vertices.size(); ++aVertIter)
683       {
684         BVH_Vec3f& aVertex = aSet->Vertices[aVertIter];
685
686         BVH_Vec4f aTransVertex = *theTransform *
687           BVH_Vec4f (aVertex.x(), aVertex.y(), aVertex.z(), 1.f);
688
689         aVertex = BVH_Vec3f (aTransVertex.x(), aTransVertex.y(), aTransVertex.z());
690       }
691       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Normals.size(); ++aVertIter)
692       {
693         BVH_Vec3f& aNormal = aSet->Normals[aVertIter];
694
695         BVH_Vec4f aTransNormal = aNormalMatrix *
696           BVH_Vec4f (aNormal.x(), aNormal.y(), aNormal.z(), 0.f);
697
698         aNormal = BVH_Vec3f (aTransNormal.x(), aTransNormal.y(), aTransNormal.z());
699       }
700     }
701
702     if (!aBounds.IsNull())
703     {
704       for (Standard_Integer aBound = 0, aBoundStart = 0; aBound < aBounds->NbBounds; ++aBound)
705       {
706         const Standard_Integer aVertNum = aBounds->Bounds[aBound];
707
708         if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, aBoundStart, *theArray))
709         {
710           aSet.Nullify();
711           return Handle(OpenGl_TriangleSet)();
712         }
713
714         aBoundStart += aVertNum;
715       }
716     }
717     else
718     {
719       const Standard_Integer aVertNum = !anIndices.IsNull() ? anIndices->NbElements : anAttribs->NbElements;
720
721       if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, 0, *theArray))
722       {
723         aSet.Nullify();
724         return Handle(OpenGl_TriangleSet)();
725       }
726     }
727   }
728
729   if (aSet->Size() != 0)
730   {
731     aSet->MarkDirty();
732   }
733
734   return aSet;
735 }
736
737 // =======================================================================
738 // function : addRaytraceVertexIndices
739 // purpose  : Adds vertex indices to ray-traced scene geometry
740 // =======================================================================
741 Standard_Boolean OpenGl_View::addRaytraceVertexIndices (OpenGl_TriangleSet&                  theSet,
742                                                         const Standard_Integer               theMatID,
743                                                         const Standard_Integer               theCount,
744                                                         const Standard_Integer               theOffset,
745                                                         const OpenGl_PrimitiveArray&         theArray)
746 {
747   switch (theArray.DrawMode())
748   {
749     case GL_TRIANGLES:      return addRaytraceTriangleArray        (theSet, theMatID, theCount, theOffset, theArray.Indices());
750     case GL_TRIANGLE_FAN:   return addRaytraceTriangleFanArray     (theSet, theMatID, theCount, theOffset, theArray.Indices());
751     case GL_TRIANGLE_STRIP: return addRaytraceTriangleStripArray   (theSet, theMatID, theCount, theOffset, theArray.Indices());
752   #if !defined(GL_ES_VERSION_2_0)
753     case GL_QUAD_STRIP:     return addRaytraceQuadrangleStripArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
754     case GL_QUADS:          return addRaytraceQuadrangleArray      (theSet, theMatID, theCount, theOffset, theArray.Indices());
755     case GL_POLYGON:        return addRaytracePolygonArray         (theSet, theMatID, theCount, theOffset, theArray.Indices());
756   #endif
757   }
758
759   return Standard_False;
760 }
761
762 // =======================================================================
763 // function : addRaytraceTriangleArray
764 // purpose  : Adds OpenGL triangle array to ray-traced scene geometry
765 // =======================================================================
766 Standard_Boolean OpenGl_View::addRaytraceTriangleArray (OpenGl_TriangleSet&                  theSet,
767                                                         const Standard_Integer               theMatID,
768                                                         const Standard_Integer               theCount,
769                                                         const Standard_Integer               theOffset,
770                                                         const Handle(Graphic3d_IndexBuffer)& theIndices)
771 {
772   if (theCount < 3)
773   {
774     return Standard_True;
775   }
776
777   theSet.Elements.reserve (theSet.Elements.size() + theCount / 3);
778
779   if (!theIndices.IsNull())
780   {
781     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
782     {
783       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
784                                             theIndices->Index (aVert + 1),
785                                             theIndices->Index (aVert + 2),
786                                             theMatID));
787     }
788   }
789   else
790   {
791     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
792     {
793       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2, theMatID));
794     }
795   }
796
797   return Standard_True;
798 }
799
800 // =======================================================================
801 // function : addRaytraceTriangleFanArray
802 // purpose  : Adds OpenGL triangle fan array to ray-traced scene geometry
803 // =======================================================================
804 Standard_Boolean OpenGl_View::addRaytraceTriangleFanArray (OpenGl_TriangleSet&                  theSet,
805                                                            const Standard_Integer               theMatID,
806                                                            const Standard_Integer               theCount,
807                                                            const Standard_Integer               theOffset,
808                                                            const Handle(Graphic3d_IndexBuffer)& theIndices)
809 {
810   if (theCount < 3)
811   {
812     return Standard_True;
813   }
814
815   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
816
817   if (!theIndices.IsNull())
818   {
819     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
820     {
821       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
822                                             theIndices->Index (aVert + 1),
823                                             theIndices->Index (aVert + 2),
824                                             theMatID));
825     }
826   }
827   else
828   {
829     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
830     {
831       theSet.Elements.push_back (BVH_Vec4i (theOffset,
832                                             aVert + 1,
833                                             aVert + 2,
834                                             theMatID));
835     }
836   }
837
838   return Standard_True;
839 }
840
841 // =======================================================================
842 // function : addRaytraceTriangleStripArray
843 // purpose  : Adds OpenGL triangle strip array to ray-traced scene geometry
844 // =======================================================================
845 Standard_Boolean OpenGl_View::addRaytraceTriangleStripArray (OpenGl_TriangleSet&                  theSet,
846                                                              const Standard_Integer               theMatID,
847                                                              const Standard_Integer               theCount,
848                                                              const Standard_Integer               theOffset,
849                                                              const Handle(Graphic3d_IndexBuffer)& theIndices)
850 {
851   if (theCount < 3)
852   {
853     return Standard_True;
854   }
855
856   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
857
858   if (!theIndices.IsNull())
859   {
860     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
861     {
862       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + (aCW ? 1 : 0)),
863                                             theIndices->Index (aVert + (aCW ? 0 : 1)),
864                                             theIndices->Index (aVert + 2),
865                                             theMatID));
866     }
867   }
868   else
869   {
870     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
871     {
872       theSet.Elements.push_back (BVH_Vec4i (aVert + (aCW ? 1 : 0),
873                                             aVert + (aCW ? 0 : 1),
874                                             aVert + 2,
875                                             theMatID));
876     }
877   }
878
879   return Standard_True;
880 }
881
882 // =======================================================================
883 // function : addRaytraceQuadrangleArray
884 // purpose  : Adds OpenGL quad array to ray-traced scene geometry
885 // =======================================================================
886 Standard_Boolean OpenGl_View::addRaytraceQuadrangleArray (OpenGl_TriangleSet&                  theSet,
887                                                           const Standard_Integer               theMatID,
888                                                           const Standard_Integer               theCount,
889                                                           const Standard_Integer               theOffset,
890                                                           const Handle(Graphic3d_IndexBuffer)& theIndices)
891 {
892   if (theCount < 4)
893   {
894     return Standard_True;
895   }
896
897   theSet.Elements.reserve (theSet.Elements.size() + theCount / 2);
898
899   if (!theIndices.IsNull())
900   {
901     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
902     {
903       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
904                                             theIndices->Index (aVert + 1),
905                                             theIndices->Index (aVert + 2),
906                                             theMatID));
907       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
908                                             theIndices->Index (aVert + 2),
909                                             theIndices->Index (aVert + 3),
910                                             theMatID));
911     }
912   }
913   else
914   {
915     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
916     {
917       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2,
918                                             theMatID));
919       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 2, aVert + 3,
920                                             theMatID));
921     }
922   }
923
924   return Standard_True;
925 }
926
927 // =======================================================================
928 // function : addRaytraceQuadrangleStripArray
929 // purpose  : Adds OpenGL quad strip array to ray-traced scene geometry
930 // =======================================================================
931 Standard_Boolean OpenGl_View::addRaytraceQuadrangleStripArray (OpenGl_TriangleSet&                  theSet,
932                                                                const Standard_Integer               theMatID,
933                                                                const Standard_Integer               theCount,
934                                                                const Standard_Integer               theOffset,
935                                                                const Handle(Graphic3d_IndexBuffer)& theIndices)
936 {
937   if (theCount < 4)
938   {
939     return Standard_True;
940   }
941
942   theSet.Elements.reserve (theSet.Elements.size() + 2 * theCount - 6);
943
944   if (!theIndices.IsNull())
945   {
946     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
947     {
948       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
949                                             theIndices->Index (aVert + 1),
950                                             theIndices->Index (aVert + 2),
951                                             theMatID));
952
953       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 1),
954                                             theIndices->Index (aVert + 3),
955                                             theIndices->Index (aVert + 2),
956                                             theMatID));
957     }
958   }
959   else
960   {
961     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
962     {
963       theSet.Elements.push_back (BVH_Vec4i (aVert + 0,
964                                             aVert + 1,
965                                             aVert + 2,
966                                             theMatID));
967
968       theSet.Elements.push_back (BVH_Vec4i (aVert + 1,
969                                             aVert + 3,
970                                             aVert + 2,
971                                             theMatID));
972     }
973   }
974
975   return Standard_True;
976 }
977
978 // =======================================================================
979 // function : addRaytracePolygonArray
980 // purpose  : Adds OpenGL polygon array to ray-traced scene geometry
981 // =======================================================================
982 Standard_Boolean OpenGl_View::addRaytracePolygonArray (OpenGl_TriangleSet&                  theSet,
983                                                        const Standard_Integer               theMatID,
984                                                        const Standard_Integer               theCount,
985                                                        const Standard_Integer               theOffset,
986                                                        const Handle(Graphic3d_IndexBuffer)& theIndices)
987 {
988   if (theCount < 3)
989   {
990     return Standard_True;
991   }
992
993   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
994
995   if (!theIndices.IsNull())
996   {
997     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
998     {
999       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
1000                                             theIndices->Index (aVert + 1),
1001                                             theIndices->Index (aVert + 2),
1002                                             theMatID));
1003     }
1004   }
1005   else
1006   {
1007     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
1008     {
1009       theSet.Elements.push_back (BVH_Vec4i (theOffset,
1010                                             aVert + 1,
1011                                             aVert + 2,
1012                                             theMatID));
1013     }
1014   }
1015
1016   return Standard_True;
1017 }
1018
1019 const TCollection_AsciiString OpenGl_View::ShaderSource::EMPTY_PREFIX;
1020
1021 // =======================================================================
1022 // function : Source
1023 // purpose  : Returns shader source combined with prefix
1024 // =======================================================================
1025 TCollection_AsciiString OpenGl_View::ShaderSource::Source() const
1026 {
1027   const TCollection_AsciiString aVersion = "#version 140";
1028
1029   if (myPrefix.IsEmpty())
1030   {
1031     return aVersion + "\n" + mySource;
1032   }
1033
1034   return aVersion + "\n" + myPrefix + "\n" + mySource;
1035 }
1036
1037 // =======================================================================
1038 // function : LoadFromFiles
1039 // purpose  : Loads shader source from specified files
1040 // =======================================================================
1041 Standard_Boolean OpenGl_View::ShaderSource::LoadFromFiles (const TCollection_AsciiString* theFileNames,
1042                                                            const TCollection_AsciiString& thePrefix)
1043 {
1044   myError.Clear();
1045   mySource.Clear();
1046   myPrefix = thePrefix;
1047
1048   TCollection_AsciiString aMissingFiles;
1049   for (Standard_Integer anIndex = 0; !theFileNames[anIndex].IsEmpty(); ++anIndex)
1050   {
1051     OSD_File aFile (theFileNames[anIndex]);
1052     if (aFile.Exists())
1053     {
1054       aFile.Open (OSD_ReadOnly, OSD_Protection());
1055     }
1056     if (!aFile.IsOpen())
1057     {
1058       if (!aMissingFiles.IsEmpty())
1059       {
1060         aMissingFiles += ", ";
1061       }
1062       aMissingFiles += TCollection_AsciiString("'") + theFileNames[anIndex] + "'";
1063       continue;
1064     }
1065     else if (!aMissingFiles.IsEmpty())
1066     {
1067       aFile.Close();
1068       continue;
1069     }
1070
1071     TCollection_AsciiString aSource;
1072     aFile.Read (aSource, (Standard_Integer) aFile.Size());
1073     if (!aSource.IsEmpty())
1074     {
1075       mySource += TCollection_AsciiString ("\n") + aSource;
1076     }
1077     aFile.Close();
1078   }
1079
1080   if (!aMissingFiles.IsEmpty())
1081   {
1082     myError = TCollection_AsciiString("Shader files ") + aMissingFiles + " are missing or inaccessible";
1083     return Standard_False;
1084   }
1085   return Standard_True;
1086 }
1087
1088 // =======================================================================
1089 // function : LoadFromStrings
1090 // purpose  :
1091 // =======================================================================
1092 Standard_Boolean OpenGl_View::ShaderSource::LoadFromStrings (const TCollection_AsciiString* theStrings,
1093                                                              const TCollection_AsciiString& thePrefix)
1094 {
1095   myError.Clear();
1096   mySource.Clear();
1097   myPrefix = thePrefix;
1098
1099   for (Standard_Integer anIndex = 0; !theStrings[anIndex].IsEmpty(); ++anIndex)
1100   {
1101     TCollection_AsciiString aSource = theStrings[anIndex];
1102     if (!aSource.IsEmpty())
1103     {
1104       mySource += TCollection_AsciiString ("\n") + aSource;
1105     }
1106   }
1107   return Standard_True;
1108 }
1109
1110 // =======================================================================
1111 // function : generateShaderPrefix
1112 // purpose  : Generates shader prefix based on current ray-tracing options
1113 // =======================================================================
1114 TCollection_AsciiString OpenGl_View::generateShaderPrefix (const Handle(OpenGl_Context)& theGlContext) const
1115 {
1116   TCollection_AsciiString aPrefixString =
1117     TCollection_AsciiString ("#define STACK_SIZE ") + TCollection_AsciiString (myRaytraceParameters.StackSize) + "\n" +
1118     TCollection_AsciiString ("#define NB_BOUNCES ") + TCollection_AsciiString (myRaytraceParameters.NbBounces);
1119
1120   if (myRaytraceParameters.TransparentShadows)
1121   {
1122     aPrefixString += TCollection_AsciiString ("\n#define TRANSPARENT_SHADOWS");
1123   }
1124
1125   // If OpenGL driver supports bindless textures and texturing
1126   // is actually used, activate texturing in ray-tracing mode
1127   if (myRaytraceParameters.UseBindlessTextures && theGlContext->arbTexBindless != NULL)
1128   {
1129     aPrefixString += TCollection_AsciiString ("\n#define USE_TEXTURES") +
1130       TCollection_AsciiString ("\n#define MAX_TEX_NUMBER ") + TCollection_AsciiString (OpenGl_RaytraceGeometry::MAX_TEX_NUMBER);
1131   }
1132
1133   if (myRaytraceParameters.GlobalIllumination) // path tracing activated
1134   {
1135     aPrefixString += TCollection_AsciiString ("\n#define PATH_TRACING");
1136
1137     if (myRaytraceParameters.AdaptiveScreenSampling) // adaptive screen sampling requested
1138     {
1139       // to activate the feature we need OpenGL 4.4 and GL_NV_shader_atomic_float extension
1140       if (theGlContext->IsGlGreaterEqual (4, 4) && theGlContext->CheckExtension ("GL_NV_shader_atomic_float"))
1141       {
1142         aPrefixString += TCollection_AsciiString ("\n#define ADAPTIVE_SAMPLING") +
1143           TCollection_AsciiString ("\n#define BLOCK_SIZE ") + TCollection_AsciiString (OpenGl_TileSampler::TileSize());
1144       }
1145     }
1146
1147     if (myRaytraceParameters.TwoSidedBsdfModels) // two-sided BSDFs requested
1148     {
1149       aPrefixString += TCollection_AsciiString ("\n#define TWO_SIDED_BXDF");
1150     }
1151
1152     switch (myRaytraceParameters.ToneMappingMethod)
1153     {
1154       case Graphic3d_ToneMappingMethod_Disabled:
1155         break;
1156       case Graphic3d_ToneMappingMethod_Filmic:
1157         aPrefixString += TCollection_AsciiString ("\n#define TONE_MAPPING_FILMIC");
1158         break;
1159     }
1160   }
1161
1162   if (myRaytraceParameters.DepthOfField)
1163   {
1164     aPrefixString += TCollection_AsciiString("\n#define DEPTH_OF_FIELD");
1165   }
1166
1167   return aPrefixString;
1168 }
1169
1170 // =======================================================================
1171 // function : safeFailBack
1172 // purpose  : Performs safe exit when shaders initialization fails
1173 // =======================================================================
1174 Standard_Boolean OpenGl_View::safeFailBack (const TCollection_ExtendedString& theMessage,
1175                                             const Handle(OpenGl_Context)&     theGlContext)
1176 {
1177   theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1178     GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, theMessage);
1179
1180   myRaytraceInitStatus = OpenGl_RT_FAIL;
1181
1182   releaseRaytraceResources (theGlContext);
1183
1184   return Standard_False;
1185 }
1186
1187 // =======================================================================
1188 // function : initShader
1189 // purpose  : Creates new shader object with specified source
1190 // =======================================================================
1191 Handle(OpenGl_ShaderObject) OpenGl_View::initShader (const GLenum                  theType,
1192                                                      const ShaderSource&           theSource,
1193                                                      const Handle(OpenGl_Context)& theGlContext)
1194 {
1195   Handle(OpenGl_ShaderObject) aShader = new OpenGl_ShaderObject (theType);
1196
1197   if (!aShader->Create (theGlContext))
1198   {
1199     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to create ") +
1200       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object";
1201
1202     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1203       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1204
1205     aShader->Release (theGlContext.operator->());
1206
1207     return Handle(OpenGl_ShaderObject)();
1208   }
1209
1210   if (!aShader->LoadSource (theGlContext, theSource.Source()))
1211   {
1212     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to set ") +
1213       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader source";
1214
1215     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1216       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1217
1218     aShader->Release (theGlContext.operator->());
1219
1220     return Handle(OpenGl_ShaderObject)();
1221   }
1222
1223   TCollection_AsciiString aBuildLog;
1224
1225   if (!aShader->Compile (theGlContext))
1226   {
1227     aShader->FetchInfoLog (theGlContext, aBuildLog);
1228
1229     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to compile ") +
1230       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object:\n" + aBuildLog;
1231
1232     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1233       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1234
1235     aShader->Release (theGlContext.operator->());
1236
1237 #ifdef RAY_TRACE_PRINT_INFO
1238     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1239 #endif
1240
1241     return Handle(OpenGl_ShaderObject)();
1242   }
1243   else if (theGlContext->caps->glslWarnings)
1244   {
1245     aShader->FetchInfoLog (theGlContext, aBuildLog);
1246
1247     if (!aBuildLog.IsEmpty() && !aBuildLog.IsEqual ("No errors.\n"))
1248     {
1249       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (theType == GL_VERTEX_SHADER ?
1250         "Vertex" : "Fragment") + " shader was compiled with following warnings:\n" + aBuildLog;
1251
1252       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1253         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1254     }
1255
1256 #ifdef RAY_TRACE_PRINT_INFO
1257     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1258 #endif
1259   }
1260
1261   return aShader;
1262 }
1263
1264 // =======================================================================
1265 // function : initProgram
1266 // purpose  : Creates GLSL program from the given shader objects
1267 // =======================================================================
1268 Handle(OpenGl_ShaderProgram) OpenGl_View::initProgram (const Handle(OpenGl_Context)&      theGlContext,
1269                                                        const Handle(OpenGl_ShaderObject)& theVertShader,
1270                                                        const Handle(OpenGl_ShaderObject)& theFragShader)
1271 {
1272   Handle(OpenGl_ShaderProgram) aProgram = new OpenGl_ShaderProgram;
1273
1274   if (!aProgram->Create (theGlContext))
1275   {
1276     theVertShader->Release (theGlContext.operator->());
1277
1278     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1279       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to create shader program");
1280
1281     return Handle(OpenGl_ShaderProgram)();
1282   }
1283
1284   if (!aProgram->AttachShader (theGlContext, theVertShader)
1285    || !aProgram->AttachShader (theGlContext, theFragShader))
1286   {
1287     theVertShader->Release (theGlContext.operator->());
1288
1289     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1290       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to attach shader objects");
1291
1292     return Handle(OpenGl_ShaderProgram)();
1293   }
1294
1295   aProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1296
1297   TCollection_AsciiString aLinkLog;
1298
1299   if (!aProgram->Link (theGlContext))
1300   {
1301     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1302
1303     const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1304       "Failed to link shader program:\n") + aLinkLog;
1305
1306     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1307       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1308
1309     return Handle(OpenGl_ShaderProgram)();
1310   }
1311   else if (theGlContext->caps->glslWarnings)
1312   {
1313     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1314     if (!aLinkLog.IsEmpty() && !aLinkLog.IsEqual ("No errors.\n"))
1315     {
1316       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1317         "Shader program was linked with following warnings:\n") + aLinkLog;
1318
1319       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1320         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1321     }
1322   }
1323
1324   return aProgram;
1325 }
1326
1327 // =======================================================================
1328 // function : initRaytraceResources
1329 // purpose  : Initializes OpenGL/GLSL shader programs
1330 // =======================================================================
1331 Standard_Boolean OpenGl_View::initRaytraceResources (const Handle(OpenGl_Context)& theGlContext)
1332 {
1333   if (myRaytraceInitStatus == OpenGl_RT_FAIL)
1334   {
1335     return Standard_False;
1336   }
1337
1338   Standard_Boolean aToRebuildShaders = Standard_False;
1339
1340   if (myRenderParams.RebuildRayTracingShaders) // requires complete re-initialization
1341   {
1342     myRaytraceInitStatus = OpenGl_RT_NONE;
1343     releaseRaytraceResources (theGlContext, Standard_True);
1344     myRenderParams.RebuildRayTracingShaders = Standard_False; // clear rebuilding flag
1345   }
1346
1347   if (myRaytraceInitStatus == OpenGl_RT_INIT)
1348   {
1349     if (!myIsRaytraceDataValid)
1350     {
1351       return Standard_True;
1352     }
1353
1354     const Standard_Integer aRequiredStackSize =
1355       myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth();
1356
1357     if (myRaytraceParameters.StackSize < aRequiredStackSize)
1358     {
1359       myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1360
1361       aToRebuildShaders = Standard_True;
1362     }
1363     else
1364     {
1365       if (aRequiredStackSize < myRaytraceParameters.StackSize)
1366       {
1367         if (myRaytraceParameters.StackSize > THE_DEFAULT_STACK_SIZE)
1368         {
1369           myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1370           aToRebuildShaders = Standard_True;
1371         }
1372       }
1373     }
1374
1375     Standard_Integer aNbTilesX = 8;
1376     Standard_Integer aNbTilesY = 8;
1377
1378     for (Standard_Integer anIdx = 0; aNbTilesX * aNbTilesY < myRenderParams.NbRayTracingTiles; ++anIdx)
1379     {
1380       (anIdx % 2 == 0 ? aNbTilesX : aNbTilesY) <<= 1;
1381     }
1382
1383     if (myRenderParams.RaytracingDepth             != myRaytraceParameters.NbBounces
1384      || myRenderParams.IsTransparentShadowEnabled  != myRaytraceParameters.TransparentShadows
1385      || myRenderParams.IsGlobalIlluminationEnabled != myRaytraceParameters.GlobalIllumination
1386      || myRenderParams.TwoSidedBsdfModels          != myRaytraceParameters.TwoSidedBsdfModels
1387      || myRaytraceGeometry.HasTextures()           != myRaytraceParameters.UseBindlessTextures
1388      || aNbTilesX                                  != myRaytraceParameters.NbTilesX
1389      || aNbTilesY                                  != myRaytraceParameters.NbTilesY)
1390     {
1391       myRaytraceParameters.NbBounces           = myRenderParams.RaytracingDepth;
1392       myRaytraceParameters.TransparentShadows  = myRenderParams.IsTransparentShadowEnabled;
1393       myRaytraceParameters.GlobalIllumination  = myRenderParams.IsGlobalIlluminationEnabled;
1394       myRaytraceParameters.TwoSidedBsdfModels  = myRenderParams.TwoSidedBsdfModels;
1395       myRaytraceParameters.UseBindlessTextures = myRaytraceGeometry.HasTextures();
1396
1397 #ifdef RAY_TRACE_PRINT_INFO
1398       if (aNbTilesX != myRaytraceParameters.NbTilesX
1399        || aNbTilesY != myRaytraceParameters.NbTilesY)
1400       {
1401         std::cout << "Number of tiles X: " << aNbTilesX << "\n";
1402         std::cout << "Number of tiles Y: " << aNbTilesY << "\n";
1403       }
1404 #endif
1405
1406       myRaytraceParameters.NbTilesX = aNbTilesX;
1407       myRaytraceParameters.NbTilesY = aNbTilesY;
1408
1409       aToRebuildShaders = Standard_True;
1410     }
1411
1412     if (myRenderParams.AdaptiveScreenSampling != myRaytraceParameters.AdaptiveScreenSampling)
1413     {
1414       myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling;
1415       if (myRenderParams.AdaptiveScreenSampling) // adaptive sampling was requested
1416       {
1417         if (!theGlContext->HasRayTracingAdaptiveSampling())
1418         {
1419           // disable the feature if it is not supported
1420           myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling = Standard_False;
1421           theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW,
1422                                      "Adaptive sampling not supported (OpenGL 4.4 or GL_NV_shader_atomic_float is missing)");
1423         }
1424       }
1425
1426       aToRebuildShaders = Standard_True;
1427     }
1428
1429     const bool toEnableDof = !myCamera->IsOrthographic() && myRaytraceParameters.GlobalIllumination;
1430     if (myRaytraceParameters.DepthOfField != toEnableDof)
1431     {
1432       myRaytraceParameters.DepthOfField = toEnableDof;
1433       aToRebuildShaders = Standard_True;
1434     }
1435
1436     if (myRenderParams.ToneMappingMethod != myRaytraceParameters.ToneMappingMethod)
1437     {
1438       myRaytraceParameters.ToneMappingMethod = myRenderParams.ToneMappingMethod;
1439       aToRebuildShaders = true;
1440     }
1441
1442     if (aToRebuildShaders)
1443     {
1444       // Reject accumulated frames
1445       myAccumFrames = 0;
1446
1447       // Environment map should be updated
1448       myToUpdateEnvironmentMap = Standard_True;
1449
1450       const TCollection_AsciiString aPrefixString = generateShaderPrefix (theGlContext);
1451
1452 #ifdef RAY_TRACE_PRINT_INFO
1453       std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1454 #endif
1455
1456       myRaytraceShaderSource.SetPrefix (aPrefixString);
1457       myPostFSAAShaderSource.SetPrefix (aPrefixString);
1458       myOutImageShaderSource.SetPrefix (aPrefixString);
1459
1460       if (!myRaytraceShader->LoadSource (theGlContext, myRaytraceShaderSource.Source())
1461        || !myPostFSAAShader->LoadSource (theGlContext, myPostFSAAShaderSource.Source())
1462        || !myOutImageShader->LoadSource (theGlContext, myOutImageShaderSource.Source()))
1463       {
1464         return safeFailBack ("Failed to load source into ray-tracing fragment shaders", theGlContext);
1465       }
1466
1467       TCollection_AsciiString aLog;
1468
1469       if (!myRaytraceShader->Compile (theGlContext)
1470        || !myPostFSAAShader->Compile (theGlContext)
1471        || !myOutImageShader->Compile (theGlContext))
1472       {
1473 #ifdef RAY_TRACE_PRINT_INFO
1474         myRaytraceShader->FetchInfoLog (theGlContext, aLog);
1475
1476         if (!aLog.IsEmpty())
1477         {
1478           std::cout << "Failed to compile ray-tracing shader: " << aLog << "\n";
1479         }
1480 #endif
1481         return safeFailBack ("Failed to compile ray-tracing fragment shaders", theGlContext);
1482       }
1483
1484       myRaytraceProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1485       myPostFSAAProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1486       myOutImageProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1487
1488       if (!myRaytraceProgram->Link (theGlContext)
1489        || !myPostFSAAProgram->Link (theGlContext)
1490        || !myOutImageProgram->Link (theGlContext))
1491       {
1492 #ifdef RAY_TRACE_PRINT_INFO
1493         myRaytraceProgram->FetchInfoLog (theGlContext, aLog);
1494
1495         if (!aLog.IsEmpty())
1496         {
1497           std::cout << "Failed to compile ray-tracing shader: " << aLog << "\n";
1498         }
1499 #endif
1500         return safeFailBack ("Failed to initialize vertex attributes for ray-tracing program", theGlContext);
1501       }
1502     }
1503   }
1504
1505   if (myRaytraceInitStatus == OpenGl_RT_NONE)
1506   {
1507     myAccumFrames = 0; // accumulation should be restarted
1508
1509     if (!theGlContext->IsGlGreaterEqual (3, 1))
1510     {
1511       return safeFailBack ("Ray-tracing requires OpenGL 3.1 and higher", theGlContext);
1512     }
1513     else if (!theGlContext->arbTboRGB32)
1514     {
1515       return safeFailBack ("Ray-tracing requires OpenGL 4.0+ or GL_ARB_texture_buffer_object_rgb32 extension", theGlContext);
1516     }
1517     else if (!theGlContext->arbFBOBlit)
1518     {
1519       return safeFailBack ("Ray-tracing requires EXT_framebuffer_blit extension", theGlContext);
1520     }
1521
1522     myRaytraceParameters.NbBounces = myRenderParams.RaytracingDepth;
1523
1524     const TCollection_AsciiString aShaderFolder = Graphic3d_ShaderProgram::ShadersFolder();
1525     if (myIsRaytraceDataValid)
1526     {
1527       myRaytraceParameters.StackSize = Max (THE_DEFAULT_STACK_SIZE,
1528         myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth());
1529     }
1530
1531     const TCollection_AsciiString aPrefixString  = generateShaderPrefix (theGlContext);
1532
1533 #ifdef RAY_TRACE_PRINT_INFO
1534     std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1535 #endif
1536
1537     ShaderSource aBasicVertShaderSrc;
1538     {
1539       if (!aShaderFolder.IsEmpty())
1540       {
1541         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.vs", "" };
1542         if (!aBasicVertShaderSrc.LoadFromFiles (aFiles))
1543         {
1544           return safeFailBack (aBasicVertShaderSrc.ErrorDescription(), theGlContext);
1545         }
1546       }
1547       else
1548       {
1549         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_vs, "" };
1550         aBasicVertShaderSrc.LoadFromStrings (aSrcShaders);
1551       }
1552     }
1553
1554     {
1555       if (!aShaderFolder.IsEmpty())
1556       {
1557         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs",
1558                                                    aShaderFolder + "/PathtraceBase.fs",
1559                                                    aShaderFolder + "/RaytraceRender.fs",
1560                                                    "" };
1561         if (!myRaytraceShaderSource.LoadFromFiles (aFiles, aPrefixString))
1562         {
1563           return safeFailBack (myRaytraceShaderSource.ErrorDescription(), theGlContext);
1564         }
1565       }
1566       else
1567       {
1568         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs,
1569                                                         Shaders_PathtraceBase_fs,
1570                                                         Shaders_RaytraceRender_fs,
1571                                                         "" };
1572         myRaytraceShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1573       }
1574
1575       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1576       if (aBasicVertShader.IsNull())
1577       {
1578         return safeFailBack ("Failed to initialize ray-trace vertex shader", theGlContext);
1579       }
1580
1581       myRaytraceShader = initShader (GL_FRAGMENT_SHADER, myRaytraceShaderSource, theGlContext);
1582       if (myRaytraceShader.IsNull())
1583       {
1584         aBasicVertShader->Release (theGlContext.operator->());
1585         return safeFailBack ("Failed to initialize ray-trace fragment shader", theGlContext);
1586       }
1587
1588       myRaytraceProgram = initProgram (theGlContext, aBasicVertShader, myRaytraceShader);
1589       if (myRaytraceProgram.IsNull())
1590       {
1591         return safeFailBack ("Failed to initialize ray-trace shader program", theGlContext);
1592       }
1593     }
1594
1595     {
1596       if (!aShaderFolder.IsEmpty())
1597       {
1598         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs", aShaderFolder + "/RaytraceSmooth.fs", "" };
1599         if (!myPostFSAAShaderSource.LoadFromFiles (aFiles, aPrefixString))
1600         {
1601           return safeFailBack (myPostFSAAShaderSource.ErrorDescription(), theGlContext);
1602         }
1603       }
1604       else
1605       {
1606         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs, Shaders_RaytraceSmooth_fs, "" };
1607         myPostFSAAShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1608       }
1609
1610       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1611       if (aBasicVertShader.IsNull())
1612       {
1613         return safeFailBack ("Failed to initialize FSAA vertex shader", theGlContext);
1614       }
1615
1616       myPostFSAAShader = initShader (GL_FRAGMENT_SHADER, myPostFSAAShaderSource, theGlContext);
1617       if (myPostFSAAShader.IsNull())
1618       {
1619         aBasicVertShader->Release (theGlContext.operator->());
1620         return safeFailBack ("Failed to initialize FSAA fragment shader", theGlContext);
1621       }
1622
1623       myPostFSAAProgram = initProgram (theGlContext, aBasicVertShader, myPostFSAAShader);
1624       if (myPostFSAAProgram.IsNull())
1625       {
1626         return safeFailBack ("Failed to initialize FSAA shader program", theGlContext);
1627       }
1628     }
1629
1630     {
1631       if (!aShaderFolder.IsEmpty())
1632       {
1633         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/Display.fs", "" };
1634         if (!myOutImageShaderSource.LoadFromFiles (aFiles, aPrefixString))
1635         {
1636           return safeFailBack (myOutImageShaderSource.ErrorDescription(), theGlContext);
1637         }
1638       }
1639       else
1640       {
1641         const TCollection_AsciiString aSrcShaders[] = { Shaders_Display_fs, "" };
1642         myOutImageShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1643       }
1644
1645       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1646       if (aBasicVertShader.IsNull())
1647       {
1648         return safeFailBack ("Failed to set vertex shader source", theGlContext);
1649       }
1650
1651       myOutImageShader = initShader (GL_FRAGMENT_SHADER, myOutImageShaderSource, theGlContext);
1652       if (myOutImageShader.IsNull())
1653       {
1654         aBasicVertShader->Release (theGlContext.operator->());
1655         return safeFailBack ("Failed to set display fragment shader source", theGlContext);
1656       }
1657
1658       myOutImageProgram = initProgram (theGlContext, aBasicVertShader, myOutImageShader);
1659       if (myOutImageProgram.IsNull())
1660       {
1661         return safeFailBack ("Failed to initialize display shader program", theGlContext);
1662       }
1663     }
1664   }
1665
1666   if (myRaytraceInitStatus == OpenGl_RT_NONE || aToRebuildShaders)
1667   {
1668     for (Standard_Integer anIndex = 0; anIndex < 2; ++anIndex)
1669     {
1670       Handle(OpenGl_ShaderProgram)& aShaderProgram =
1671         (anIndex == 0) ? myRaytraceProgram : myPostFSAAProgram;
1672
1673       theGlContext->BindProgram (aShaderProgram);
1674
1675       aShaderProgram->SetSampler (theGlContext,
1676         "uSceneMinPointTexture", OpenGl_RT_SceneMinPointTexture);
1677       aShaderProgram->SetSampler (theGlContext,
1678         "uSceneMaxPointTexture", OpenGl_RT_SceneMaxPointTexture);
1679       aShaderProgram->SetSampler (theGlContext,
1680         "uSceneNodeInfoTexture", OpenGl_RT_SceneNodeInfoTexture);
1681       aShaderProgram->SetSampler (theGlContext,
1682         "uGeometryVertexTexture", OpenGl_RT_GeometryVertexTexture);
1683       aShaderProgram->SetSampler (theGlContext,
1684         "uGeometryNormalTexture", OpenGl_RT_GeometryNormalTexture);
1685       aShaderProgram->SetSampler (theGlContext,
1686         "uGeometryTexCrdTexture", OpenGl_RT_GeometryTexCrdTexture);
1687       aShaderProgram->SetSampler (theGlContext,
1688         "uGeometryTriangTexture", OpenGl_RT_GeometryTriangTexture);
1689       aShaderProgram->SetSampler (theGlContext, 
1690         "uSceneTransformTexture", OpenGl_RT_SceneTransformTexture);
1691       aShaderProgram->SetSampler (theGlContext,
1692         "uEnvironmentMapTexture", OpenGl_RT_EnvironmentMapTexture);
1693       aShaderProgram->SetSampler (theGlContext,
1694         "uRaytraceMaterialTexture", OpenGl_RT_RaytraceMaterialTexture);
1695       aShaderProgram->SetSampler (theGlContext,
1696         "uRaytraceLightSrcTexture", OpenGl_RT_RaytraceLightSrcTexture);
1697
1698       if (anIndex == 1)
1699       {
1700         aShaderProgram->SetSampler (theGlContext,
1701           "uFSAAInputTexture", OpenGl_RT_FsaaInputTexture);
1702       }
1703       else
1704       {
1705         aShaderProgram->SetSampler (theGlContext,
1706           "uAccumTexture", OpenGl_RT_PrevAccumTexture);
1707       }
1708
1709       myUniformLocations[anIndex][OpenGl_RT_aPosition] =
1710         aShaderProgram->GetAttributeLocation (theGlContext, "occVertex");
1711
1712       myUniformLocations[anIndex][OpenGl_RT_uOriginLB] =
1713         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLB");
1714       myUniformLocations[anIndex][OpenGl_RT_uOriginRB] =
1715         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRB");
1716       myUniformLocations[anIndex][OpenGl_RT_uOriginLT] =
1717         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLT");
1718       myUniformLocations[anIndex][OpenGl_RT_uOriginRT] =
1719         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRT");
1720       myUniformLocations[anIndex][OpenGl_RT_uDirectLB] =
1721         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLB");
1722       myUniformLocations[anIndex][OpenGl_RT_uDirectRB] =
1723         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRB");
1724       myUniformLocations[anIndex][OpenGl_RT_uDirectLT] =
1725         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLT");
1726       myUniformLocations[anIndex][OpenGl_RT_uDirectRT] =
1727         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRT");
1728       myUniformLocations[anIndex][OpenGl_RT_uViewPrMat] =
1729         aShaderProgram->GetUniformLocation (theGlContext, "uViewMat");
1730       myUniformLocations[anIndex][OpenGl_RT_uUnviewMat] =
1731         aShaderProgram->GetUniformLocation (theGlContext, "uUnviewMat");
1732
1733       myUniformLocations[anIndex][OpenGl_RT_uSceneRad] =
1734         aShaderProgram->GetUniformLocation (theGlContext, "uSceneRadius");
1735       myUniformLocations[anIndex][OpenGl_RT_uSceneEps] =
1736         aShaderProgram->GetUniformLocation (theGlContext, "uSceneEpsilon");
1737       myUniformLocations[anIndex][OpenGl_RT_uLightCount] =
1738         aShaderProgram->GetUniformLocation (theGlContext, "uLightCount");
1739       myUniformLocations[anIndex][OpenGl_RT_uLightAmbnt] =
1740         aShaderProgram->GetUniformLocation (theGlContext, "uGlobalAmbient");
1741
1742       myUniformLocations[anIndex][OpenGl_RT_uOffsetX] =
1743         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetX");
1744       myUniformLocations[anIndex][OpenGl_RT_uOffsetY] =
1745         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetY");
1746       myUniformLocations[anIndex][OpenGl_RT_uSamples] =
1747         aShaderProgram->GetUniformLocation (theGlContext, "uSamples");
1748
1749       myUniformLocations[anIndex][OpenGl_RT_uTexSamplersArray] =
1750         aShaderProgram->GetUniformLocation (theGlContext, "uTextureSamplers");
1751
1752       myUniformLocations[anIndex][OpenGl_RT_uShadowsEnabled] =
1753         aShaderProgram->GetUniformLocation (theGlContext, "uShadowsEnabled");
1754       myUniformLocations[anIndex][OpenGl_RT_uReflectEnabled] =
1755         aShaderProgram->GetUniformLocation (theGlContext, "uReflectEnabled");
1756       myUniformLocations[anIndex][OpenGl_RT_uSphereMapEnabled] =
1757         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapEnabled");
1758       myUniformLocations[anIndex][OpenGl_RT_uSphereMapForBack] =
1759         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapForBack");
1760       myUniformLocations[anIndex][OpenGl_RT_uBlockedRngEnabled] =
1761         aShaderProgram->GetUniformLocation (theGlContext, "uBlockedRngEnabled");
1762
1763       myUniformLocations[anIndex][OpenGl_RT_uWinSizeX] =
1764         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeX");
1765       myUniformLocations[anIndex][OpenGl_RT_uWinSizeY] =
1766         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeY");
1767
1768       myUniformLocations[anIndex][OpenGl_RT_uAccumSamples] =
1769         aShaderProgram->GetUniformLocation (theGlContext, "uAccumSamples");
1770       myUniformLocations[anIndex][OpenGl_RT_uFrameRndSeed] =
1771         aShaderProgram->GetUniformLocation (theGlContext, "uFrameRndSeed");
1772
1773       myUniformLocations[anIndex][OpenGl_RT_uRenderImage] =
1774         aShaderProgram->GetUniformLocation (theGlContext, "uRenderImage");
1775       myUniformLocations[anIndex][OpenGl_RT_uOffsetImage] =
1776         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetImage");
1777
1778       myUniformLocations[anIndex][OpenGl_RT_uBackColorTop] =
1779         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorTop");
1780       myUniformLocations[anIndex][OpenGl_RT_uBackColorBot] =
1781         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorBot");
1782
1783       myUniformLocations[anIndex][OpenGl_RT_uMaxRadiance] =
1784         aShaderProgram->GetUniformLocation (theGlContext, "uMaxRadiance");
1785     }
1786
1787     theGlContext->BindProgram (myOutImageProgram);
1788
1789     myOutImageProgram->SetSampler (theGlContext,
1790       "uInputTexture", OpenGl_RT_PrevAccumTexture);
1791
1792     myOutImageProgram->SetSampler (theGlContext,
1793       "uDepthTexture", OpenGl_RT_RaytraceDepthTexture);
1794
1795     theGlContext->BindProgram (NULL);
1796   }
1797
1798   if (myRaytraceInitStatus != OpenGl_RT_NONE)
1799   {
1800     return myRaytraceInitStatus == OpenGl_RT_INIT;
1801   }
1802
1803   const GLfloat aVertices[] = { -1.f, -1.f,  0.f,
1804                                 -1.f,  1.f,  0.f,
1805                                  1.f,  1.f,  0.f,
1806                                  1.f,  1.f,  0.f,
1807                                  1.f, -1.f,  0.f,
1808                                 -1.f, -1.f,  0.f };
1809
1810   myRaytraceScreenQuad.Init (theGlContext, 3, 6, aVertices);
1811
1812   myRaytraceInitStatus = OpenGl_RT_INIT; // initialized in normal way
1813
1814   return Standard_True;
1815 }
1816
1817 // =======================================================================
1818 // function : nullifyResource
1819 // purpose  : Releases OpenGL resource
1820 // =======================================================================
1821 template <class T>
1822 inline void nullifyResource (const Handle(OpenGl_Context)& theGlContext, Handle(T)& theResource)
1823 {
1824   if (!theResource.IsNull())
1825   {
1826     theResource->Release (theGlContext.operator->());
1827     theResource.Nullify();
1828   }
1829 }
1830
1831 // =======================================================================
1832 // function : releaseRaytraceResources
1833 // purpose  : Releases OpenGL/GLSL shader programs
1834 // =======================================================================
1835 void OpenGl_View::releaseRaytraceResources (const Handle(OpenGl_Context)& theGlContext, const Standard_Boolean theToRebuild)
1836 {
1837   // release shader resources
1838   nullifyResource (theGlContext, myRaytraceShader);
1839   nullifyResource (theGlContext, myPostFSAAShader);
1840
1841   nullifyResource (theGlContext, myRaytraceProgram);
1842   nullifyResource (theGlContext, myPostFSAAProgram);
1843   nullifyResource (theGlContext, myOutImageProgram);
1844
1845   if (!theToRebuild) // complete release
1846   {
1847     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1848     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1849     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1850     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1851
1852     nullifyResource (theGlContext, myRaytraceOutputTexture[0]);
1853     nullifyResource (theGlContext, myRaytraceOutputTexture[1]);
1854
1855     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[0]);
1856     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[1]);
1857     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[0]);
1858     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[1]);
1859
1860     nullifyResource (theGlContext, mySceneNodeInfoTexture);
1861     nullifyResource (theGlContext, mySceneMinPointTexture);
1862     nullifyResource (theGlContext, mySceneMaxPointTexture);
1863
1864     nullifyResource (theGlContext, myGeometryVertexTexture);
1865     nullifyResource (theGlContext, myGeometryNormalTexture);
1866     nullifyResource (theGlContext, myGeometryTexCrdTexture);
1867     nullifyResource (theGlContext, myGeometryTriangTexture);
1868     nullifyResource (theGlContext, mySceneTransformTexture);
1869
1870     nullifyResource (theGlContext, myRaytraceLightSrcTexture);
1871     nullifyResource (theGlContext, myRaytraceMaterialTexture);
1872
1873     myRaytraceGeometry.ReleaseResources (theGlContext);
1874
1875     if (myRaytraceScreenQuad.IsValid ())
1876     {
1877       myRaytraceScreenQuad.Release (theGlContext.operator->());
1878     }
1879   }
1880 }
1881
1882 // =======================================================================
1883 // function : updateRaytraceBuffers
1884 // purpose  : Updates auxiliary OpenGL frame buffers.
1885 // =======================================================================
1886 Standard_Boolean OpenGl_View::updateRaytraceBuffers (const Standard_Integer        theSizeX,
1887                                                      const Standard_Integer        theSizeY,
1888                                                      const Handle(OpenGl_Context)& theGlContext)
1889 {
1890   // Auxiliary buffers are not used
1891   if (!myRaytraceParameters.GlobalIllumination && !myRenderParams.IsAntialiasingEnabled)
1892   {
1893     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1894     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1895     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1896     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1897
1898     return Standard_True;
1899   }
1900
1901   if (myRaytraceParameters.AdaptiveScreenSampling)
1902   {
1903     const Standard_Integer aSizeX = std::max (myRaytraceParameters.NbTilesX * 64, theSizeX);
1904     const Standard_Integer aSizeY = std::max (myRaytraceParameters.NbTilesY * 64, theSizeY);
1905
1906     myRaytraceFBO1[0]->InitLazy (theGlContext, aSizeX, aSizeY, GL_RGBA32F, myFboDepthFormat);
1907     myRaytraceFBO2[0]->InitLazy (theGlContext, aSizeX, aSizeY, GL_RGBA32F, myFboDepthFormat);
1908
1909     if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
1910     {
1911       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1912       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1913     }
1914   }
1915   else // non-adaptive mode
1916   {
1917     if (myRaytraceFBO1[0]->GetSizeX() != theSizeX
1918      || myRaytraceFBO1[0]->GetSizeY() != theSizeY)
1919     {
1920       myAccumFrames = 0; // accumulation should be restarted
1921     }
1922
1923     myRaytraceFBO1[0]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1924     myRaytraceFBO2[0]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1925
1926     // Init second set of buffers for stereographic rendering
1927     if (myCamera->ProjectionType() == Graphic3d_Camera::Projection_Stereo)
1928     {
1929       myRaytraceFBO1[1]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1930       myRaytraceFBO2[1]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1931     }
1932     else if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
1933     {
1934       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1935       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1936     }
1937   }
1938
1939   myTileSampler.SetSize (theSizeX, theSizeY);
1940
1941   if (myRaytraceTileOffsetsTexture[0].IsNull()
1942    || myRaytraceTileOffsetsTexture[1].IsNull())
1943   {
1944     myRaytraceOutputTexture[0] = new OpenGl_Texture();
1945     myRaytraceOutputTexture[1] = new OpenGl_Texture();
1946
1947     myRaytraceTileOffsetsTexture[0] = new OpenGl_Texture();
1948     myRaytraceTileOffsetsTexture[1] = new OpenGl_Texture();
1949     myRaytraceVisualErrorTexture[0] = new OpenGl_Texture();
1950     myRaytraceVisualErrorTexture[1] = new OpenGl_Texture();
1951   }
1952
1953   if (myRaytraceOutputTexture[0]->SizeX() / 3 != theSizeX
1954    || myRaytraceOutputTexture[0]->SizeY() / 2 != theSizeY)
1955   {
1956     myAccumFrames = 0;
1957
1958     // Due to limitations of OpenGL image load-store extension
1959     // atomic operations are supported only for single-channel
1960     // images, so we define GL_R32F image. It is used as array
1961     // of 6D floating point vectors:
1962     // 0 - R color channel
1963     // 1 - G color channel
1964     // 2 - B color channel
1965     // 3 - hit time transformed into OpenGL NDC space
1966     // 4 - luminance accumulated for odd samples only
1967     myRaytraceOutputTexture[0]->InitRectangle (theGlContext,
1968       theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
1969
1970     // workaround for some NVIDIA drivers
1971     myRaytraceVisualErrorTexture[0]->Release (theGlContext.operator->());
1972     myRaytraceTileOffsetsTexture[0]->Release (theGlContext.operator->());
1973
1974     myRaytraceVisualErrorTexture[0]->Init (theGlContext,
1975       GL_R32I, GL_RED_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1976
1977     myRaytraceTileOffsetsTexture[0]->Init (theGlContext,
1978       GL_RG32I, GL_RG_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1979   }
1980
1981   if (myCamera->ProjectionType() == Graphic3d_Camera::Projection_Stereo)
1982   {
1983     if (myRaytraceOutputTexture[1]->SizeX() / 3 != theSizeX
1984      || myRaytraceOutputTexture[1]->SizeY() / 2 != theSizeY)
1985     {
1986       myRaytraceOutputTexture[1]->InitRectangle (theGlContext,
1987         theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
1988
1989       myRaytraceVisualErrorTexture[1]->Release (theGlContext.operator->());
1990       myRaytraceTileOffsetsTexture[1]->Release (theGlContext.operator->());
1991
1992       myRaytraceVisualErrorTexture[1]->Init (theGlContext,
1993         GL_R32I, GL_RED_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1994
1995       myRaytraceTileOffsetsTexture[1]->Init (theGlContext,
1996         GL_RG32I, GL_RG_INTEGER, GL_INT, myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1997     }
1998   }
1999   else
2000   {
2001     myRaytraceOutputTexture[1]->Release (theGlContext.operator->());
2002   }
2003
2004   return Standard_True;
2005 }
2006
2007 // =======================================================================
2008 // function : updateCamera
2009 // purpose  : Generates viewing rays for corners of screen quad
2010 // =======================================================================
2011 void OpenGl_View::updateCamera (const OpenGl_Mat4& theOrientation,
2012                                 const OpenGl_Mat4& theViewMapping,
2013                                 OpenGl_Vec3*       theOrigins,
2014                                 OpenGl_Vec3*       theDirects,
2015                                 OpenGl_Mat4&       theViewPr,
2016                                 OpenGl_Mat4&       theUnview)
2017 {
2018   // compute view-projection matrix
2019   theViewPr = theViewMapping * theOrientation;
2020
2021   // compute inverse view-projection matrix
2022   theViewPr.Inverted (theUnview);
2023
2024   Standard_Integer aOriginIndex = 0;
2025   Standard_Integer aDirectIndex = 0;
2026
2027   for (Standard_Integer aY = -1; aY <= 1; aY += 2)
2028   {
2029     for (Standard_Integer aX = -1; aX <= 1; aX += 2)
2030     {
2031       OpenGl_Vec4 aOrigin (GLfloat(aX),
2032                            GLfloat(aY),
2033                            -1.0f,
2034                            1.0f);
2035
2036       aOrigin = theUnview * aOrigin;
2037
2038       aOrigin.x() = aOrigin.x() / aOrigin.w();
2039       aOrigin.y() = aOrigin.y() / aOrigin.w();
2040       aOrigin.z() = aOrigin.z() / aOrigin.w();
2041
2042       OpenGl_Vec4 aDirect (GLfloat(aX),
2043                            GLfloat(aY),
2044                            1.0f,
2045                            1.0f);
2046
2047       aDirect = theUnview * aDirect;
2048
2049       aDirect.x() = aDirect.x() / aDirect.w();
2050       aDirect.y() = aDirect.y() / aDirect.w();
2051       aDirect.z() = aDirect.z() / aDirect.w();
2052
2053       aDirect = aDirect - aOrigin;
2054
2055       theOrigins[aOriginIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aOrigin.x()),
2056                                                 static_cast<GLfloat> (aOrigin.y()),
2057                                                 static_cast<GLfloat> (aOrigin.z()));
2058
2059       theDirects[aDirectIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aDirect.x()),
2060                                                 static_cast<GLfloat> (aDirect.y()),
2061                                                 static_cast<GLfloat> (aDirect.z()));
2062     }
2063   }
2064 }
2065
2066 // =======================================================================
2067 // function : updatePerspCameraPT
2068 // purpose  : Generates viewing rays (path tracing, perspective camera)
2069 // =======================================================================
2070 void OpenGl_View::updatePerspCameraPT (const OpenGl_Mat4&           theOrientation,
2071                                        const OpenGl_Mat4&           theViewMapping,
2072                                        Graphic3d_Camera::Projection theProjection,
2073                                        OpenGl_Mat4&                 theViewPr,
2074                                        OpenGl_Mat4&                 theUnview,
2075                                        const int                    theWinSizeX,
2076                                        const int                    theWinSizeY)
2077 {
2078   // compute view-projection matrix
2079   theViewPr = theViewMapping * theOrientation;
2080
2081   // compute inverse view-projection matrix
2082   theViewPr.Inverted(theUnview);
2083   
2084   // get camera stereo params
2085   float anIOD = myCamera->GetIODType() == Graphic3d_Camera::IODType_Relative
2086     ? static_cast<float> (myCamera->IOD() * myCamera->Distance())
2087     : static_cast<float> (myCamera->IOD());
2088
2089   float aZFocus = myCamera->ZFocusType() == Graphic3d_Camera::FocusType_Relative
2090     ? static_cast<float> (myCamera->ZFocus() * myCamera->Distance())
2091     : static_cast<float> (myCamera->ZFocus());
2092
2093   // get camera view vectors
2094   const gp_Pnt anOrig = myCamera->Eye();
2095
2096   myEyeOrig = OpenGl_Vec3 (static_cast<float> (anOrig.X()),
2097                            static_cast<float> (anOrig.Y()),
2098                            static_cast<float> (anOrig.Z()));
2099
2100   const gp_Dir aView = myCamera->Direction();
2101
2102   OpenGl_Vec3 anEyeViewMono = OpenGl_Vec3 (static_cast<float> (aView.X()),
2103                                            static_cast<float> (aView.Y()),
2104                                            static_cast<float> (aView.Z()));
2105
2106   const gp_Dir anUp = myCamera->Up();
2107
2108   myEyeVert = OpenGl_Vec3 (static_cast<float> (anUp.X()),
2109                            static_cast<float> (anUp.Y()),
2110                            static_cast<float> (anUp.Z()));
2111
2112   myEyeSide = OpenGl_Vec3::Cross (anEyeViewMono, myEyeVert);
2113
2114   const double aScaleY = tan (myCamera->FOVy() / 360 * M_PI);
2115   const double aScaleX = theWinSizeX * aScaleY / theWinSizeY;
2116  
2117   myEyeSize = OpenGl_Vec2 (static_cast<float> (aScaleX),
2118                            static_cast<float> (aScaleY));
2119
2120   if (theProjection == Graphic3d_Camera::Projection_Perspective)
2121   {
2122     myEyeView = anEyeViewMono;
2123   }
2124   else // stereo camera
2125   {
2126     // compute z-focus point
2127     OpenGl_Vec3 aZFocusPoint = myEyeOrig + anEyeViewMono * aZFocus;
2128
2129     // compute stereo camera shift
2130     float aDx = theProjection == Graphic3d_Camera::Projection_MonoRightEye ? 0.5f * anIOD : -0.5f * anIOD;
2131     myEyeOrig += myEyeSide.Normalized() * aDx;
2132
2133     // estimate new camera direction vector and correct its length
2134     myEyeView = (aZFocusPoint - myEyeOrig).Normalized();
2135     myEyeView *= 1.f / anEyeViewMono.Dot (myEyeView);
2136   }
2137 }
2138
2139 // =======================================================================
2140 // function : uploadRaytraceData
2141 // purpose  : Uploads ray-trace data to the GPU
2142 // =======================================================================
2143 Standard_Boolean OpenGl_View::uploadRaytraceData (const Handle(OpenGl_Context)& theGlContext)
2144 {
2145   if (!theGlContext->IsGlGreaterEqual (3, 1))
2146   {
2147 #ifdef RAY_TRACE_PRINT_INFO
2148     std::cout << "Error: OpenGL version is less than 3.1" << std::endl;
2149 #endif
2150     return Standard_False;
2151   }
2152
2153   myAccumFrames = 0; // accumulation should be restarted
2154
2155   /////////////////////////////////////////////////////////////////////////////
2156   // Prepare OpenGL textures
2157
2158   if (theGlContext->arbTexBindless != NULL)
2159   {
2160     // If OpenGL driver supports bindless textures we need
2161     // to get unique 64- bit handles for using on the GPU
2162     if (!myRaytraceGeometry.UpdateTextureHandles (theGlContext))
2163     {
2164 #ifdef RAY_TRACE_PRINT_INFO
2165       std::cout << "Error: Failed to get OpenGL texture handles" << std::endl;
2166 #endif
2167       return Standard_False;
2168     }
2169   }
2170
2171   /////////////////////////////////////////////////////////////////////////////
2172   // Create OpenGL BVH buffers
2173
2174   if (mySceneNodeInfoTexture.IsNull()) // create scene BVH buffers
2175   {
2176     mySceneNodeInfoTexture  = new OpenGl_TextureBufferArb;
2177     mySceneMinPointTexture  = new OpenGl_TextureBufferArb;
2178     mySceneMaxPointTexture  = new OpenGl_TextureBufferArb;
2179     mySceneTransformTexture = new OpenGl_TextureBufferArb;
2180
2181     if (!mySceneNodeInfoTexture->Create  (theGlContext)
2182      || !mySceneMinPointTexture->Create  (theGlContext)
2183      || !mySceneMaxPointTexture->Create  (theGlContext)
2184      || !mySceneTransformTexture->Create (theGlContext))
2185     {
2186 #ifdef RAY_TRACE_PRINT_INFO
2187       std::cout << "Error: Failed to create scene BVH buffers" << std::endl;
2188 #endif
2189       return Standard_False;
2190     }
2191   }
2192
2193   if (myGeometryVertexTexture.IsNull()) // create geometry buffers
2194   {
2195     myGeometryVertexTexture = new OpenGl_TextureBufferArb;
2196     myGeometryNormalTexture = new OpenGl_TextureBufferArb;
2197     myGeometryTexCrdTexture = new OpenGl_TextureBufferArb;
2198     myGeometryTriangTexture = new OpenGl_TextureBufferArb;
2199
2200     if (!myGeometryVertexTexture->Create (theGlContext)
2201      || !myGeometryNormalTexture->Create (theGlContext)
2202      || !myGeometryTexCrdTexture->Create (theGlContext)
2203      || !myGeometryTriangTexture->Create (theGlContext))
2204     {
2205 #ifdef RAY_TRACE_PRINT_INFO
2206       std::cout << "Error: Failed to create buffers for triangulation data" << std::endl;
2207 #endif
2208       return Standard_False;
2209     }
2210   }
2211
2212   if (myRaytraceMaterialTexture.IsNull()) // create material buffer
2213   {
2214     myRaytraceMaterialTexture = new OpenGl_TextureBufferArb;
2215
2216     if (!myRaytraceMaterialTexture->Create (theGlContext))
2217     {
2218 #ifdef RAY_TRACE_PRINT_INFO
2219       std::cout << "Error: Failed to create buffers for material data" << std::endl;
2220 #endif
2221       return Standard_False;
2222     }
2223   }
2224   
2225   /////////////////////////////////////////////////////////////////////////////
2226   // Write transform buffer
2227
2228   BVH_Mat4f* aNodeTransforms = new BVH_Mat4f[myRaytraceGeometry.Size()];
2229
2230   bool aResult = true;
2231
2232   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2233   {
2234     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2235       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2236
2237     const BVH_Transform<Standard_ShortReal, 4>* aTransform = dynamic_cast<const BVH_Transform<Standard_ShortReal, 4>* > (aTriangleSet->Properties().get());
2238     Standard_ASSERT_RETURN (aTransform != NULL,
2239       "OpenGl_TriangleSet does not contain transform", Standard_False);
2240
2241     aNodeTransforms[anElemIndex] = aTransform->Inversed();
2242   }
2243
2244   aResult &= mySceneTransformTexture->Init (theGlContext, 4,
2245     myRaytraceGeometry.Size() * 4, reinterpret_cast<const GLfloat*> (aNodeTransforms));
2246
2247   delete [] aNodeTransforms;
2248
2249   /////////////////////////////////////////////////////////////////////////////
2250   // Write geometry and bottom-level BVH buffers
2251
2252   Standard_Size aTotalVerticesNb = 0;
2253   Standard_Size aTotalElementsNb = 0;
2254   Standard_Size aTotalBVHNodesNb = 0;
2255
2256   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2257   {
2258     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2259       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2260
2261     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2262       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2263
2264     aTotalVerticesNb += aTriangleSet->Vertices.size();
2265     aTotalElementsNb += aTriangleSet->Elements.size();
2266
2267     Standard_ASSERT_RETURN (!aTriangleSet->QuadBVH().IsNull(),
2268       "Error: Failed to get bottom-level BVH of OpenGL element", Standard_False);
2269
2270     aTotalBVHNodesNb += aTriangleSet->QuadBVH()->NodeInfoBuffer().size();
2271   }
2272
2273   aTotalBVHNodesNb += myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size();
2274
2275   if (aTotalBVHNodesNb != 0)
2276   {
2277     aResult &= mySceneNodeInfoTexture->Init (
2278       theGlContext, 4, GLsizei (aTotalBVHNodesNb), static_cast<const GLuint*>  (NULL));
2279     aResult &= mySceneMinPointTexture->Init (
2280       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2281     aResult &= mySceneMaxPointTexture->Init (
2282       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2283   }
2284
2285   if (!aResult)
2286   {
2287 #ifdef RAY_TRACE_PRINT_INFO
2288     std::cout << "Error: Failed to upload buffers for bottom-level scene BVH" << std::endl;
2289 #endif
2290     return Standard_False;
2291   }
2292
2293   if (aTotalElementsNb != 0)
2294   {
2295     aResult &= myGeometryTriangTexture->Init (
2296       theGlContext, 4, GLsizei (aTotalElementsNb), static_cast<const GLuint*> (NULL));
2297   }
2298
2299   if (aTotalVerticesNb != 0)
2300   {
2301     aResult &= myGeometryVertexTexture->Init (
2302       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2303     aResult &= myGeometryNormalTexture->Init (
2304       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2305     aResult &= myGeometryTexCrdTexture->Init (
2306       theGlContext, 2, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2307   }
2308
2309   if (!aResult)
2310   {
2311 #ifdef RAY_TRACE_PRINT_INFO
2312     std::cout << "Error: Failed to upload buffers for scene geometry" << std::endl;
2313 #endif
2314     return Standard_False;
2315   }
2316
2317   const QuadBvhHandle& aBVH = myRaytraceGeometry.QuadBVH();
2318
2319   if (aBVH->Length() > 0)
2320   {
2321     aResult &= mySceneNodeInfoTexture->SubData (theGlContext, 0, aBVH->Length(),
2322       reinterpret_cast<const GLuint*> (&aBVH->NodeInfoBuffer().front()));
2323     aResult &= mySceneMinPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2324       reinterpret_cast<const GLfloat*> (&aBVH->MinPointBuffer().front()));
2325     aResult &= mySceneMaxPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2326       reinterpret_cast<const GLfloat*> (&aBVH->MaxPointBuffer().front()));
2327   }
2328
2329   for (Standard_Integer aNodeIdx = 0; aNodeIdx < aBVH->Length(); ++aNodeIdx)
2330   {
2331     if (!aBVH->IsOuter (aNodeIdx))
2332       continue;
2333
2334     OpenGl_TriangleSet* aTriangleSet = myRaytraceGeometry.TriangleSet (aNodeIdx);
2335
2336     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2337       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2338
2339     Standard_Integer aBVHOffset = myRaytraceGeometry.AccelerationOffset (aNodeIdx);
2340
2341     Standard_ASSERT_RETURN (aBVHOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2342       "Error: Failed to get offset for bottom-level BVH", Standard_False);
2343
2344     const Standard_Integer aBvhBuffersSize = aTriangleSet->QuadBVH()->Length();
2345
2346     if (aBvhBuffersSize != 0)
2347     {
2348       aResult &= mySceneNodeInfoTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2349         reinterpret_cast<const GLuint*> (&aTriangleSet->QuadBVH()->NodeInfoBuffer().front()));
2350       aResult &= mySceneMinPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2351         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MinPointBuffer().front()));
2352       aResult &= mySceneMaxPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2353         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MaxPointBuffer().front()));
2354
2355       if (!aResult)
2356       {
2357 #ifdef RAY_TRACE_PRINT_INFO
2358         std::cout << "Error: Failed to upload buffers for bottom-level scene BVHs" << std::endl;
2359 #endif
2360         return Standard_False;
2361       }
2362     }
2363
2364     const Standard_Integer aVerticesOffset = myRaytraceGeometry.VerticesOffset (aNodeIdx);
2365
2366     Standard_ASSERT_RETURN (aVerticesOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2367       "Error: Failed to get offset for triangulation vertices of OpenGL element", Standard_False);
2368
2369     if (!aTriangleSet->Vertices.empty())
2370     {
2371       aResult &= myGeometryNormalTexture->SubData (theGlContext, aVerticesOffset,
2372         GLsizei (aTriangleSet->Normals.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Normals.front()));
2373       aResult &= myGeometryTexCrdTexture->SubData (theGlContext, aVerticesOffset,
2374         GLsizei (aTriangleSet->TexCrds.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->TexCrds.front()));
2375       aResult &= myGeometryVertexTexture->SubData (theGlContext, aVerticesOffset,
2376         GLsizei (aTriangleSet->Vertices.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Vertices.front()));
2377     }
2378
2379     const Standard_Integer anElementsOffset = myRaytraceGeometry.ElementsOffset (aNodeIdx);
2380
2381     Standard_ASSERT_RETURN (anElementsOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2382       "Error: Failed to get offset for triangulation elements of OpenGL element", Standard_False);
2383
2384     if (!aTriangleSet->Elements.empty())
2385     {
2386       aResult &= myGeometryTriangTexture->SubData (theGlContext, anElementsOffset, GLsizei (aTriangleSet->Elements.size()),
2387                                                    reinterpret_cast<const GLuint*> (&aTriangleSet->Elements.front()));
2388     }
2389
2390     if (!aResult)
2391     {
2392 #ifdef RAY_TRACE_PRINT_INFO
2393       std::cout << "Error: Failed to upload triangulation buffers for OpenGL element" << std::endl;
2394 #endif
2395       return Standard_False;
2396     }
2397   }
2398
2399   /////////////////////////////////////////////////////////////////////////////
2400   // Write material buffer
2401
2402   if (myRaytraceGeometry.Materials.size() != 0)
2403   {
2404     aResult &= myRaytraceMaterialTexture->Init (theGlContext, 4,
2405       GLsizei (myRaytraceGeometry.Materials.size() * 19), myRaytraceGeometry.Materials.front().Packed());
2406
2407     if (!aResult)
2408     {
2409 #ifdef RAY_TRACE_PRINT_INFO
2410       std::cout << "Error: Failed to upload material buffer" << std::endl;
2411 #endif
2412       return Standard_False;
2413     }
2414   }
2415
2416   myIsRaytraceDataValid = myRaytraceGeometry.Objects().Size() != 0;
2417
2418 #ifdef RAY_TRACE_PRINT_INFO
2419
2420   Standard_ShortReal aMemTrgUsed = 0.f;
2421   Standard_ShortReal aMemBvhUsed = 0.f;
2422
2423   for (Standard_Integer anElemIdx = 0; anElemIdx < myRaytraceGeometry.Size(); ++anElemIdx)
2424   {
2425     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (myRaytraceGeometry.Objects()(anElemIdx).get());
2426
2427     aMemTrgUsed += static_cast<Standard_ShortReal> (
2428       aTriangleSet->Vertices.size() * sizeof (BVH_Vec3f));
2429     aMemTrgUsed += static_cast<Standard_ShortReal> (
2430       aTriangleSet->Normals.size() * sizeof (BVH_Vec3f));
2431     aMemTrgUsed += static_cast<Standard_ShortReal> (
2432       aTriangleSet->TexCrds.size() * sizeof (BVH_Vec2f));
2433     aMemTrgUsed += static_cast<Standard_ShortReal> (
2434       aTriangleSet->Elements.size() * sizeof (BVH_Vec4i));
2435
2436     aMemBvhUsed += static_cast<Standard_ShortReal> (
2437       aTriangleSet->QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2438     aMemBvhUsed += static_cast<Standard_ShortReal> (
2439       aTriangleSet->QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2440     aMemBvhUsed += static_cast<Standard_ShortReal> (
2441       aTriangleSet->QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2442   }
2443
2444   aMemBvhUsed += static_cast<Standard_ShortReal> (
2445     myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2446   aMemBvhUsed += static_cast<Standard_ShortReal> (
2447     myRaytraceGeometry.QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2448   aMemBvhUsed += static_cast<Standard_ShortReal> (
2449     myRaytraceGeometry.QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2450
2451   std::cout << "GPU Memory Used (Mb):\n"
2452     << "\tFor mesh: " << aMemTrgUsed / 1048576 << "\n"
2453     << "\tFor BVHs: " << aMemBvhUsed / 1048576 << "\n";
2454
2455 #endif
2456
2457   return aResult;
2458 }
2459
2460 // =======================================================================
2461 // function : updateRaytraceLightSources
2462 // purpose  : Updates 3D scene light sources for ray-tracing
2463 // =======================================================================
2464 Standard_Boolean OpenGl_View::updateRaytraceLightSources (const OpenGl_Mat4& theInvModelView, const Handle(OpenGl_Context)& theGlContext)
2465 {
2466   std::vector<Handle(Graphic3d_CLight)> aLightSources;
2467   myRaytraceGeometry.Ambient = BVH_Vec4f (0.f, 0.f, 0.f, 0.f);
2468   if (myShadingModel != Graphic3d_TOSM_UNLIT
2469   && !myLights.IsNull())
2470   {
2471     const Graphic3d_Vec4& anAmbient = myLights->AmbientColor();
2472     myRaytraceGeometry.Ambient = BVH_Vec4f (anAmbient.r(), anAmbient.g(), anAmbient.b(), 0.0f);
2473
2474     // move positional light sources at the front of the list
2475     aLightSources.reserve (myLights->Extent());
2476     for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
2477          aLightIter.More(); aLightIter.Next())
2478     {
2479       const Graphic3d_CLight& aLight = *aLightIter.Value();
2480       if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
2481       {
2482         aLightSources.push_back (aLightIter.Value());
2483       }
2484     }
2485
2486     for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
2487          aLightIter.More(); aLightIter.Next())
2488     {
2489       if (aLightIter.Value()->Type() == Graphic3d_TOLS_DIRECTIONAL)
2490       {
2491         aLightSources.push_back (aLightIter.Value());
2492       }
2493     }
2494   }
2495
2496   // get number of 'real' (not ambient) light sources
2497   const size_t aNbLights = aLightSources.size();
2498   Standard_Boolean wasUpdated = myRaytraceGeometry.Sources.size () != aNbLights;
2499   if (wasUpdated)
2500   {
2501     myRaytraceGeometry.Sources.resize (aNbLights);
2502   }
2503
2504   for (size_t aLightIdx = 0, aRealIdx = 0; aLightIdx < aLightSources.size(); ++aLightIdx)
2505   {
2506     const Graphic3d_CLight& aLight = *aLightSources[aLightIdx];
2507     const Graphic3d_Vec4& aLightColor = aLight.PackedColor();
2508     BVH_Vec4f aEmission  (aLightColor.r() * aLight.Intensity(),
2509                           aLightColor.g() * aLight.Intensity(),
2510                           aLightColor.b() * aLight.Intensity(),
2511                           1.0f);
2512
2513     BVH_Vec4f aPosition (-aLight.PackedDirection().x(),
2514                          -aLight.PackedDirection().y(),
2515                          -aLight.PackedDirection().z(),
2516                          0.0f);
2517
2518     if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
2519     {
2520       aPosition = BVH_Vec4f (static_cast<float>(aLight.Position().X()),
2521                              static_cast<float>(aLight.Position().Y()),
2522                              static_cast<float>(aLight.Position().Z()),
2523                              1.0f);
2524
2525       // store smoothing radius in W-component
2526       aEmission.w() = Max (aLight.Smoothness(), 0.f);
2527     }
2528     else
2529     {
2530       // store cosine of smoothing angle in W-component
2531       aEmission.w() = cosf (Min (Max (aLight.Smoothness(), 0.f), static_cast<Standard_ShortReal> (M_PI / 2.0)));
2532     }
2533
2534     if (aLight.IsHeadlight())
2535     {
2536       aPosition = theInvModelView * aPosition;
2537     }
2538
2539     for (int aK = 0; aK < 4; ++aK)
2540     {
2541       wasUpdated |= (aEmission[aK] != myRaytraceGeometry.Sources[aRealIdx].Emission[aK])
2542                  || (aPosition[aK] != myRaytraceGeometry.Sources[aRealIdx].Position[aK]);
2543     }
2544
2545     if (wasUpdated)
2546     {
2547       myRaytraceGeometry.Sources[aRealIdx] = OpenGl_RaytraceLight (aEmission, aPosition);
2548     }
2549
2550     ++aRealIdx;
2551   }
2552
2553   if (myRaytraceLightSrcTexture.IsNull()) // create light source buffer
2554   {
2555     myRaytraceLightSrcTexture = new OpenGl_TextureBufferArb;
2556   }
2557
2558   if (myRaytraceGeometry.Sources.size() != 0 && wasUpdated)
2559   {
2560     const GLfloat* aDataPtr = myRaytraceGeometry.Sources.front().Packed();
2561     if (!myRaytraceLightSrcTexture->Init (theGlContext, 4, GLsizei (myRaytraceGeometry.Sources.size() * 2), aDataPtr))
2562     {
2563 #ifdef RAY_TRACE_PRINT_INFO
2564       std::cout << "Error: Failed to upload light source buffer" << std::endl;
2565 #endif
2566       return Standard_False;
2567     }
2568
2569     myAccumFrames = 0; // accumulation should be restarted
2570   }
2571
2572   return Standard_True;
2573 }
2574
2575 // =======================================================================
2576 // function : setUniformState
2577 // purpose  : Sets uniform state for the given ray-tracing shader program
2578 // =======================================================================
2579 Standard_Boolean OpenGl_View::setUniformState (const Standard_Integer        theProgramId,
2580                                                const Standard_Integer        theWinSizeX,
2581                                                const Standard_Integer        theWinSizeY,
2582                                                Graphic3d_Camera::Projection  theProjection,
2583                                                const Handle(OpenGl_Context)& theGlContext)
2584 {
2585   // Get projection state
2586   OpenGl_MatrixState<Standard_ShortReal>& aCntxProjectionState = theGlContext->ProjectionState;
2587
2588   OpenGl_Mat4 aViewPrjMat;
2589   OpenGl_Mat4 anUnviewMat;
2590   OpenGl_Vec3 aOrigins[4];
2591   OpenGl_Vec3 aDirects[4];
2592
2593   if (myCamera->IsOrthographic()
2594    || !myRenderParams.IsGlobalIlluminationEnabled)
2595   {
2596     updateCamera (myCamera->OrientationMatrixF(),
2597                   aCntxProjectionState.Current(),
2598                   aOrigins,
2599                   aDirects,
2600                   aViewPrjMat,
2601                   anUnviewMat);
2602   }
2603   else
2604   {
2605     updatePerspCameraPT (myCamera->OrientationMatrixF(),
2606                          aCntxProjectionState.Current(),
2607                          theProjection,
2608                          aViewPrjMat,
2609                          anUnviewMat,
2610                          theWinSizeX,
2611                          theWinSizeY);
2612   }
2613
2614   Handle(OpenGl_ShaderProgram)& theProgram = theProgramId == 0
2615                                            ? myRaytraceProgram
2616                                            : myPostFSAAProgram;
2617
2618   if (theProgram.IsNull())
2619   {
2620     return Standard_False;
2621   }
2622   
2623   theProgram->SetUniform(theGlContext, "uEyeOrig", myEyeOrig);
2624   theProgram->SetUniform(theGlContext, "uEyeView", myEyeView);
2625   theProgram->SetUniform(theGlContext, "uEyeVert", myEyeVert);
2626   theProgram->SetUniform(theGlContext, "uEyeSide", myEyeSide);
2627   theProgram->SetUniform(theGlContext, "uEyeSize", myEyeSize);
2628
2629   theProgram->SetUniform(theGlContext, "uApertureRadius", myRenderParams.CameraApertureRadius);
2630   theProgram->SetUniform(theGlContext, "uFocalPlaneDist", myRenderParams.CameraFocalPlaneDist);
2631   
2632   // Set camera state
2633   theProgram->SetUniform (theGlContext,
2634     myUniformLocations[theProgramId][OpenGl_RT_uOriginLB], aOrigins[0]);
2635   theProgram->SetUniform (theGlContext,
2636     myUniformLocations[theProgramId][OpenGl_RT_uOriginRB], aOrigins[1]);
2637   theProgram->SetUniform (theGlContext,
2638     myUniformLocations[theProgramId][OpenGl_RT_uOriginLT], aOrigins[2]);
2639   theProgram->SetUniform (theGlContext,
2640     myUniformLocations[theProgramId][OpenGl_RT_uOriginRT], aOrigins[3]);
2641   theProgram->SetUniform (theGlContext,
2642     myUniformLocations[theProgramId][OpenGl_RT_uDirectLB], aDirects[0]);
2643   theProgram->SetUniform (theGlContext,
2644     myUniformLocations[theProgramId][OpenGl_RT_uDirectRB], aDirects[1]);
2645   theProgram->SetUniform (theGlContext,
2646     myUniformLocations[theProgramId][OpenGl_RT_uDirectLT], aDirects[2]);
2647   theProgram->SetUniform (theGlContext,
2648     myUniformLocations[theProgramId][OpenGl_RT_uDirectRT], aDirects[3]);
2649   theProgram->SetUniform (theGlContext,
2650     myUniformLocations[theProgramId][OpenGl_RT_uViewPrMat], aViewPrjMat);
2651   theProgram->SetUniform (theGlContext,
2652     myUniformLocations[theProgramId][OpenGl_RT_uUnviewMat], anUnviewMat);
2653
2654   // Set screen dimensions
2655   myRaytraceProgram->SetUniform (theGlContext,
2656     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeX], theWinSizeX);
2657   myRaytraceProgram->SetUniform (theGlContext,
2658     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeY], theWinSizeY);
2659
2660   // Set 3D scene parameters
2661   theProgram->SetUniform (theGlContext,
2662     myUniformLocations[theProgramId][OpenGl_RT_uSceneRad], myRaytraceSceneRadius);
2663   theProgram->SetUniform (theGlContext,
2664     myUniformLocations[theProgramId][OpenGl_RT_uSceneEps], myRaytraceSceneEpsilon);
2665
2666   // Set light source parameters
2667   const Standard_Integer aLightSourceBufferSize =
2668     static_cast<Standard_Integer> (myRaytraceGeometry.Sources.size());
2669   
2670   theProgram->SetUniform (theGlContext,
2671     myUniformLocations[theProgramId][OpenGl_RT_uLightCount], aLightSourceBufferSize);
2672
2673   // Set array of 64-bit texture handles
2674   if (theGlContext->arbTexBindless != NULL && myRaytraceGeometry.HasTextures())
2675   {
2676     const std::vector<GLuint64>& aTextures = myRaytraceGeometry.TextureHandles();
2677
2678     theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uTexSamplersArray],
2679       static_cast<GLsizei> (aTextures.size()), reinterpret_cast<const OpenGl_Vec2u*> (&aTextures.front()));
2680   }
2681
2682   // Set background colors (only gradient background supported)
2683   if (myBgGradientArray != NULL && myBgGradientArray->IsDefined())
2684   {
2685     theProgram->SetUniform (theGlContext,
2686       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], myBgGradientArray->GradientColor (0));
2687     theProgram->SetUniform (theGlContext,
2688       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], myBgGradientArray->GradientColor (1));
2689   }
2690   else
2691   {
2692     const OpenGl_Vec4& aBackColor = myBgColor;
2693
2694     theProgram->SetUniform (theGlContext,
2695       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], aBackColor);
2696     theProgram->SetUniform (theGlContext,
2697       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], aBackColor);
2698   }
2699
2700   // Set environment map parameters
2701   const Standard_Boolean toDisableEnvironmentMap = myTextureEnv.IsNull()
2702                                                ||  myTextureEnv->IsEmpty()
2703                                                || !myTextureEnv->First()->IsValid();
2704
2705   theProgram->SetUniform (theGlContext,
2706     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapEnabled], toDisableEnvironmentMap ? 0 : 1);
2707
2708   theProgram->SetUniform (theGlContext,
2709     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapForBack], myRenderParams.UseEnvironmentMapBackground ?  1 : 0);
2710
2711   if (myRenderParams.IsGlobalIlluminationEnabled) // GI parameters
2712   {
2713     theProgram->SetUniform (theGlContext,
2714       myUniformLocations[theProgramId][OpenGl_RT_uMaxRadiance], myRenderParams.RadianceClampingValue);
2715
2716     theProgram->SetUniform (theGlContext,
2717       myUniformLocations[theProgramId][OpenGl_RT_uBlockedRngEnabled], myRenderParams.CoherentPathTracingMode ? 1 : 0);
2718
2719     // Check whether we should restart accumulation for run-time parameters
2720     if (myRenderParams.RadianceClampingValue       != myRaytraceParameters.RadianceClampingValue
2721      || myRenderParams.UseEnvironmentMapBackground != myRaytraceParameters.UseEnvMapForBackground)
2722     {
2723       myAccumFrames = 0; // accumulation should be restarted
2724
2725       myRaytraceParameters.RadianceClampingValue  = myRenderParams.RadianceClampingValue;
2726       myRaytraceParameters.UseEnvMapForBackground = myRenderParams.UseEnvironmentMapBackground;
2727     }
2728   }
2729   else // RT parameters
2730   {
2731     // Set ambient light source
2732     theProgram->SetUniform (theGlContext,
2733       myUniformLocations[theProgramId][OpenGl_RT_uLightAmbnt], myRaytraceGeometry.Ambient);
2734
2735     // Enable/disable run-time ray-tracing effects
2736     theProgram->SetUniform (theGlContext,
2737       myUniformLocations[theProgramId][OpenGl_RT_uShadowsEnabled], myRenderParams.IsShadowEnabled ?  1 : 0);
2738     theProgram->SetUniform (theGlContext,
2739       myUniformLocations[theProgramId][OpenGl_RT_uReflectEnabled], myRenderParams.IsReflectionEnabled ?  1 : 0);
2740   }
2741
2742   return Standard_True;
2743 }
2744
2745 // =======================================================================
2746 // function : bindRaytraceTextures
2747 // purpose  : Binds ray-trace textures to corresponding texture units
2748 // =======================================================================
2749 void OpenGl_View::bindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
2750 {
2751   if (myRaytraceParameters.AdaptiveScreenSampling)
2752   {
2753   #if !defined(GL_ES_VERSION_2_0)
2754     theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImageLft,
2755       myRaytraceOutputTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
2756     theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImageRgh,
2757       myRaytraceOutputTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
2758
2759     theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImageLft,
2760       myRaytraceVisualErrorTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
2761     theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImageRgh,
2762       myRaytraceVisualErrorTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
2763     theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImageLft,
2764       myRaytraceTileOffsetsTexture[0]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
2765     theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImageRgh,
2766       myRaytraceTileOffsetsTexture[1]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
2767 #endif
2768   }
2769
2770   if (!myTextureEnv.IsNull()
2771    && !myTextureEnv->IsEmpty()
2772    &&  myTextureEnv->First()->IsValid())
2773   {
2774     myTextureEnv->First()->Bind (theGlContext, OpenGl_RT_EnvironmentMapTexture);
2775   }
2776
2777   mySceneMinPointTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
2778   mySceneMaxPointTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
2779   mySceneNodeInfoTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
2780   myGeometryVertexTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
2781   myGeometryNormalTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
2782   myGeometryTexCrdTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
2783   myGeometryTriangTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
2784   mySceneTransformTexture  ->BindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
2785   myRaytraceMaterialTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
2786   myRaytraceLightSrcTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
2787 }
2788
2789 // =======================================================================
2790 // function : unbindRaytraceTextures
2791 // purpose  : Unbinds ray-trace textures from corresponding texture units
2792 // =======================================================================
2793 void OpenGl_View::unbindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
2794 {
2795   mySceneMinPointTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
2796   mySceneMaxPointTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
2797   mySceneNodeInfoTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
2798   myGeometryVertexTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
2799   myGeometryNormalTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
2800   myGeometryTexCrdTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
2801   myGeometryTriangTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
2802   mySceneTransformTexture  ->UnbindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
2803   myRaytraceMaterialTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
2804   myRaytraceLightSrcTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
2805
2806   theGlContext->core15fwd->glActiveTexture (GL_TEXTURE0);
2807 }
2808
2809 // =======================================================================
2810 // function : runRaytraceShaders
2811 // purpose  : Runs ray-tracing shader programs
2812 // =======================================================================
2813 Standard_Boolean OpenGl_View::runRaytraceShaders (const Standard_Integer        theSizeX,
2814                                                   const Standard_Integer        theSizeY,
2815                                                   Graphic3d_Camera::Projection  theProjection,
2816                                                   OpenGl_FrameBuffer*           theReadDrawFbo,
2817                                                   const Handle(OpenGl_Context)& theGlContext)
2818 {
2819   Standard_Boolean aResult = theGlContext->BindProgram (myRaytraceProgram);
2820
2821   aResult &= setUniformState (0,
2822                               theSizeX,
2823                               theSizeY,
2824                               theProjection,
2825                               theGlContext);
2826
2827   if (myRaytraceParameters.GlobalIllumination) // path tracing
2828   {
2829     aResult &= runPathtrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
2830   }
2831   else // Whitted-style ray-tracing
2832   {
2833     aResult &= runRaytrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
2834   }
2835
2836   return aResult;
2837 }
2838
2839 // =======================================================================
2840 // function : runRaytrace
2841 // purpose  : Runs Whitted-style ray-tracing
2842 // =======================================================================
2843 Standard_Boolean OpenGl_View::runRaytrace (const Standard_Integer        theSizeX,
2844                                            const Standard_Integer        theSizeY,
2845                                            Graphic3d_Camera::Projection  theProjection,
2846                                            OpenGl_FrameBuffer*           theReadDrawFbo,
2847                                            const Handle(OpenGl_Context)& theGlContext)
2848 {
2849   Standard_Boolean aResult = Standard_True;
2850
2851   bindRaytraceTextures (theGlContext);
2852
2853   Handle(OpenGl_FrameBuffer) aRenderImageFramebuffer;
2854   Handle(OpenGl_FrameBuffer) aDepthSourceFramebuffer;
2855
2856   // Choose proper set of frame buffers for stereo rendering
2857   const Standard_Integer aFBOIdx (theProjection == Graphic3d_Camera::Projection_MonoRightEye);
2858
2859   if (myRenderParams.IsAntialiasingEnabled) // if second FSAA pass is used
2860   {
2861     myRaytraceFBO1[aFBOIdx]->BindBuffer (theGlContext);
2862
2863     glClear (GL_DEPTH_BUFFER_BIT); // render the image with depth
2864   }
2865
2866   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2867
2868   if (myRenderParams.IsAntialiasingEnabled)
2869   {
2870     glDisable (GL_DEPTH_TEST); // improve jagged edges without depth buffer
2871
2872     // bind ray-tracing output image as input
2873     myRaytraceFBO1[aFBOIdx]->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
2874
2875     aResult &= theGlContext->BindProgram (myPostFSAAProgram);
2876
2877     aResult &= setUniformState (1 /* FSAA ID */,
2878                                 theSizeX,
2879                                 theSizeY,
2880                                 theProjection,
2881                                 theGlContext);
2882
2883     // Perform multi-pass adaptive FSAA using ping-pong technique.
2884     // We use 'FLIPTRI' sampling pattern changing for every pixel
2885     // (3 additional samples per pixel, the 1st sample is already
2886     // available from initial ray-traced image).
2887     for (Standard_Integer anIt = 1; anIt < 4; ++anIt)
2888     {
2889       GLfloat aOffsetX = 1.f / theSizeX;
2890       GLfloat aOffsetY = 1.f / theSizeY;
2891
2892       if (anIt == 1)
2893       {
2894         aOffsetX *= -0.55f;
2895         aOffsetY *=  0.55f;
2896       }
2897       else if (anIt == 2)
2898       {
2899         aOffsetX *=  0.00f;
2900         aOffsetY *= -0.55f;
2901       }
2902       else if (anIt == 3)
2903       {
2904         aOffsetX *= 0.55f;
2905         aOffsetY *= 0.00f;
2906       }
2907
2908       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2909         myUniformLocations[1][OpenGl_RT_uSamples], anIt + 1);
2910       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2911         myUniformLocations[1][OpenGl_RT_uOffsetX], aOffsetX);
2912       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2913         myUniformLocations[1][OpenGl_RT_uOffsetY], aOffsetY);
2914
2915       Handle(OpenGl_FrameBuffer)& aFramebuffer = anIt % 2
2916                                                ? myRaytraceFBO2[aFBOIdx]
2917                                                : myRaytraceFBO1[aFBOIdx];
2918
2919       aFramebuffer->BindBuffer (theGlContext);
2920
2921       // perform adaptive FSAA pass
2922       theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2923
2924       aFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
2925     }
2926
2927     aRenderImageFramebuffer = myRaytraceFBO2[aFBOIdx];
2928     aDepthSourceFramebuffer = myRaytraceFBO1[aFBOIdx];
2929
2930     glEnable (GL_DEPTH_TEST);
2931
2932     // Display filtered image
2933     theGlContext->BindProgram (myOutImageProgram);
2934
2935     if (theReadDrawFbo != NULL)
2936     {
2937       theReadDrawFbo->BindBuffer (theGlContext);
2938     }
2939     else
2940     {
2941       aRenderImageFramebuffer->UnbindBuffer (theGlContext);
2942     }
2943
2944     aRenderImageFramebuffer->ColorTexture()       ->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
2945     aDepthSourceFramebuffer->DepthStencilTexture()->Bind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
2946
2947     // copy the output image with depth values
2948     theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2949
2950     aDepthSourceFramebuffer->DepthStencilTexture()->Unbind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
2951     aRenderImageFramebuffer->ColorTexture()       ->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
2952   }
2953
2954   unbindRaytraceTextures (theGlContext);
2955
2956   theGlContext->BindProgram (NULL);
2957
2958   return aResult;
2959 }
2960
2961 // =======================================================================
2962 // function : runPathtrace
2963 // purpose  : Runs path tracing shader
2964 // =======================================================================
2965 Standard_Boolean OpenGl_View::runPathtrace (const Standard_Integer              theSizeX,
2966                                             const Standard_Integer              theSizeY,
2967                                             const Graphic3d_Camera::Projection  theProjection,
2968                                             OpenGl_FrameBuffer*                 theReadDrawFbo,
2969                                             const Handle(OpenGl_Context)&       theGlContext)
2970 {
2971   Standard_Boolean aResult = Standard_True;
2972
2973   if (myToUpdateEnvironmentMap) // check whether the map was changed
2974   {
2975     myAccumFrames = myToUpdateEnvironmentMap = 0;
2976   }
2977   
2978   if (myRenderParams.CameraApertureRadius != myPrevCameraApertureRadius
2979    || myRenderParams.CameraFocalPlaneDist != myPrevCameraFocalPlaneDist)
2980   {
2981
2982     myPrevCameraApertureRadius = myRenderParams.CameraApertureRadius;
2983     myPrevCameraFocalPlaneDist = myRenderParams.CameraFocalPlaneDist;
2984
2985     myAccumFrames = 0;
2986   }
2987
2988   // Choose proper set of frame buffers for stereo rendering
2989   const Standard_Integer aFBOIdx (theProjection == Graphic3d_Camera::Projection_MonoRightEye);
2990
2991   if (myRaytraceParameters.AdaptiveScreenSampling)
2992   {
2993     if (myAccumFrames == 0)
2994     {
2995       myTileSampler.Reset(); // reset tile sampler to its initial state
2996
2997       // Adaptive sampling is starting at the second frame
2998       myTileSampler.Upload (theGlContext,
2999                             myRaytraceTileOffsetsTexture[aFBOIdx],
3000                             myRaytraceParameters.NbTilesX,
3001                             myRaytraceParameters.NbTilesY,
3002                             false);
3003     }
3004   }
3005
3006   bindRaytraceTextures (theGlContext);
3007
3008   Handle(OpenGl_FrameBuffer) aRenderImageFramebuffer;
3009   Handle(OpenGl_FrameBuffer) aDepthSourceFramebuffer;
3010   Handle(OpenGl_FrameBuffer) anAccumImageFramebuffer;
3011
3012   const Standard_Integer anImageId = (aFBOIdx != 0)
3013                                    ? OpenGl_RT_OutputImageRgh
3014                                    : OpenGl_RT_OutputImageLft;
3015
3016   const Standard_Integer anErrorId = (aFBOIdx != 0)
3017                                    ? OpenGl_RT_VisualErrorImageRgh
3018                                    : OpenGl_RT_VisualErrorImageLft;
3019
3020   const Standard_Integer anOffsetId = (aFBOIdx != 0)
3021                                     ? OpenGl_RT_TileOffsetsImageRgh
3022                                     : OpenGl_RT_TileOffsetsImageLft;
3023
3024   aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
3025   anAccumImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO2[aFBOIdx] : myRaytraceFBO1[aFBOIdx];
3026
3027   aDepthSourceFramebuffer = aRenderImageFramebuffer;
3028
3029   anAccumImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
3030
3031   aRenderImageFramebuffer->BindBuffer (theGlContext);
3032
3033   if (myAccumFrames == 0)
3034   {
3035     myRNG.SetSeed(); // start RNG from beginning
3036   }
3037
3038   // Clear adaptive screen sampling images
3039   if (myRaytraceParameters.AdaptiveScreenSampling)
3040   {
3041   #if !defined(GL_ES_VERSION_2_0)
3042     if (myAccumFrames == 0 || (myAccumFrames == 1 && myCamera->IsStereo()))
3043     {
3044       theGlContext->core44->glClearTexImage (myRaytraceOutputTexture[aFBOIdx]->TextureId(), 0, GL_RED, GL_FLOAT, NULL);
3045     }
3046
3047     theGlContext->core44->glClearTexImage (myRaytraceVisualErrorTexture[aFBOIdx]->TextureId(), 0, GL_RED_INTEGER, GL_INT, NULL);
3048   #endif
3049   }
3050
3051   // Set frame accumulation weight
3052   myRaytraceProgram->SetUniform (theGlContext,
3053     myUniformLocations[0][OpenGl_RT_uAccumSamples], myAccumFrames);
3054
3055   // Set random number generator seed
3056   myRaytraceProgram->SetUniform (theGlContext,
3057     myUniformLocations[0][OpenGl_RT_uFrameRndSeed], static_cast<Standard_Integer> (myRNG.NextInt() >> 2));
3058
3059   // Set image uniforms for render program
3060   myRaytraceProgram->SetUniform (theGlContext,
3061     myUniformLocations[0][OpenGl_RT_uRenderImage], anImageId);
3062   myRaytraceProgram->SetUniform (theGlContext,
3063     myUniformLocations[0][OpenGl_RT_uOffsetImage], anOffsetId);
3064
3065   glDisable (GL_DEPTH_TEST);
3066
3067   if (myRaytraceParameters.AdaptiveScreenSampling
3068    && ((myAccumFrames > 0 && !myCamera->IsStereo()) || myAccumFrames > 1))
3069   {
3070     glViewport (0,
3071                 0,
3072                 myTileSampler.TileSize() * myRaytraceParameters.NbTilesX,
3073                 myTileSampler.TileSize() * myRaytraceParameters.NbTilesY);
3074   }
3075
3076   // Generate for the given RNG seed
3077   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
3078
3079   if (myRaytraceParameters.AdaptiveScreenSampling
3080    && ((myAccumFrames > 0 && !myCamera->IsStereo()) || myAccumFrames > 1))
3081   {
3082     glViewport (0,
3083                 0,
3084                 theSizeX,
3085                 theSizeY);
3086   }
3087
3088   // Output accumulated path traced image
3089   theGlContext->BindProgram (myOutImageProgram);
3090
3091   if (myRaytraceParameters.AdaptiveScreenSampling)
3092   {
3093     // Set uniforms for display program
3094     myOutImageProgram->SetUniform (theGlContext, "uRenderImage",   anImageId);
3095     myOutImageProgram->SetUniform (theGlContext, "uAccumFrames",   myAccumFrames);
3096     myOutImageProgram->SetUniform (theGlContext, "uVarianceImage", anErrorId);
3097     myOutImageProgram->SetUniform (theGlContext, "uDebugAdaptive", myRenderParams.ShowSamplingTiles ?  1 : 0);
3098   }
3099
3100   if (myRaytraceParameters.GlobalIllumination)
3101   {
3102     myOutImageProgram->SetUniform(theGlContext, "uExposure", myRenderParams.Exposure);
3103     switch (myRaytraceParameters.ToneMappingMethod)
3104     {
3105       case Graphic3d_ToneMappingMethod_Disabled:
3106         break;
3107       case Graphic3d_ToneMappingMethod_Filmic:
3108         myOutImageProgram->SetUniform (theGlContext, "uWhitePoint", myRenderParams.WhitePoint);
3109         break;
3110     }
3111   }
3112
3113   if (theReadDrawFbo != NULL)
3114   {
3115     theReadDrawFbo->BindBuffer (theGlContext);
3116   }
3117   else
3118   {
3119     aRenderImageFramebuffer->UnbindBuffer (theGlContext);
3120   }
3121
3122   aRenderImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
3123
3124   glEnable (GL_DEPTH_TEST);
3125
3126   // Copy accumulated image with correct depth values
3127   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
3128
3129   aRenderImageFramebuffer->ColorTexture()->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
3130
3131   if (myRaytraceParameters.AdaptiveScreenSampling)
3132   {
3133     myRaytraceVisualErrorTexture[aFBOIdx]->Bind (theGlContext);
3134
3135     // Download visual error map from the GPU and build
3136     // adjusted tile offsets for optimal image sampling
3137     myTileSampler.GrabVarianceMap (theGlContext);
3138
3139     myTileSampler.Upload (theGlContext,
3140                           myRaytraceTileOffsetsTexture[aFBOIdx],
3141                           myRaytraceParameters.NbTilesX,
3142                           myRaytraceParameters.NbTilesY,
3143                           myAccumFrames > 0);
3144   }
3145
3146   unbindRaytraceTextures (theGlContext);
3147
3148   theGlContext->BindProgram (NULL);
3149
3150   return aResult;
3151 }
3152
3153 // =======================================================================
3154 // function : raytrace
3155 // purpose  : Redraws the window using OpenGL/GLSL ray-tracing
3156 // =======================================================================
3157 Standard_Boolean OpenGl_View::raytrace (const Standard_Integer        theSizeX,
3158                                         const Standard_Integer        theSizeY,
3159                                         Graphic3d_Camera::Projection  theProjection,
3160                                         OpenGl_FrameBuffer*           theReadDrawFbo,
3161                                         const Handle(OpenGl_Context)& theGlContext)
3162 {
3163   if (!initRaytraceResources (theGlContext))
3164   {
3165     return Standard_False;
3166   }
3167
3168   if (!updateRaytraceBuffers (theSizeX, theSizeY, theGlContext))
3169   {
3170     return Standard_False;
3171   }
3172
3173   OpenGl_Mat4 aLightSourceMatrix;
3174
3175   // Get inversed model-view matrix for transforming lights
3176   myCamera->OrientationMatrixF().Inverted (aLightSourceMatrix);
3177
3178   if (!updateRaytraceLightSources (aLightSourceMatrix, theGlContext))
3179   {
3180     return Standard_False;
3181   }
3182
3183   // Generate image using Whitted-style ray-tracing or path tracing
3184   if (myIsRaytraceDataValid)
3185   {
3186     myRaytraceScreenQuad.BindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3187
3188     if (!myRaytraceGeometry.AcquireTextures (theGlContext))
3189     {
3190       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3191         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to acquire OpenGL image textures");
3192     }
3193
3194     glDisable (GL_BLEND);
3195
3196     const Standard_Boolean aResult = runRaytraceShaders (theSizeX,
3197                                                          theSizeY,
3198                                                          theProjection,
3199                                                          theReadDrawFbo,
3200                                                          theGlContext);
3201
3202     if (!aResult)
3203     {
3204       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3205         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to execute ray-tracing shaders");
3206     }
3207
3208     if (!myRaytraceGeometry.ReleaseTextures (theGlContext))
3209     {
3210       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3211         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to release OpenGL image textures");
3212     }
3213
3214     myRaytraceScreenQuad.UnbindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3215   }
3216
3217   return Standard_True;
3218 }