0030483: Visualization, Path Tracing - make Tile Size configurable
[occt.git] / src / OpenGl / OpenGl_View_Raytrace.cxx
1 // Created on: 2015-02-20
2 // Created by: Denis BOGOLEPOV
3 // Copyright (c) 2015 OPEN CASCADE SAS
4 //
5 // This file is part of Open CASCADE Technology software library.
6 //
7 // This library is free software; you can redistribute it and/or modify it under
8 // the terms of the GNU Lesser General Public License version 2.1 as published
9 // by the Free Software Foundation, with special exception defined in the file
10 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
11 // distribution for complete text of the license and disclaimer of any warranty.
12 //
13 // Alternatively, this file may be used under the terms of Open CASCADE
14 // commercial license or contractual agreement.
15
16 #include <OpenGl_View.hxx>
17
18 #include <Graphic3d_TextureParams.hxx>
19 #include <OpenGl_PrimitiveArray.hxx>
20 #include <OpenGl_VertexBuffer.hxx>
21 #include <OpenGl_GlCore44.hxx>
22 #include <OSD_Protection.hxx>
23 #include <OSD_File.hxx>
24
25 #include "../Shaders/Shaders_RaytraceBase_vs.pxx"
26 #include "../Shaders/Shaders_RaytraceBase_fs.pxx"
27 #include "../Shaders/Shaders_PathtraceBase_fs.pxx"
28 #include "../Shaders/Shaders_RaytraceRender_fs.pxx"
29 #include "../Shaders/Shaders_RaytraceSmooth_fs.pxx"
30 #include "../Shaders/Shaders_Display_fs.pxx"
31
32 using namespace OpenGl_Raytrace;
33
34 //! Use this macro to output ray-tracing debug info
35 // #define RAY_TRACE_PRINT_INFO
36
37 #ifdef RAY_TRACE_PRINT_INFO
38   #include <OSD_Timer.hxx>
39 #endif
40
41 namespace
42 {
43   static const OpenGl_Vec4 THE_WHITE_COLOR (1.0f, 1.0f, 1.0f, 1.0f);
44   static const OpenGl_Vec4 THE_BLACK_COLOR (0.0f, 0.0f, 0.0f, 1.0f);
45 }
46
47 namespace
48 {
49   //! Defines OpenGL texture samplers.
50   static const Graphic3d_TextureUnit OpenGl_RT_EnvironmentMapTexture = Graphic3d_TextureUnit_0;
51
52   static const Graphic3d_TextureUnit OpenGl_RT_SceneNodeInfoTexture  = Graphic3d_TextureUnit_1;
53   static const Graphic3d_TextureUnit OpenGl_RT_SceneMinPointTexture  = Graphic3d_TextureUnit_2;
54   static const Graphic3d_TextureUnit OpenGl_RT_SceneMaxPointTexture  = Graphic3d_TextureUnit_3;
55   static const Graphic3d_TextureUnit OpenGl_RT_SceneTransformTexture = Graphic3d_TextureUnit_4;
56
57   static const Graphic3d_TextureUnit OpenGl_RT_GeometryVertexTexture = Graphic3d_TextureUnit_5;
58   static const Graphic3d_TextureUnit OpenGl_RT_GeometryNormalTexture = Graphic3d_TextureUnit_6;
59   static const Graphic3d_TextureUnit OpenGl_RT_GeometryTexCrdTexture = Graphic3d_TextureUnit_7;
60   static const Graphic3d_TextureUnit OpenGl_RT_GeometryTriangTexture = Graphic3d_TextureUnit_8;
61
62   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceMaterialTexture = Graphic3d_TextureUnit_9;
63   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceLightSrcTexture = Graphic3d_TextureUnit_10;
64
65   static const Graphic3d_TextureUnit OpenGl_RT_FsaaInputTexture = Graphic3d_TextureUnit_11;
66   static const Graphic3d_TextureUnit OpenGl_RT_PrevAccumTexture = Graphic3d_TextureUnit_12;
67
68   static const Graphic3d_TextureUnit OpenGl_RT_RaytraceDepthTexture = Graphic3d_TextureUnit_13;
69 }
70
71 // =======================================================================
72 // function : updateRaytraceGeometry
73 // purpose  : Updates 3D scene geometry for ray-tracing
74 // =======================================================================
75 Standard_Boolean OpenGl_View::updateRaytraceGeometry (const RaytraceUpdateMode      theMode,
76                                                       const Standard_Integer        theViewId,
77                                                       const Handle(OpenGl_Context)& theGlContext)
78 {
79   // In 'check' mode (OpenGl_GUM_CHECK) the scene geometry is analyzed for
80   // modifications. This is light-weight procedure performed on each frame
81   if (theMode == OpenGl_GUM_CHECK)
82   {
83     if (myRaytraceLayerListState != myZLayers.ModificationStateOfRaytracable())
84     {
85       return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
86     }
87   }
88   else if (theMode == OpenGl_GUM_PREPARE)
89   {
90     myRaytraceGeometry.ClearMaterials();
91
92     myArrayToTrianglesMap.clear();
93
94     myIsRaytraceDataValid = Standard_False;
95   }
96
97   // The set of processed structures (reflected to ray-tracing)
98   // This set is used to remove out-of-date records from the
99   // hash map of structures
100   std::set<const OpenGl_Structure*> anElements;
101
102   // Set to store all currently visible OpenGL primitive arrays
103   // applicable for ray-tracing
104   std::set<Standard_Size> anArrayIDs;
105
106   // Set to store all non-raytracable elements allowing tracking
107   // of changes in OpenGL scene (only for path tracing)
108   std::set<Standard_Integer> aNonRaytraceIDs;
109
110   const OpenGl_Layer& aLayer = myZLayers.Layer (Graphic3d_ZLayerId_Default);
111
112   if (aLayer.NbStructures() != 0)
113   {
114     const OpenGl_ArrayOfIndexedMapOfStructure& aStructArray = aLayer.ArrayOfStructures();
115
116     for (Standard_Integer anIndex = 0; anIndex < aStructArray.Length(); ++anIndex)
117     {
118       for (OpenGl_IndexedMapOfStructure::Iterator aStructIt (aStructArray (anIndex)); aStructIt.More(); aStructIt.Next())
119       {
120         const OpenGl_Structure* aStructure = aStructIt.Value();
121
122         if (theMode == OpenGl_GUM_CHECK)
123         {
124           if (toUpdateStructure (aStructure))
125           {
126             return updateRaytraceGeometry (OpenGl_GUM_PREPARE, theViewId, theGlContext);
127           }
128           else if (aStructure->IsVisible() && myRaytraceParameters.GlobalIllumination)
129           {
130             aNonRaytraceIDs.insert (aStructure->highlight ? aStructure->Id : -aStructure->Id);
131           }
132         }
133         else if (theMode == OpenGl_GUM_PREPARE)
134         {
135           if (!aStructure->IsRaytracable() || !aStructure->IsVisible())
136           {
137             continue;
138           }
139           else if (!aStructure->ViewAffinity.IsNull() && !aStructure->ViewAffinity->IsVisible (theViewId))
140           {
141             continue;
142           }
143
144           for (OpenGl_Structure::GroupIterator aGroupIter (aStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
145           {
146             // Extract OpenGL elements from the group (primitives arrays)
147             for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
148             {
149               OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
150
151               if (aPrimArray != NULL)
152               {
153                 anArrayIDs.insert (aPrimArray->GetUID());
154               }
155             }
156           }
157         }
158         else if (theMode == OpenGl_GUM_REBUILD)
159         {
160           if (!aStructure->IsRaytracable())
161           {
162             continue;
163           }
164           else if (addRaytraceStructure (aStructure, theGlContext))
165           {
166             anElements.insert (aStructure); // structure was processed
167           }
168         }
169       }
170     }
171   }
172
173   if (theMode == OpenGl_GUM_PREPARE)
174   {
175     BVH_ObjectSet<Standard_ShortReal, 3>::BVH_ObjectList anUnchangedObjects;
176
177     // Filter out unchanged objects so only their transformations and materials
178     // will be updated (and newly added objects will be processed from scratch)
179     for (Standard_Integer anObjIdx = 0; anObjIdx < myRaytraceGeometry.Size(); ++anObjIdx)
180     {
181       OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
182         myRaytraceGeometry.Objects().ChangeValue (anObjIdx).operator->());
183
184       if (aTriangleSet == NULL)
185       {
186         continue;
187       }
188
189       if (anArrayIDs.find (aTriangleSet->AssociatedPArrayID()) != anArrayIDs.end())
190       {
191         anUnchangedObjects.Append (myRaytraceGeometry.Objects().Value (anObjIdx));
192
193         myArrayToTrianglesMap[aTriangleSet->AssociatedPArrayID()] = aTriangleSet;
194       }
195     }
196
197     myRaytraceGeometry.Objects() = anUnchangedObjects;
198
199     return updateRaytraceGeometry (OpenGl_GUM_REBUILD, theViewId, theGlContext);
200   }
201   else if (theMode == OpenGl_GUM_REBUILD)
202   {
203     // Actualize the hash map of structures - remove out-of-date records
204     std::map<const OpenGl_Structure*, StructState>::iterator anIter = myStructureStates.begin();
205
206     while (anIter != myStructureStates.end())
207     {
208       if (anElements.find (anIter->first) == anElements.end())
209       {
210         myStructureStates.erase (anIter++);
211       }
212       else
213       {
214         ++anIter;
215       }
216     }
217
218     // Actualize OpenGL layer list state
219     myRaytraceLayerListState = myZLayers.ModificationStateOfRaytracable();
220
221     // Rebuild two-level acceleration structure
222     myRaytraceGeometry.ProcessAcceleration();
223
224     myRaytraceSceneRadius = 2.f /* scale factor */ * std::max (
225       myRaytraceGeometry.Box().CornerMin().cwiseAbs().maxComp(),
226       myRaytraceGeometry.Box().CornerMax().cwiseAbs().maxComp());
227
228     const BVH_Vec3f aSize = myRaytraceGeometry.Box().Size();
229
230     myRaytraceSceneEpsilon = Max (1.0e-6f, 1.0e-4f * aSize.Modulus());
231
232     return uploadRaytraceData (theGlContext);
233   }
234
235   if (myRaytraceParameters.GlobalIllumination)
236   {
237     Standard_Boolean toRestart =
238       aNonRaytraceIDs.size() != myNonRaytraceStructureIDs.size();
239
240     for (std::set<Standard_Integer>::iterator anID = aNonRaytraceIDs.begin(); anID != aNonRaytraceIDs.end() && !toRestart; ++anID)
241     {
242       if (myNonRaytraceStructureIDs.find (*anID) == myNonRaytraceStructureIDs.end())
243       {
244         toRestart = Standard_True;
245       }
246     }
247
248     if (toRestart)
249     {
250       myAccumFrames = 0;
251     }
252
253     myNonRaytraceStructureIDs = aNonRaytraceIDs;
254   }
255
256   return Standard_True;
257 }
258
259 // =======================================================================
260 // function : toUpdateStructure
261 // purpose  : Checks to see if the structure is modified
262 // =======================================================================
263 Standard_Boolean OpenGl_View::toUpdateStructure (const OpenGl_Structure* theStructure)
264 {
265   if (!theStructure->IsRaytracable())
266   {
267     if (theStructure->ModificationState() > 0)
268     {
269       theStructure->ResetModificationState();
270
271       return Standard_True; // ray-trace element was removed - need to rebuild
272     }
273
274     return Standard_False; // did not contain ray-trace elements
275   }
276
277   std::map<const OpenGl_Structure*, StructState>::iterator aStructState = myStructureStates.find (theStructure);
278
279   if (aStructState == myStructureStates.end() || aStructState->second.StructureState != theStructure->ModificationState())
280   {
281     return Standard_True;
282   }
283   else if (theStructure->InstancedStructure() != NULL)
284   {
285     return aStructState->second.InstancedState != theStructure->InstancedStructure()->ModificationState();
286   }
287
288   return Standard_False;
289 }
290
291 // =======================================================================
292 // function : buildTextureTransform
293 // purpose  : Constructs texture transformation matrix
294 // =======================================================================
295 void buildTextureTransform (const Handle(Graphic3d_TextureParams)& theParams, BVH_Mat4f& theMatrix)
296 {
297   theMatrix.InitIdentity();
298   if (theParams.IsNull())
299   {
300     return;
301   }
302
303   // Apply scaling
304   const Graphic3d_Vec2& aScale = theParams->Scale();
305
306   theMatrix.ChangeValue (0, 0) *= aScale.x();
307   theMatrix.ChangeValue (1, 0) *= aScale.x();
308   theMatrix.ChangeValue (2, 0) *= aScale.x();
309   theMatrix.ChangeValue (3, 0) *= aScale.x();
310
311   theMatrix.ChangeValue (0, 1) *= aScale.y();
312   theMatrix.ChangeValue (1, 1) *= aScale.y();
313   theMatrix.ChangeValue (2, 1) *= aScale.y();
314   theMatrix.ChangeValue (3, 1) *= aScale.y();
315
316   // Apply translation
317   const Graphic3d_Vec2 aTrans = -theParams->Translation();
318
319   theMatrix.ChangeValue (0, 3) = theMatrix.GetValue (0, 0) * aTrans.x() +
320                                  theMatrix.GetValue (0, 1) * aTrans.y();
321
322   theMatrix.ChangeValue (1, 3) = theMatrix.GetValue (1, 0) * aTrans.x() +
323                                  theMatrix.GetValue (1, 1) * aTrans.y();
324
325   theMatrix.ChangeValue (2, 3) = theMatrix.GetValue (2, 0) * aTrans.x() +
326                                  theMatrix.GetValue (2, 1) * aTrans.y();
327
328   // Apply rotation
329   const Standard_ShortReal aSin = std::sin (
330     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
331   const Standard_ShortReal aCos = std::cos (
332     -theParams->Rotation() * static_cast<Standard_ShortReal> (M_PI / 180.0));
333
334   BVH_Mat4f aRotationMat;
335   aRotationMat.SetValue (0, 0,  aCos);
336   aRotationMat.SetValue (1, 1,  aCos);
337   aRotationMat.SetValue (0, 1, -aSin);
338   aRotationMat.SetValue (1, 0,  aSin);
339
340   theMatrix = theMatrix * aRotationMat;
341 }
342
343 // =======================================================================
344 // function : convertMaterial
345 // purpose  : Creates ray-tracing material properties
346 // =======================================================================
347 OpenGl_RaytraceMaterial OpenGl_View::convertMaterial (const OpenGl_AspectFace*      theAspect,
348                                                       const Handle(OpenGl_Context)& theGlContext)
349 {
350   OpenGl_RaytraceMaterial theMaterial;
351
352   const Graphic3d_MaterialAspect& aSrcMat = theAspect->Aspect()->FrontMaterial();
353   const OpenGl_Vec3& aMatCol  = theAspect->Aspect()->InteriorColor();
354   const bool         isPhysic = aSrcMat.MaterialType (Graphic3d_MATERIAL_PHYSIC);
355   const float        aShine   = 128.0f * float(aSrcMat.Shininess());
356
357   // ambient component
358   if (aSrcMat.ReflectionMode (Graphic3d_TOR_AMBIENT))
359   {
360     const OpenGl_Vec3& aSrcAmb = isPhysic ? aSrcMat.AmbientColor() : aMatCol;
361     theMaterial.Ambient = BVH_Vec4f (aSrcAmb * (float )aSrcMat.Ambient(),  1.0f);
362   }
363   else
364   {
365     theMaterial.Ambient = THE_BLACK_COLOR;
366   }
367
368   // diffusion component
369   if (aSrcMat.ReflectionMode (Graphic3d_TOR_DIFFUSE))
370   {
371     const OpenGl_Vec3& aSrcDif = isPhysic ? aSrcMat.DiffuseColor() : aMatCol;
372     theMaterial.Diffuse = BVH_Vec4f (aSrcDif * (float )aSrcMat.Diffuse(), -1.0f); // -1 is no texture
373   }
374   else
375   {
376     theMaterial.Diffuse = BVH_Vec4f (THE_BLACK_COLOR.rgb(), -1.0f);
377   }
378
379   // specular component
380   if (aSrcMat.ReflectionMode (Graphic3d_TOR_SPECULAR))
381   {
382     const OpenGl_Vec3& aSrcSpe  = aSrcMat.SpecularColor();
383     const OpenGl_Vec3& aSrcSpe2 = isPhysic ? aSrcSpe : THE_WHITE_COLOR.rgb();
384     theMaterial.Specular = BVH_Vec4f (aSrcSpe2 * (float )aSrcMat.Specular(), aShine);
385
386     const Standard_ShortReal aMaxRefl = Max (theMaterial.Diffuse.x() + theMaterial.Specular.x(),
387                                         Max (theMaterial.Diffuse.y() + theMaterial.Specular.y(),
388                                              theMaterial.Diffuse.z() + theMaterial.Specular.z()));
389
390     const Standard_ShortReal aReflectionScale = 0.75f / aMaxRefl;
391
392     // ignore isPhysic here
393     theMaterial.Reflection = BVH_Vec4f (aSrcSpe * (float )aSrcMat.Specular() * aReflectionScale, 0.0f);
394   }
395   else
396   {
397     theMaterial.Specular = BVH_Vec4f (THE_BLACK_COLOR.rgb(), aShine);
398   }
399
400   // emission component
401   if (aSrcMat.ReflectionMode (Graphic3d_TOR_EMISSION))
402   {
403     const OpenGl_Vec3& aSrcEms = isPhysic ? aSrcMat.EmissiveColor() : aMatCol;
404     theMaterial.Emission = BVH_Vec4f (aSrcEms * (float )aSrcMat.Emissive(), 1.0f);
405   }
406   else
407   {
408     theMaterial.Emission = THE_BLACK_COLOR;
409   }
410
411   const float anIndex = (float )aSrcMat.RefractionIndex();
412   theMaterial.Transparency = BVH_Vec4f (aSrcMat.Alpha(), aSrcMat.Transparency(),
413                                         anIndex == 0 ? 1.0f : anIndex,
414                                         anIndex == 0 ? 1.0f : 1.0f / anIndex);
415
416   // Serialize physically-based material properties
417   const Graphic3d_BSDF& aBSDF = aSrcMat.BSDF();
418
419   theMaterial.BSDF.Kc = aBSDF.Kc;
420   theMaterial.BSDF.Ks = aBSDF.Ks;
421   theMaterial.BSDF.Kd = BVH_Vec4f (aBSDF.Kd, -1.f); // no texture
422   theMaterial.BSDF.Kt = BVH_Vec4f (aBSDF.Kt,  0.f);
423   theMaterial.BSDF.Le = BVH_Vec4f (aBSDF.Le,  0.f);
424
425   theMaterial.BSDF.Absorption = aBSDF.Absorption;
426
427   theMaterial.BSDF.FresnelCoat = aBSDF.FresnelCoat.Serialize ();
428   theMaterial.BSDF.FresnelBase = aBSDF.FresnelBase.Serialize ();
429
430   // Handle material textures
431   if (!theAspect->Aspect()->ToMapTexture())
432   {
433     return theMaterial;
434   }
435
436   const Handle(OpenGl_TextureSet)& aTextureSet = theAspect->TextureSet (theGlContext);
437   if (aTextureSet.IsNull()
438    || aTextureSet->IsEmpty()
439    || aTextureSet->First().IsNull())
440   {
441     return theMaterial;
442   }
443
444   if (theGlContext->HasRayTracingTextures())
445   {
446     const Handle(OpenGl_Texture)& aTexture = aTextureSet->First();
447     buildTextureTransform (aTexture->Sampler()->Parameters(), theMaterial.TextureTransform);
448
449     // write texture ID to diffuse w-component
450     theMaterial.Diffuse.w() = theMaterial.BSDF.Kd.w() = static_cast<Standard_ShortReal> (myRaytraceGeometry.AddTexture (aTexture));
451   }
452   else if (!myIsRaytraceWarnTextures)
453   {
454     const TCollection_ExtendedString aWarnMessage =
455       "Warning: texturing in Ray-Trace requires GL_ARB_bindless_texture extension which is missing. "
456       "Please try to update graphics card driver. At the moment textures will be ignored.";
457
458     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
459       GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_HIGH, aWarnMessage);
460
461     myIsRaytraceWarnTextures = Standard_True;
462   }
463
464   return theMaterial;
465 }
466
467 // =======================================================================
468 // function : addRaytraceStructure
469 // purpose  : Adds OpenGL structure to ray-traced scene geometry
470 // =======================================================================
471 Standard_Boolean OpenGl_View::addRaytraceStructure (const OpenGl_Structure*       theStructure,
472                                                     const Handle(OpenGl_Context)& theGlContext)
473 {
474   if (!theStructure->IsVisible())
475   {
476     myStructureStates[theStructure] = StructState (theStructure);
477
478     return Standard_True;
479   }
480
481   // Get structure material
482   OpenGl_RaytraceMaterial aDefaultMaterial;
483   Standard_Boolean aResult = addRaytraceGroups (theStructure, aDefaultMaterial, theStructure->Transformation(), theGlContext);
484
485   // Process all connected OpenGL structures
486   const OpenGl_Structure* anInstanced = theStructure->InstancedStructure();
487
488   if (anInstanced != NULL && anInstanced->IsRaytracable())
489   {
490     aResult &= addRaytraceGroups (anInstanced, aDefaultMaterial, theStructure->Transformation(), theGlContext);
491   }
492
493   myStructureStates[theStructure] = StructState (theStructure);
494
495   return aResult;
496 }
497
498 // =======================================================================
499 // function : addRaytraceGroups
500 // purpose  : Adds OpenGL groups to ray-traced scene geometry
501 // =======================================================================
502 Standard_Boolean OpenGl_View::addRaytraceGroups (const OpenGl_Structure*        theStructure,
503                                                  const OpenGl_RaytraceMaterial& theStructMat,
504                                                  const Handle(Geom_Transformation)& theTrsf,
505                                                  const Handle(OpenGl_Context)&  theGlContext)
506 {
507   OpenGl_Mat4 aMat4;
508   for (OpenGl_Structure::GroupIterator aGroupIter (theStructure->Groups()); aGroupIter.More(); aGroupIter.Next())
509   {
510     // Get group material
511     OpenGl_RaytraceMaterial aGroupMaterial;
512     if (aGroupIter.Value()->AspectFace() != NULL)
513     {
514       aGroupMaterial = convertMaterial (
515         aGroupIter.Value()->AspectFace(), theGlContext);
516     }
517
518     Standard_Integer aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
519
520     // Use group material if available, otherwise use structure material
521     myRaytraceGeometry.Materials.push_back (
522       aGroupIter.Value()->AspectFace() != NULL ? aGroupMaterial : theStructMat);
523
524     // Add OpenGL elements from group (extract primitives arrays and aspects)
525     for (const OpenGl_ElementNode* aNode = aGroupIter.Value()->FirstNode(); aNode != NULL; aNode = aNode->next)
526     {
527       OpenGl_AspectFace* anAspect = dynamic_cast<OpenGl_AspectFace*> (aNode->elem);
528
529       if (anAspect != NULL)
530       {
531         aMatID = static_cast<Standard_Integer> (myRaytraceGeometry.Materials.size());
532
533         OpenGl_RaytraceMaterial aMaterial = convertMaterial (anAspect, theGlContext);
534
535         myRaytraceGeometry.Materials.push_back (aMaterial);
536       }
537       else
538       {
539         OpenGl_PrimitiveArray* aPrimArray = dynamic_cast<OpenGl_PrimitiveArray*> (aNode->elem);
540
541         if (aPrimArray != NULL)
542         {
543           std::map<Standard_Size, OpenGl_TriangleSet*>::iterator aSetIter = myArrayToTrianglesMap.find (aPrimArray->GetUID());
544
545           if (aSetIter != myArrayToTrianglesMap.end())
546           {
547             OpenGl_TriangleSet* aSet = aSetIter->second;
548             opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
549             if (!theTrsf.IsNull())
550             {
551               theTrsf->Trsf().GetMat4 (aMat4);
552               aTransform->SetTransform (aMat4);
553             }
554
555             aSet->SetProperties (aTransform);
556             if (aSet->MaterialIndex() != OpenGl_TriangleSet::INVALID_MATERIAL && aSet->MaterialIndex() != aMatID)
557             {
558               aSet->SetMaterialIndex (aMatID);
559             }
560           }
561           else
562           {
563             if (Handle(OpenGl_TriangleSet) aSet = addRaytracePrimitiveArray (aPrimArray, aMatID, 0))
564             {
565               opencascade::handle<BVH_Transform<Standard_ShortReal, 4> > aTransform = new BVH_Transform<Standard_ShortReal, 4>();
566               if (!theTrsf.IsNull())
567               {
568                 theTrsf->Trsf().GetMat4 (aMat4);
569                 aTransform->SetTransform (aMat4);
570               }
571
572               aSet->SetProperties (aTransform);
573               myRaytraceGeometry.Objects().Append (aSet);
574             }
575           }
576         }
577       }
578     }
579   }
580
581   return Standard_True;
582 }
583
584 // =======================================================================
585 // function : addRaytracePrimitiveArray
586 // purpose  : Adds OpenGL primitive array to ray-traced scene geometry
587 // =======================================================================
588 Handle(OpenGl_TriangleSet) OpenGl_View::addRaytracePrimitiveArray (const OpenGl_PrimitiveArray* theArray,
589                                                                    const Standard_Integer       theMaterial,
590                                                                    const OpenGl_Mat4*           theTransform)
591 {
592   const Handle(Graphic3d_BoundBuffer)& aBounds   = theArray->Bounds();
593   const Handle(Graphic3d_IndexBuffer)& anIndices = theArray->Indices();
594   const Handle(Graphic3d_Buffer)&      anAttribs = theArray->Attributes();
595
596   if (theArray->DrawMode() < GL_TRIANGLES
597   #ifndef GL_ES_VERSION_2_0
598    || theArray->DrawMode() > GL_POLYGON
599   #else
600    || theArray->DrawMode() > GL_TRIANGLE_FAN
601   #endif
602    || anAttribs.IsNull())
603   {
604     return Handle(OpenGl_TriangleSet)();
605   }
606
607   OpenGl_Mat4 aNormalMatrix;
608   if (theTransform != NULL)
609   {
610     Standard_ASSERT_RETURN (theTransform->Inverted (aNormalMatrix),
611       "Error: Failed to compute normal transformation matrix", NULL);
612
613     aNormalMatrix.Transpose();
614   }
615
616   Handle(OpenGl_TriangleSet) aSet = new OpenGl_TriangleSet (theArray->GetUID(), myRaytraceBVHBuilder);
617   {
618     aSet->Vertices.reserve (anAttribs->NbElements);
619     aSet->Normals.reserve  (anAttribs->NbElements);
620     aSet->TexCrds.reserve  (anAttribs->NbElements);
621
622     const size_t aVertFrom = aSet->Vertices.size();
623
624     Standard_Integer anAttribIndex = 0;
625     Standard_Size anAttribStride = 0;
626     if (const Standard_Byte* aPosData = anAttribs->AttributeData (Graphic3d_TOA_POS, anAttribIndex, anAttribStride))
627     {
628       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
629       if (anAttrib.DataType == Graphic3d_TOD_VEC2
630        || anAttrib.DataType == Graphic3d_TOD_VEC3
631        || anAttrib.DataType == Graphic3d_TOD_VEC4)
632       {
633         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
634         {
635           const float* aCoords = reinterpret_cast<const float*> (aPosData + anAttribStride * aVertIter);
636           aSet->Vertices.push_back (BVH_Vec3f (aCoords[0], aCoords[1], anAttrib.DataType != Graphic3d_TOD_VEC2 ? aCoords[2] : 0.0f));
637         }
638       }
639     }
640     if (const Standard_Byte* aNormData = anAttribs->AttributeData (Graphic3d_TOA_NORM, anAttribIndex, anAttribStride))
641     {
642       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
643       if (anAttrib.DataType == Graphic3d_TOD_VEC3
644        || anAttrib.DataType == Graphic3d_TOD_VEC4)
645       {
646         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
647         {
648           aSet->Normals.push_back (*reinterpret_cast<const Graphic3d_Vec3*> (aNormData + anAttribStride * aVertIter));
649         }
650       }
651     }
652     if (const Standard_Byte* aTexData = anAttribs->AttributeData (Graphic3d_TOA_UV, anAttribIndex, anAttribStride))
653     {
654       const Graphic3d_Attribute& anAttrib = anAttribs->Attribute (anAttribIndex);
655       if (anAttrib.DataType == Graphic3d_TOD_VEC2)
656       {
657         for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
658         {
659           aSet->TexCrds.push_back (*reinterpret_cast<const Graphic3d_Vec2*> (aTexData + anAttribStride * aVertIter));
660         }
661       }
662     }
663
664     if (aSet->Normals.size() != aSet->Vertices.size())
665     {
666       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
667       {
668         aSet->Normals.push_back (BVH_Vec3f());
669       }
670     }
671
672     if (aSet->TexCrds.size() != aSet->Vertices.size())
673     {
674       for (Standard_Integer aVertIter = 0; aVertIter < anAttribs->NbElements; ++aVertIter)
675       {
676         aSet->TexCrds.push_back (BVH_Vec2f());
677       }
678     }
679
680     if (theTransform != NULL)
681     {
682       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Vertices.size(); ++aVertIter)
683       {
684         BVH_Vec3f& aVertex = aSet->Vertices[aVertIter];
685
686         BVH_Vec4f aTransVertex = *theTransform *
687           BVH_Vec4f (aVertex.x(), aVertex.y(), aVertex.z(), 1.f);
688
689         aVertex = BVH_Vec3f (aTransVertex.x(), aTransVertex.y(), aTransVertex.z());
690       }
691       for (size_t aVertIter = aVertFrom; aVertIter < aSet->Normals.size(); ++aVertIter)
692       {
693         BVH_Vec3f& aNormal = aSet->Normals[aVertIter];
694
695         BVH_Vec4f aTransNormal = aNormalMatrix *
696           BVH_Vec4f (aNormal.x(), aNormal.y(), aNormal.z(), 0.f);
697
698         aNormal = BVH_Vec3f (aTransNormal.x(), aTransNormal.y(), aTransNormal.z());
699       }
700     }
701
702     if (!aBounds.IsNull())
703     {
704       for (Standard_Integer aBound = 0, aBoundStart = 0; aBound < aBounds->NbBounds; ++aBound)
705       {
706         const Standard_Integer aVertNum = aBounds->Bounds[aBound];
707
708         if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, aBoundStart, *theArray))
709         {
710           aSet.Nullify();
711           return Handle(OpenGl_TriangleSet)();
712         }
713
714         aBoundStart += aVertNum;
715       }
716     }
717     else
718     {
719       const Standard_Integer aVertNum = !anIndices.IsNull() ? anIndices->NbElements : anAttribs->NbElements;
720
721       if (!addRaytraceVertexIndices (*aSet, theMaterial, aVertNum, 0, *theArray))
722       {
723         aSet.Nullify();
724         return Handle(OpenGl_TriangleSet)();
725       }
726     }
727   }
728
729   if (aSet->Size() != 0)
730   {
731     aSet->MarkDirty();
732   }
733
734   return aSet;
735 }
736
737 // =======================================================================
738 // function : addRaytraceVertexIndices
739 // purpose  : Adds vertex indices to ray-traced scene geometry
740 // =======================================================================
741 Standard_Boolean OpenGl_View::addRaytraceVertexIndices (OpenGl_TriangleSet&                  theSet,
742                                                         const Standard_Integer               theMatID,
743                                                         const Standard_Integer               theCount,
744                                                         const Standard_Integer               theOffset,
745                                                         const OpenGl_PrimitiveArray&         theArray)
746 {
747   switch (theArray.DrawMode())
748   {
749     case GL_TRIANGLES:      return addRaytraceTriangleArray        (theSet, theMatID, theCount, theOffset, theArray.Indices());
750     case GL_TRIANGLE_FAN:   return addRaytraceTriangleFanArray     (theSet, theMatID, theCount, theOffset, theArray.Indices());
751     case GL_TRIANGLE_STRIP: return addRaytraceTriangleStripArray   (theSet, theMatID, theCount, theOffset, theArray.Indices());
752   #if !defined(GL_ES_VERSION_2_0)
753     case GL_QUAD_STRIP:     return addRaytraceQuadrangleStripArray (theSet, theMatID, theCount, theOffset, theArray.Indices());
754     case GL_QUADS:          return addRaytraceQuadrangleArray      (theSet, theMatID, theCount, theOffset, theArray.Indices());
755     case GL_POLYGON:        return addRaytracePolygonArray         (theSet, theMatID, theCount, theOffset, theArray.Indices());
756   #endif
757   }
758
759   return Standard_False;
760 }
761
762 // =======================================================================
763 // function : addRaytraceTriangleArray
764 // purpose  : Adds OpenGL triangle array to ray-traced scene geometry
765 // =======================================================================
766 Standard_Boolean OpenGl_View::addRaytraceTriangleArray (OpenGl_TriangleSet&                  theSet,
767                                                         const Standard_Integer               theMatID,
768                                                         const Standard_Integer               theCount,
769                                                         const Standard_Integer               theOffset,
770                                                         const Handle(Graphic3d_IndexBuffer)& theIndices)
771 {
772   if (theCount < 3)
773   {
774     return Standard_True;
775   }
776
777   theSet.Elements.reserve (theSet.Elements.size() + theCount / 3);
778
779   if (!theIndices.IsNull())
780   {
781     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
782     {
783       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
784                                             theIndices->Index (aVert + 1),
785                                             theIndices->Index (aVert + 2),
786                                             theMatID));
787     }
788   }
789   else
790   {
791     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; aVert += 3)
792     {
793       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2, theMatID));
794     }
795   }
796
797   return Standard_True;
798 }
799
800 // =======================================================================
801 // function : addRaytraceTriangleFanArray
802 // purpose  : Adds OpenGL triangle fan array to ray-traced scene geometry
803 // =======================================================================
804 Standard_Boolean OpenGl_View::addRaytraceTriangleFanArray (OpenGl_TriangleSet&                  theSet,
805                                                            const Standard_Integer               theMatID,
806                                                            const Standard_Integer               theCount,
807                                                            const Standard_Integer               theOffset,
808                                                            const Handle(Graphic3d_IndexBuffer)& theIndices)
809 {
810   if (theCount < 3)
811   {
812     return Standard_True;
813   }
814
815   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
816
817   if (!theIndices.IsNull())
818   {
819     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
820     {
821       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
822                                             theIndices->Index (aVert + 1),
823                                             theIndices->Index (aVert + 2),
824                                             theMatID));
825     }
826   }
827   else
828   {
829     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
830     {
831       theSet.Elements.push_back (BVH_Vec4i (theOffset,
832                                             aVert + 1,
833                                             aVert + 2,
834                                             theMatID));
835     }
836   }
837
838   return Standard_True;
839 }
840
841 // =======================================================================
842 // function : addRaytraceTriangleStripArray
843 // purpose  : Adds OpenGL triangle strip array to ray-traced scene geometry
844 // =======================================================================
845 Standard_Boolean OpenGl_View::addRaytraceTriangleStripArray (OpenGl_TriangleSet&                  theSet,
846                                                              const Standard_Integer               theMatID,
847                                                              const Standard_Integer               theCount,
848                                                              const Standard_Integer               theOffset,
849                                                              const Handle(Graphic3d_IndexBuffer)& theIndices)
850 {
851   if (theCount < 3)
852   {
853     return Standard_True;
854   }
855
856   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
857
858   if (!theIndices.IsNull())
859   {
860     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
861     {
862       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + (aCW ? 1 : 0)),
863                                             theIndices->Index (aVert + (aCW ? 0 : 1)),
864                                             theIndices->Index (aVert + 2),
865                                             theMatID));
866     }
867   }
868   else
869   {
870     for (Standard_Integer aVert = theOffset, aCW = 0; aVert < theOffset + theCount - 2; ++aVert, aCW = (aCW + 1) % 2)
871     {
872       theSet.Elements.push_back (BVH_Vec4i (aVert + (aCW ? 1 : 0),
873                                             aVert + (aCW ? 0 : 1),
874                                             aVert + 2,
875                                             theMatID));
876     }
877   }
878
879   return Standard_True;
880 }
881
882 // =======================================================================
883 // function : addRaytraceQuadrangleArray
884 // purpose  : Adds OpenGL quad array to ray-traced scene geometry
885 // =======================================================================
886 Standard_Boolean OpenGl_View::addRaytraceQuadrangleArray (OpenGl_TriangleSet&                  theSet,
887                                                           const Standard_Integer               theMatID,
888                                                           const Standard_Integer               theCount,
889                                                           const Standard_Integer               theOffset,
890                                                           const Handle(Graphic3d_IndexBuffer)& theIndices)
891 {
892   if (theCount < 4)
893   {
894     return Standard_True;
895   }
896
897   theSet.Elements.reserve (theSet.Elements.size() + theCount / 2);
898
899   if (!theIndices.IsNull())
900   {
901     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
902     {
903       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
904                                             theIndices->Index (aVert + 1),
905                                             theIndices->Index (aVert + 2),
906                                             theMatID));
907       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
908                                             theIndices->Index (aVert + 2),
909                                             theIndices->Index (aVert + 3),
910                                             theMatID));
911     }
912   }
913   else
914   {
915     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 4)
916     {
917       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 1, aVert + 2,
918                                             theMatID));
919       theSet.Elements.push_back (BVH_Vec4i (aVert + 0, aVert + 2, aVert + 3,
920                                             theMatID));
921     }
922   }
923
924   return Standard_True;
925 }
926
927 // =======================================================================
928 // function : addRaytraceQuadrangleStripArray
929 // purpose  : Adds OpenGL quad strip array to ray-traced scene geometry
930 // =======================================================================
931 Standard_Boolean OpenGl_View::addRaytraceQuadrangleStripArray (OpenGl_TriangleSet&                  theSet,
932                                                                const Standard_Integer               theMatID,
933                                                                const Standard_Integer               theCount,
934                                                                const Standard_Integer               theOffset,
935                                                                const Handle(Graphic3d_IndexBuffer)& theIndices)
936 {
937   if (theCount < 4)
938   {
939     return Standard_True;
940   }
941
942   theSet.Elements.reserve (theSet.Elements.size() + 2 * theCount - 6);
943
944   if (!theIndices.IsNull())
945   {
946     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
947     {
948       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 0),
949                                             theIndices->Index (aVert + 1),
950                                             theIndices->Index (aVert + 2),
951                                             theMatID));
952
953       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (aVert + 1),
954                                             theIndices->Index (aVert + 3),
955                                             theIndices->Index (aVert + 2),
956                                             theMatID));
957     }
958   }
959   else
960   {
961     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 3; aVert += 2)
962     {
963       theSet.Elements.push_back (BVH_Vec4i (aVert + 0,
964                                             aVert + 1,
965                                             aVert + 2,
966                                             theMatID));
967
968       theSet.Elements.push_back (BVH_Vec4i (aVert + 1,
969                                             aVert + 3,
970                                             aVert + 2,
971                                             theMatID));
972     }
973   }
974
975   return Standard_True;
976 }
977
978 // =======================================================================
979 // function : addRaytracePolygonArray
980 // purpose  : Adds OpenGL polygon array to ray-traced scene geometry
981 // =======================================================================
982 Standard_Boolean OpenGl_View::addRaytracePolygonArray (OpenGl_TriangleSet&                  theSet,
983                                                        const Standard_Integer               theMatID,
984                                                        const Standard_Integer               theCount,
985                                                        const Standard_Integer               theOffset,
986                                                        const Handle(Graphic3d_IndexBuffer)& theIndices)
987 {
988   if (theCount < 3)
989   {
990     return Standard_True;
991   }
992
993   theSet.Elements.reserve (theSet.Elements.size() + theCount - 2);
994
995   if (!theIndices.IsNull())
996   {
997     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
998     {
999       theSet.Elements.push_back (BVH_Vec4i (theIndices->Index (theOffset),
1000                                             theIndices->Index (aVert + 1),
1001                                             theIndices->Index (aVert + 2),
1002                                             theMatID));
1003     }
1004   }
1005   else
1006   {
1007     for (Standard_Integer aVert = theOffset; aVert < theOffset + theCount - 2; ++aVert)
1008     {
1009       theSet.Elements.push_back (BVH_Vec4i (theOffset,
1010                                             aVert + 1,
1011                                             aVert + 2,
1012                                             theMatID));
1013     }
1014   }
1015
1016   return Standard_True;
1017 }
1018
1019 const TCollection_AsciiString OpenGl_View::ShaderSource::EMPTY_PREFIX;
1020
1021 // =======================================================================
1022 // function : Source
1023 // purpose  : Returns shader source combined with prefix
1024 // =======================================================================
1025 TCollection_AsciiString OpenGl_View::ShaderSource::Source() const
1026 {
1027   const TCollection_AsciiString aVersion = "#version 140";
1028
1029   if (myPrefix.IsEmpty())
1030   {
1031     return aVersion + "\n" + mySource;
1032   }
1033
1034   return aVersion + "\n" + myPrefix + "\n" + mySource;
1035 }
1036
1037 // =======================================================================
1038 // function : LoadFromFiles
1039 // purpose  : Loads shader source from specified files
1040 // =======================================================================
1041 Standard_Boolean OpenGl_View::ShaderSource::LoadFromFiles (const TCollection_AsciiString* theFileNames,
1042                                                            const TCollection_AsciiString& thePrefix)
1043 {
1044   myError.Clear();
1045   mySource.Clear();
1046   myPrefix = thePrefix;
1047
1048   TCollection_AsciiString aMissingFiles;
1049   for (Standard_Integer anIndex = 0; !theFileNames[anIndex].IsEmpty(); ++anIndex)
1050   {
1051     OSD_File aFile (theFileNames[anIndex]);
1052     if (aFile.Exists())
1053     {
1054       aFile.Open (OSD_ReadOnly, OSD_Protection());
1055     }
1056     if (!aFile.IsOpen())
1057     {
1058       if (!aMissingFiles.IsEmpty())
1059       {
1060         aMissingFiles += ", ";
1061       }
1062       aMissingFiles += TCollection_AsciiString("'") + theFileNames[anIndex] + "'";
1063       continue;
1064     }
1065     else if (!aMissingFiles.IsEmpty())
1066     {
1067       aFile.Close();
1068       continue;
1069     }
1070
1071     TCollection_AsciiString aSource;
1072     aFile.Read (aSource, (Standard_Integer) aFile.Size());
1073     if (!aSource.IsEmpty())
1074     {
1075       mySource += TCollection_AsciiString ("\n") + aSource;
1076     }
1077     aFile.Close();
1078   }
1079
1080   if (!aMissingFiles.IsEmpty())
1081   {
1082     myError = TCollection_AsciiString("Shader files ") + aMissingFiles + " are missing or inaccessible";
1083     return Standard_False;
1084   }
1085   return Standard_True;
1086 }
1087
1088 // =======================================================================
1089 // function : LoadFromStrings
1090 // purpose  :
1091 // =======================================================================
1092 Standard_Boolean OpenGl_View::ShaderSource::LoadFromStrings (const TCollection_AsciiString* theStrings,
1093                                                              const TCollection_AsciiString& thePrefix)
1094 {
1095   myError.Clear();
1096   mySource.Clear();
1097   myPrefix = thePrefix;
1098
1099   for (Standard_Integer anIndex = 0; !theStrings[anIndex].IsEmpty(); ++anIndex)
1100   {
1101     TCollection_AsciiString aSource = theStrings[anIndex];
1102     if (!aSource.IsEmpty())
1103     {
1104       mySource += TCollection_AsciiString ("\n") + aSource;
1105     }
1106   }
1107   return Standard_True;
1108 }
1109
1110 // =======================================================================
1111 // function : generateShaderPrefix
1112 // purpose  : Generates shader prefix based on current ray-tracing options
1113 // =======================================================================
1114 TCollection_AsciiString OpenGl_View::generateShaderPrefix (const Handle(OpenGl_Context)& theGlContext) const
1115 {
1116   TCollection_AsciiString aPrefixString =
1117     TCollection_AsciiString ("#define STACK_SIZE ") + TCollection_AsciiString (myRaytraceParameters.StackSize) + "\n" +
1118     TCollection_AsciiString ("#define NB_BOUNCES ") + TCollection_AsciiString (myRaytraceParameters.NbBounces);
1119
1120   if (myRaytraceParameters.TransparentShadows)
1121   {
1122     aPrefixString += TCollection_AsciiString ("\n#define TRANSPARENT_SHADOWS");
1123   }
1124
1125   // If OpenGL driver supports bindless textures and texturing
1126   // is actually used, activate texturing in ray-tracing mode
1127   if (myRaytraceParameters.UseBindlessTextures && theGlContext->arbTexBindless != NULL)
1128   {
1129     aPrefixString += TCollection_AsciiString ("\n#define USE_TEXTURES") +
1130       TCollection_AsciiString ("\n#define MAX_TEX_NUMBER ") + TCollection_AsciiString (OpenGl_RaytraceGeometry::MAX_TEX_NUMBER);
1131   }
1132
1133   if (myRaytraceParameters.GlobalIllumination) // path tracing activated
1134   {
1135     aPrefixString += TCollection_AsciiString ("\n#define PATH_TRACING");
1136
1137     if (myRaytraceParameters.AdaptiveScreenSampling) // adaptive screen sampling requested
1138     {
1139       // to activate the feature we need OpenGL 4.4 and GL_NV_shader_atomic_float extension
1140       if (theGlContext->IsGlGreaterEqual (4, 4) && theGlContext->CheckExtension ("GL_NV_shader_atomic_float"))
1141       {
1142         aPrefixString += TCollection_AsciiString ("\n#define ADAPTIVE_SAMPLING");
1143       }
1144     }
1145
1146     if (myRaytraceParameters.TwoSidedBsdfModels) // two-sided BSDFs requested
1147     {
1148       aPrefixString += TCollection_AsciiString ("\n#define TWO_SIDED_BXDF");
1149     }
1150
1151     switch (myRaytraceParameters.ToneMappingMethod)
1152     {
1153       case Graphic3d_ToneMappingMethod_Disabled:
1154         break;
1155       case Graphic3d_ToneMappingMethod_Filmic:
1156         aPrefixString += TCollection_AsciiString ("\n#define TONE_MAPPING_FILMIC");
1157         break;
1158     }
1159   }
1160
1161   if (myRaytraceParameters.DepthOfField)
1162   {
1163     aPrefixString += TCollection_AsciiString("\n#define DEPTH_OF_FIELD");
1164   }
1165
1166   return aPrefixString;
1167 }
1168
1169 // =======================================================================
1170 // function : safeFailBack
1171 // purpose  : Performs safe exit when shaders initialization fails
1172 // =======================================================================
1173 Standard_Boolean OpenGl_View::safeFailBack (const TCollection_ExtendedString& theMessage,
1174                                             const Handle(OpenGl_Context)&     theGlContext)
1175 {
1176   theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1177     GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, theMessage);
1178
1179   myRaytraceInitStatus = OpenGl_RT_FAIL;
1180
1181   releaseRaytraceResources (theGlContext);
1182
1183   return Standard_False;
1184 }
1185
1186 // =======================================================================
1187 // function : initShader
1188 // purpose  : Creates new shader object with specified source
1189 // =======================================================================
1190 Handle(OpenGl_ShaderObject) OpenGl_View::initShader (const GLenum                  theType,
1191                                                      const ShaderSource&           theSource,
1192                                                      const Handle(OpenGl_Context)& theGlContext)
1193 {
1194   Handle(OpenGl_ShaderObject) aShader = new OpenGl_ShaderObject (theType);
1195
1196   if (!aShader->Create (theGlContext))
1197   {
1198     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to create ") +
1199       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object";
1200
1201     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1202       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1203
1204     aShader->Release (theGlContext.operator->());
1205
1206     return Handle(OpenGl_ShaderObject)();
1207   }
1208
1209   if (!aShader->LoadSource (theGlContext, theSource.Source()))
1210   {
1211     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to set ") +
1212       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader source";
1213
1214     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1215       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1216
1217     aShader->Release (theGlContext.operator->());
1218
1219     return Handle(OpenGl_ShaderObject)();
1220   }
1221
1222   TCollection_AsciiString aBuildLog;
1223
1224   if (!aShader->Compile (theGlContext))
1225   {
1226     aShader->FetchInfoLog (theGlContext, aBuildLog);
1227
1228     const TCollection_ExtendedString aMessage = TCollection_ExtendedString ("Error: Failed to compile ") +
1229       (theType == GL_VERTEX_SHADER ? "vertex" : "fragment") + " shader object:\n" + aBuildLog;
1230
1231     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1232       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1233
1234     aShader->Release (theGlContext.operator->());
1235
1236 #ifdef RAY_TRACE_PRINT_INFO
1237     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1238 #endif
1239
1240     return Handle(OpenGl_ShaderObject)();
1241   }
1242   else if (theGlContext->caps->glslWarnings)
1243   {
1244     aShader->FetchInfoLog (theGlContext, aBuildLog);
1245
1246     if (!aBuildLog.IsEmpty() && !aBuildLog.IsEqual ("No errors.\n"))
1247     {
1248       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (theType == GL_VERTEX_SHADER ?
1249         "Vertex" : "Fragment") + " shader was compiled with following warnings:\n" + aBuildLog;
1250
1251       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1252         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1253     }
1254
1255 #ifdef RAY_TRACE_PRINT_INFO
1256     std::cout << "Shader build log:\n" << aBuildLog << "\n";
1257 #endif
1258   }
1259
1260   return aShader;
1261 }
1262
1263 // =======================================================================
1264 // function : initProgram
1265 // purpose  : Creates GLSL program from the given shader objects
1266 // =======================================================================
1267 Handle(OpenGl_ShaderProgram) OpenGl_View::initProgram (const Handle(OpenGl_Context)&      theGlContext,
1268                                                        const Handle(OpenGl_ShaderObject)& theVertShader,
1269                                                        const Handle(OpenGl_ShaderObject)& theFragShader)
1270 {
1271   Handle(OpenGl_ShaderProgram) aProgram = new OpenGl_ShaderProgram;
1272
1273   if (!aProgram->Create (theGlContext))
1274   {
1275     theVertShader->Release (theGlContext.operator->());
1276
1277     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1278       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to create shader program");
1279
1280     return Handle(OpenGl_ShaderProgram)();
1281   }
1282
1283   if (!aProgram->AttachShader (theGlContext, theVertShader)
1284    || !aProgram->AttachShader (theGlContext, theFragShader))
1285   {
1286     theVertShader->Release (theGlContext.operator->());
1287
1288     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1289       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, "Failed to attach shader objects");
1290
1291     return Handle(OpenGl_ShaderProgram)();
1292   }
1293
1294   aProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1295
1296   TCollection_AsciiString aLinkLog;
1297
1298   if (!aProgram->Link (theGlContext))
1299   {
1300     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1301
1302     const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1303       "Failed to link shader program:\n") + aLinkLog;
1304
1305     theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1306       GL_DEBUG_TYPE_ERROR, 0, GL_DEBUG_SEVERITY_HIGH, aMessage);
1307
1308     return Handle(OpenGl_ShaderProgram)();
1309   }
1310   else if (theGlContext->caps->glslWarnings)
1311   {
1312     aProgram->FetchInfoLog (theGlContext, aLinkLog);
1313     if (!aLinkLog.IsEmpty() && !aLinkLog.IsEqual ("No errors.\n"))
1314     {
1315       const TCollection_ExtendedString aMessage = TCollection_ExtendedString (
1316         "Shader program was linked with following warnings:\n") + aLinkLog;
1317
1318       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION,
1319         GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW, aMessage);
1320     }
1321   }
1322
1323   return aProgram;
1324 }
1325
1326 // =======================================================================
1327 // function : initRaytraceResources
1328 // purpose  : Initializes OpenGL/GLSL shader programs
1329 // =======================================================================
1330 Standard_Boolean OpenGl_View::initRaytraceResources (const Standard_Integer theSizeX,
1331                                                      const Standard_Integer theSizeY,
1332                                                      const Handle(OpenGl_Context)& theGlContext)
1333 {
1334   if (myRaytraceInitStatus == OpenGl_RT_FAIL)
1335   {
1336     return Standard_False;
1337   }
1338
1339   Standard_Boolean aToRebuildShaders = Standard_False;
1340
1341   if (myRenderParams.RebuildRayTracingShaders) // requires complete re-initialization
1342   {
1343     myRaytraceInitStatus = OpenGl_RT_NONE;
1344     releaseRaytraceResources (theGlContext, Standard_True);
1345     myRenderParams.RebuildRayTracingShaders = Standard_False; // clear rebuilding flag
1346   }
1347
1348   if (myRaytraceInitStatus == OpenGl_RT_INIT)
1349   {
1350     if (!myIsRaytraceDataValid)
1351     {
1352       return Standard_True;
1353     }
1354
1355     const Standard_Integer aRequiredStackSize =
1356       myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth();
1357
1358     if (myRaytraceParameters.StackSize < aRequiredStackSize)
1359     {
1360       myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1361
1362       aToRebuildShaders = Standard_True;
1363     }
1364     else
1365     {
1366       if (aRequiredStackSize < myRaytraceParameters.StackSize)
1367       {
1368         if (myRaytraceParameters.StackSize > THE_DEFAULT_STACK_SIZE)
1369         {
1370           myRaytraceParameters.StackSize = Max (aRequiredStackSize, THE_DEFAULT_STACK_SIZE);
1371           aToRebuildShaders = Standard_True;
1372         }
1373       }
1374     }
1375
1376     if (myRenderParams.RaytracingDepth             != myRaytraceParameters.NbBounces
1377      || myRenderParams.IsTransparentShadowEnabled  != myRaytraceParameters.TransparentShadows
1378      || myRenderParams.IsGlobalIlluminationEnabled != myRaytraceParameters.GlobalIllumination
1379      || myRenderParams.TwoSidedBsdfModels          != myRaytraceParameters.TwoSidedBsdfModels
1380      || myRaytraceGeometry.HasTextures()           != myRaytraceParameters.UseBindlessTextures)
1381     {
1382       myRaytraceParameters.NbBounces           = myRenderParams.RaytracingDepth;
1383       myRaytraceParameters.TransparentShadows  = myRenderParams.IsTransparentShadowEnabled;
1384       myRaytraceParameters.GlobalIllumination  = myRenderParams.IsGlobalIlluminationEnabled;
1385       myRaytraceParameters.TwoSidedBsdfModels  = myRenderParams.TwoSidedBsdfModels;
1386       myRaytraceParameters.UseBindlessTextures = myRaytraceGeometry.HasTextures();
1387       aToRebuildShaders = Standard_True;
1388     }
1389
1390     if (myRenderParams.AdaptiveScreenSampling != myRaytraceParameters.AdaptiveScreenSampling)
1391     {
1392       myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling;
1393       if (myRenderParams.AdaptiveScreenSampling) // adaptive sampling was requested
1394       {
1395         if (!theGlContext->HasRayTracingAdaptiveSampling())
1396         {
1397           // disable the feature if it is not supported
1398           myRaytraceParameters.AdaptiveScreenSampling = myRenderParams.AdaptiveScreenSampling = Standard_False;
1399           theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_PORTABILITY, 0, GL_DEBUG_SEVERITY_LOW,
1400                                      "Adaptive sampling not supported (OpenGL 4.4 or GL_NV_shader_atomic_float is missing)");
1401         }
1402       }
1403
1404       aToRebuildShaders = Standard_True;
1405     }
1406     myTileSampler.SetSize (myRenderParams, myRaytraceParameters.AdaptiveScreenSampling ? Graphic3d_Vec2i (theSizeX, theSizeY) : Graphic3d_Vec2i (0, 0));
1407
1408     const bool toEnableDof = !myCamera->IsOrthographic() && myRaytraceParameters.GlobalIllumination;
1409     if (myRaytraceParameters.DepthOfField != toEnableDof)
1410     {
1411       myRaytraceParameters.DepthOfField = toEnableDof;
1412       aToRebuildShaders = Standard_True;
1413     }
1414
1415     if (myRenderParams.ToneMappingMethod != myRaytraceParameters.ToneMappingMethod)
1416     {
1417       myRaytraceParameters.ToneMappingMethod = myRenderParams.ToneMappingMethod;
1418       aToRebuildShaders = true;
1419     }
1420
1421     if (aToRebuildShaders)
1422     {
1423       // Reject accumulated frames
1424       myAccumFrames = 0;
1425
1426       // Environment map should be updated
1427       myToUpdateEnvironmentMap = Standard_True;
1428
1429       const TCollection_AsciiString aPrefixString = generateShaderPrefix (theGlContext);
1430
1431 #ifdef RAY_TRACE_PRINT_INFO
1432       std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1433 #endif
1434
1435       myRaytraceShaderSource.SetPrefix (aPrefixString);
1436       myPostFSAAShaderSource.SetPrefix (aPrefixString);
1437       myOutImageShaderSource.SetPrefix (aPrefixString);
1438
1439       if (!myRaytraceShader->LoadAndCompile (theGlContext, myRaytraceShaderSource.Source())
1440        || !myPostFSAAShader->LoadAndCompile (theGlContext, myPostFSAAShaderSource.Source())
1441        || !myOutImageShader->LoadAndCompile (theGlContext, myOutImageShaderSource.Source()))
1442       {
1443         return safeFailBack ("Failed to compile ray-tracing fragment shaders", theGlContext);
1444       }
1445
1446       myRaytraceProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1447       myPostFSAAProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1448       myOutImageProgram->SetAttributeName (theGlContext, Graphic3d_TOA_POS, "occVertex");
1449
1450       if (!myRaytraceProgram->Link (theGlContext)
1451        || !myPostFSAAProgram->Link (theGlContext)
1452        || !myOutImageProgram->Link (theGlContext))
1453       {
1454         return safeFailBack ("Failed to initialize vertex attributes for ray-tracing program", theGlContext);
1455       }
1456     }
1457   }
1458
1459   if (myRaytraceInitStatus == OpenGl_RT_NONE)
1460   {
1461     myAccumFrames = 0; // accumulation should be restarted
1462
1463     if (!theGlContext->IsGlGreaterEqual (3, 1))
1464     {
1465       return safeFailBack ("Ray-tracing requires OpenGL 3.1 and higher", theGlContext);
1466     }
1467     else if (!theGlContext->arbTboRGB32)
1468     {
1469       return safeFailBack ("Ray-tracing requires OpenGL 4.0+ or GL_ARB_texture_buffer_object_rgb32 extension", theGlContext);
1470     }
1471     else if (!theGlContext->arbFBOBlit)
1472     {
1473       return safeFailBack ("Ray-tracing requires EXT_framebuffer_blit extension", theGlContext);
1474     }
1475
1476     myRaytraceParameters.NbBounces = myRenderParams.RaytracingDepth;
1477
1478     const TCollection_AsciiString aShaderFolder = Graphic3d_ShaderProgram::ShadersFolder();
1479     if (myIsRaytraceDataValid)
1480     {
1481       myRaytraceParameters.StackSize = Max (THE_DEFAULT_STACK_SIZE,
1482         myRaytraceGeometry.TopLevelTreeDepth() + myRaytraceGeometry.BotLevelTreeDepth());
1483     }
1484
1485     const TCollection_AsciiString aPrefixString  = generateShaderPrefix (theGlContext);
1486
1487 #ifdef RAY_TRACE_PRINT_INFO
1488     std::cout << "GLSL prefix string:" << std::endl << aPrefixString << std::endl;
1489 #endif
1490
1491     ShaderSource aBasicVertShaderSrc;
1492     {
1493       if (!aShaderFolder.IsEmpty())
1494       {
1495         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.vs", "" };
1496         if (!aBasicVertShaderSrc.LoadFromFiles (aFiles))
1497         {
1498           return safeFailBack (aBasicVertShaderSrc.ErrorDescription(), theGlContext);
1499         }
1500       }
1501       else
1502       {
1503         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_vs, "" };
1504         aBasicVertShaderSrc.LoadFromStrings (aSrcShaders);
1505       }
1506     }
1507
1508     {
1509       if (!aShaderFolder.IsEmpty())
1510       {
1511         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs",
1512                                                    aShaderFolder + "/PathtraceBase.fs",
1513                                                    aShaderFolder + "/RaytraceRender.fs",
1514                                                    "" };
1515         if (!myRaytraceShaderSource.LoadFromFiles (aFiles, aPrefixString))
1516         {
1517           return safeFailBack (myRaytraceShaderSource.ErrorDescription(), theGlContext);
1518         }
1519       }
1520       else
1521       {
1522         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs,
1523                                                         Shaders_PathtraceBase_fs,
1524                                                         Shaders_RaytraceRender_fs,
1525                                                         "" };
1526         myRaytraceShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1527       }
1528
1529       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1530       if (aBasicVertShader.IsNull())
1531       {
1532         return safeFailBack ("Failed to initialize ray-trace vertex shader", theGlContext);
1533       }
1534
1535       myRaytraceShader = initShader (GL_FRAGMENT_SHADER, myRaytraceShaderSource, theGlContext);
1536       if (myRaytraceShader.IsNull())
1537       {
1538         aBasicVertShader->Release (theGlContext.operator->());
1539         return safeFailBack ("Failed to initialize ray-trace fragment shader", theGlContext);
1540       }
1541
1542       myRaytraceProgram = initProgram (theGlContext, aBasicVertShader, myRaytraceShader);
1543       if (myRaytraceProgram.IsNull())
1544       {
1545         return safeFailBack ("Failed to initialize ray-trace shader program", theGlContext);
1546       }
1547     }
1548
1549     {
1550       if (!aShaderFolder.IsEmpty())
1551       {
1552         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/RaytraceBase.fs", aShaderFolder + "/RaytraceSmooth.fs", "" };
1553         if (!myPostFSAAShaderSource.LoadFromFiles (aFiles, aPrefixString))
1554         {
1555           return safeFailBack (myPostFSAAShaderSource.ErrorDescription(), theGlContext);
1556         }
1557       }
1558       else
1559       {
1560         const TCollection_AsciiString aSrcShaders[] = { Shaders_RaytraceBase_fs, Shaders_RaytraceSmooth_fs, "" };
1561         myPostFSAAShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1562       }
1563
1564       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1565       if (aBasicVertShader.IsNull())
1566       {
1567         return safeFailBack ("Failed to initialize FSAA vertex shader", theGlContext);
1568       }
1569
1570       myPostFSAAShader = initShader (GL_FRAGMENT_SHADER, myPostFSAAShaderSource, theGlContext);
1571       if (myPostFSAAShader.IsNull())
1572       {
1573         aBasicVertShader->Release (theGlContext.operator->());
1574         return safeFailBack ("Failed to initialize FSAA fragment shader", theGlContext);
1575       }
1576
1577       myPostFSAAProgram = initProgram (theGlContext, aBasicVertShader, myPostFSAAShader);
1578       if (myPostFSAAProgram.IsNull())
1579       {
1580         return safeFailBack ("Failed to initialize FSAA shader program", theGlContext);
1581       }
1582     }
1583
1584     {
1585       if (!aShaderFolder.IsEmpty())
1586       {
1587         const TCollection_AsciiString aFiles[] = { aShaderFolder + "/Display.fs", "" };
1588         if (!myOutImageShaderSource.LoadFromFiles (aFiles, aPrefixString))
1589         {
1590           return safeFailBack (myOutImageShaderSource.ErrorDescription(), theGlContext);
1591         }
1592       }
1593       else
1594       {
1595         const TCollection_AsciiString aSrcShaders[] = { Shaders_Display_fs, "" };
1596         myOutImageShaderSource.LoadFromStrings (aSrcShaders, aPrefixString);
1597       }
1598
1599       Handle(OpenGl_ShaderObject) aBasicVertShader = initShader (GL_VERTEX_SHADER, aBasicVertShaderSrc, theGlContext);
1600       if (aBasicVertShader.IsNull())
1601       {
1602         return safeFailBack ("Failed to set vertex shader source", theGlContext);
1603       }
1604
1605       myOutImageShader = initShader (GL_FRAGMENT_SHADER, myOutImageShaderSource, theGlContext);
1606       if (myOutImageShader.IsNull())
1607       {
1608         aBasicVertShader->Release (theGlContext.operator->());
1609         return safeFailBack ("Failed to set display fragment shader source", theGlContext);
1610       }
1611
1612       myOutImageProgram = initProgram (theGlContext, aBasicVertShader, myOutImageShader);
1613       if (myOutImageProgram.IsNull())
1614       {
1615         return safeFailBack ("Failed to initialize display shader program", theGlContext);
1616       }
1617     }
1618   }
1619
1620   if (myRaytraceInitStatus == OpenGl_RT_NONE || aToRebuildShaders)
1621   {
1622     for (Standard_Integer anIndex = 0; anIndex < 2; ++anIndex)
1623     {
1624       Handle(OpenGl_ShaderProgram)& aShaderProgram =
1625         (anIndex == 0) ? myRaytraceProgram : myPostFSAAProgram;
1626
1627       theGlContext->BindProgram (aShaderProgram);
1628
1629       aShaderProgram->SetSampler (theGlContext,
1630         "uSceneMinPointTexture", OpenGl_RT_SceneMinPointTexture);
1631       aShaderProgram->SetSampler (theGlContext,
1632         "uSceneMaxPointTexture", OpenGl_RT_SceneMaxPointTexture);
1633       aShaderProgram->SetSampler (theGlContext,
1634         "uSceneNodeInfoTexture", OpenGl_RT_SceneNodeInfoTexture);
1635       aShaderProgram->SetSampler (theGlContext,
1636         "uGeometryVertexTexture", OpenGl_RT_GeometryVertexTexture);
1637       aShaderProgram->SetSampler (theGlContext,
1638         "uGeometryNormalTexture", OpenGl_RT_GeometryNormalTexture);
1639       aShaderProgram->SetSampler (theGlContext,
1640         "uGeometryTexCrdTexture", OpenGl_RT_GeometryTexCrdTexture);
1641       aShaderProgram->SetSampler (theGlContext,
1642         "uGeometryTriangTexture", OpenGl_RT_GeometryTriangTexture);
1643       aShaderProgram->SetSampler (theGlContext, 
1644         "uSceneTransformTexture", OpenGl_RT_SceneTransformTexture);
1645       aShaderProgram->SetSampler (theGlContext,
1646         "uEnvironmentMapTexture", OpenGl_RT_EnvironmentMapTexture);
1647       aShaderProgram->SetSampler (theGlContext,
1648         "uRaytraceMaterialTexture", OpenGl_RT_RaytraceMaterialTexture);
1649       aShaderProgram->SetSampler (theGlContext,
1650         "uRaytraceLightSrcTexture", OpenGl_RT_RaytraceLightSrcTexture);
1651
1652       if (anIndex == 1)
1653       {
1654         aShaderProgram->SetSampler (theGlContext,
1655           "uFSAAInputTexture", OpenGl_RT_FsaaInputTexture);
1656       }
1657       else
1658       {
1659         aShaderProgram->SetSampler (theGlContext,
1660           "uAccumTexture", OpenGl_RT_PrevAccumTexture);
1661       }
1662
1663       myUniformLocations[anIndex][OpenGl_RT_aPosition] =
1664         aShaderProgram->GetAttributeLocation (theGlContext, "occVertex");
1665
1666       myUniformLocations[anIndex][OpenGl_RT_uOriginLB] =
1667         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLB");
1668       myUniformLocations[anIndex][OpenGl_RT_uOriginRB] =
1669         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRB");
1670       myUniformLocations[anIndex][OpenGl_RT_uOriginLT] =
1671         aShaderProgram->GetUniformLocation (theGlContext, "uOriginLT");
1672       myUniformLocations[anIndex][OpenGl_RT_uOriginRT] =
1673         aShaderProgram->GetUniformLocation (theGlContext, "uOriginRT");
1674       myUniformLocations[anIndex][OpenGl_RT_uDirectLB] =
1675         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLB");
1676       myUniformLocations[anIndex][OpenGl_RT_uDirectRB] =
1677         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRB");
1678       myUniformLocations[anIndex][OpenGl_RT_uDirectLT] =
1679         aShaderProgram->GetUniformLocation (theGlContext, "uDirectLT");
1680       myUniformLocations[anIndex][OpenGl_RT_uDirectRT] =
1681         aShaderProgram->GetUniformLocation (theGlContext, "uDirectRT");
1682       myUniformLocations[anIndex][OpenGl_RT_uViewPrMat] =
1683         aShaderProgram->GetUniformLocation (theGlContext, "uViewMat");
1684       myUniformLocations[anIndex][OpenGl_RT_uUnviewMat] =
1685         aShaderProgram->GetUniformLocation (theGlContext, "uUnviewMat");
1686
1687       myUniformLocations[anIndex][OpenGl_RT_uSceneRad] =
1688         aShaderProgram->GetUniformLocation (theGlContext, "uSceneRadius");
1689       myUniformLocations[anIndex][OpenGl_RT_uSceneEps] =
1690         aShaderProgram->GetUniformLocation (theGlContext, "uSceneEpsilon");
1691       myUniformLocations[anIndex][OpenGl_RT_uLightCount] =
1692         aShaderProgram->GetUniformLocation (theGlContext, "uLightCount");
1693       myUniformLocations[anIndex][OpenGl_RT_uLightAmbnt] =
1694         aShaderProgram->GetUniformLocation (theGlContext, "uGlobalAmbient");
1695
1696       myUniformLocations[anIndex][OpenGl_RT_uOffsetX] =
1697         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetX");
1698       myUniformLocations[anIndex][OpenGl_RT_uOffsetY] =
1699         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetY");
1700       myUniformLocations[anIndex][OpenGl_RT_uSamples] =
1701         aShaderProgram->GetUniformLocation (theGlContext, "uSamples");
1702
1703       myUniformLocations[anIndex][OpenGl_RT_uTexSamplersArray] =
1704         aShaderProgram->GetUniformLocation (theGlContext, "uTextureSamplers");
1705
1706       myUniformLocations[anIndex][OpenGl_RT_uShadowsEnabled] =
1707         aShaderProgram->GetUniformLocation (theGlContext, "uShadowsEnabled");
1708       myUniformLocations[anIndex][OpenGl_RT_uReflectEnabled] =
1709         aShaderProgram->GetUniformLocation (theGlContext, "uReflectEnabled");
1710       myUniformLocations[anIndex][OpenGl_RT_uSphereMapEnabled] =
1711         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapEnabled");
1712       myUniformLocations[anIndex][OpenGl_RT_uSphereMapForBack] =
1713         aShaderProgram->GetUniformLocation (theGlContext, "uSphereMapForBack");
1714       myUniformLocations[anIndex][OpenGl_RT_uBlockedRngEnabled] =
1715         aShaderProgram->GetUniformLocation (theGlContext, "uBlockedRngEnabled");
1716
1717       myUniformLocations[anIndex][OpenGl_RT_uWinSizeX] =
1718         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeX");
1719       myUniformLocations[anIndex][OpenGl_RT_uWinSizeY] =
1720         aShaderProgram->GetUniformLocation (theGlContext, "uWinSizeY");
1721
1722       myUniformLocations[anIndex][OpenGl_RT_uAccumSamples] =
1723         aShaderProgram->GetUniformLocation (theGlContext, "uAccumSamples");
1724       myUniformLocations[anIndex][OpenGl_RT_uFrameRndSeed] =
1725         aShaderProgram->GetUniformLocation (theGlContext, "uFrameRndSeed");
1726
1727       myUniformLocations[anIndex][OpenGl_RT_uRenderImage] =
1728         aShaderProgram->GetUniformLocation (theGlContext, "uRenderImage");
1729       myUniformLocations[anIndex][OpenGl_RT_uOffsetImage] =
1730         aShaderProgram->GetUniformLocation (theGlContext, "uOffsetImage");
1731       myUniformLocations[anIndex][OpenGl_RT_uTileSize] =
1732         aShaderProgram->GetUniformLocation (theGlContext, "uTileSize");
1733       myUniformLocations[anIndex][OpenGl_RT_uVarianceScaleFactor] =
1734         aShaderProgram->GetUniformLocation (theGlContext, "uVarianceScaleFactor");
1735
1736       myUniformLocations[anIndex][OpenGl_RT_uBackColorTop] =
1737         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorTop");
1738       myUniformLocations[anIndex][OpenGl_RT_uBackColorBot] =
1739         aShaderProgram->GetUniformLocation (theGlContext, "uBackColorBot");
1740
1741       myUniformLocations[anIndex][OpenGl_RT_uMaxRadiance] =
1742         aShaderProgram->GetUniformLocation (theGlContext, "uMaxRadiance");
1743     }
1744
1745     theGlContext->BindProgram (myOutImageProgram);
1746
1747     myOutImageProgram->SetSampler (theGlContext,
1748       "uInputTexture", OpenGl_RT_PrevAccumTexture);
1749
1750     myOutImageProgram->SetSampler (theGlContext,
1751       "uDepthTexture", OpenGl_RT_RaytraceDepthTexture);
1752
1753     theGlContext->BindProgram (NULL);
1754   }
1755
1756   if (myRaytraceInitStatus != OpenGl_RT_NONE)
1757   {
1758     return myRaytraceInitStatus == OpenGl_RT_INIT;
1759   }
1760
1761   const GLfloat aVertices[] = { -1.f, -1.f,  0.f,
1762                                 -1.f,  1.f,  0.f,
1763                                  1.f,  1.f,  0.f,
1764                                  1.f,  1.f,  0.f,
1765                                  1.f, -1.f,  0.f,
1766                                 -1.f, -1.f,  0.f };
1767
1768   myRaytraceScreenQuad.Init (theGlContext, 3, 6, aVertices);
1769
1770   myRaytraceInitStatus = OpenGl_RT_INIT; // initialized in normal way
1771
1772   return Standard_True;
1773 }
1774
1775 // =======================================================================
1776 // function : nullifyResource
1777 // purpose  : Releases OpenGL resource
1778 // =======================================================================
1779 template <class T>
1780 inline void nullifyResource (const Handle(OpenGl_Context)& theGlContext, Handle(T)& theResource)
1781 {
1782   if (!theResource.IsNull())
1783   {
1784     theResource->Release (theGlContext.operator->());
1785     theResource.Nullify();
1786   }
1787 }
1788
1789 // =======================================================================
1790 // function : releaseRaytraceResources
1791 // purpose  : Releases OpenGL/GLSL shader programs
1792 // =======================================================================
1793 void OpenGl_View::releaseRaytraceResources (const Handle(OpenGl_Context)& theGlContext, const Standard_Boolean theToRebuild)
1794 {
1795   // release shader resources
1796   nullifyResource (theGlContext, myRaytraceShader);
1797   nullifyResource (theGlContext, myPostFSAAShader);
1798
1799   nullifyResource (theGlContext, myRaytraceProgram);
1800   nullifyResource (theGlContext, myPostFSAAProgram);
1801   nullifyResource (theGlContext, myOutImageProgram);
1802
1803   if (!theToRebuild) // complete release
1804   {
1805     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1806     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1807     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1808     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1809
1810     nullifyResource (theGlContext, myRaytraceOutputTexture[0]);
1811     nullifyResource (theGlContext, myRaytraceOutputTexture[1]);
1812
1813     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[0]);
1814     nullifyResource (theGlContext, myRaytraceTileOffsetsTexture[1]);
1815     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[0]);
1816     nullifyResource (theGlContext, myRaytraceVisualErrorTexture[1]);
1817
1818     nullifyResource (theGlContext, mySceneNodeInfoTexture);
1819     nullifyResource (theGlContext, mySceneMinPointTexture);
1820     nullifyResource (theGlContext, mySceneMaxPointTexture);
1821
1822     nullifyResource (theGlContext, myGeometryVertexTexture);
1823     nullifyResource (theGlContext, myGeometryNormalTexture);
1824     nullifyResource (theGlContext, myGeometryTexCrdTexture);
1825     nullifyResource (theGlContext, myGeometryTriangTexture);
1826     nullifyResource (theGlContext, mySceneTransformTexture);
1827
1828     nullifyResource (theGlContext, myRaytraceLightSrcTexture);
1829     nullifyResource (theGlContext, myRaytraceMaterialTexture);
1830
1831     myRaytraceGeometry.ReleaseResources (theGlContext);
1832
1833     if (myRaytraceScreenQuad.IsValid ())
1834     {
1835       myRaytraceScreenQuad.Release (theGlContext.operator->());
1836     }
1837   }
1838 }
1839
1840 // =======================================================================
1841 // function : updateRaytraceBuffers
1842 // purpose  : Updates auxiliary OpenGL frame buffers.
1843 // =======================================================================
1844 Standard_Boolean OpenGl_View::updateRaytraceBuffers (const Standard_Integer        theSizeX,
1845                                                      const Standard_Integer        theSizeY,
1846                                                      const Handle(OpenGl_Context)& theGlContext)
1847 {
1848   // Auxiliary buffers are not used
1849   if (!myRaytraceParameters.GlobalIllumination && !myRenderParams.IsAntialiasingEnabled)
1850   {
1851     myRaytraceFBO1[0]->Release (theGlContext.operator->());
1852     myRaytraceFBO2[0]->Release (theGlContext.operator->());
1853     myRaytraceFBO1[1]->Release (theGlContext.operator->());
1854     myRaytraceFBO2[1]->Release (theGlContext.operator->());
1855
1856     return Standard_True;
1857   }
1858
1859   if (myRaytraceParameters.AdaptiveScreenSampling)
1860   {
1861     Graphic3d_Vec2i aMaxViewport = myTileSampler.OffsetTilesViewportMax().cwiseMax (Graphic3d_Vec2i (theSizeX, theSizeY));
1862     myRaytraceFBO1[0]->InitLazy (theGlContext, aMaxViewport.x(), aMaxViewport.y(), GL_RGBA32F, myFboDepthFormat);
1863     myRaytraceFBO2[0]->InitLazy (theGlContext, aMaxViewport.x(), aMaxViewport.y(), GL_RGBA32F, myFboDepthFormat);
1864     if (myRaytraceFBO1[1]->IsValid()) // second FBO not needed
1865     {
1866       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1867       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1868     }
1869   }
1870
1871   for (int aViewIter = 0; aViewIter < 2; ++aViewIter)
1872   {
1873     if (myRaytraceTileOffsetsTexture[aViewIter].IsNull())
1874     {
1875       myRaytraceOutputTexture[aViewIter] = new OpenGl_Texture();
1876       myRaytraceVisualErrorTexture[aViewIter] = new OpenGl_Texture();
1877       myRaytraceTileOffsetsTexture[aViewIter] = new OpenGl_Texture();
1878     }
1879
1880     if (aViewIter == 1
1881      && myCamera->ProjectionType() != Graphic3d_Camera::Projection_Stereo)
1882     {
1883       myRaytraceFBO1[1]->Release (theGlContext.operator->());
1884       myRaytraceFBO2[1]->Release (theGlContext.operator->());
1885       myRaytraceOutputTexture[1]->Release (theGlContext.operator->());
1886       myRaytraceVisualErrorTexture[1]->Release (theGlContext.operator->());
1887       myRaytraceTileOffsetsTexture[1]->Release (theGlContext.operator->());
1888       continue;
1889     }
1890
1891     if (myRaytraceParameters.AdaptiveScreenSampling)
1892     {
1893       if (myRaytraceOutputTexture[aViewIter]->SizeX() / 3 == theSizeX
1894        && myRaytraceOutputTexture[aViewIter]->SizeY() / 2 == theSizeY
1895        && myRaytraceVisualErrorTexture[aViewIter]->SizeX() == myTileSampler.NbTilesX()
1896        && myRaytraceVisualErrorTexture[aViewIter]->SizeY() == myTileSampler.NbTilesY())
1897       {
1898         continue;
1899       }
1900
1901       myAccumFrames = 0;
1902
1903       // Due to limitations of OpenGL image load-store extension
1904       // atomic operations are supported only for single-channel
1905       // images, so we define GL_R32F image. It is used as array
1906       // of 6D floating point vectors:
1907       // 0 - R color channel
1908       // 1 - G color channel
1909       // 2 - B color channel
1910       // 3 - hit time transformed into OpenGL NDC space
1911       // 4 - luminance accumulated for odd samples only
1912       myRaytraceOutputTexture[aViewIter]->InitRectangle (theGlContext, theSizeX * 3, theSizeY * 2, OpenGl_TextureFormat::Create<GLfloat, 1>());
1913
1914       // workaround for some NVIDIA drivers
1915       myRaytraceVisualErrorTexture[aViewIter]->Release (theGlContext.operator->());
1916       myRaytraceVisualErrorTexture[aViewIter]->Init (theGlContext, GL_R32I, GL_RED_INTEGER, GL_INT,
1917                                                      myTileSampler.NbTilesX(), myTileSampler.NbTilesY(), Graphic3d_TOT_2D);
1918     }
1919     else // non-adaptive mode
1920     {
1921       if (myRaytraceFBO1[aViewIter]->GetSizeX() != theSizeX
1922        || myRaytraceFBO1[aViewIter]->GetSizeY() != theSizeY)
1923       {
1924         myAccumFrames = 0; // accumulation should be restarted
1925       }
1926
1927       myRaytraceFBO1[aViewIter]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1928       myRaytraceFBO2[aViewIter]->InitLazy (theGlContext, theSizeX, theSizeY, GL_RGBA32F, myFboDepthFormat);
1929     }
1930   }
1931   return Standard_True;
1932 }
1933
1934 // =======================================================================
1935 // function : updateCamera
1936 // purpose  : Generates viewing rays for corners of screen quad
1937 // =======================================================================
1938 void OpenGl_View::updateCamera (const OpenGl_Mat4& theOrientation,
1939                                 const OpenGl_Mat4& theViewMapping,
1940                                 OpenGl_Vec3*       theOrigins,
1941                                 OpenGl_Vec3*       theDirects,
1942                                 OpenGl_Mat4&       theViewPr,
1943                                 OpenGl_Mat4&       theUnview)
1944 {
1945   // compute view-projection matrix
1946   theViewPr = theViewMapping * theOrientation;
1947
1948   // compute inverse view-projection matrix
1949   theViewPr.Inverted (theUnview);
1950
1951   Standard_Integer aOriginIndex = 0;
1952   Standard_Integer aDirectIndex = 0;
1953
1954   for (Standard_Integer aY = -1; aY <= 1; aY += 2)
1955   {
1956     for (Standard_Integer aX = -1; aX <= 1; aX += 2)
1957     {
1958       OpenGl_Vec4 aOrigin (GLfloat(aX),
1959                            GLfloat(aY),
1960                            -1.0f,
1961                            1.0f);
1962
1963       aOrigin = theUnview * aOrigin;
1964
1965       aOrigin.x() = aOrigin.x() / aOrigin.w();
1966       aOrigin.y() = aOrigin.y() / aOrigin.w();
1967       aOrigin.z() = aOrigin.z() / aOrigin.w();
1968
1969       OpenGl_Vec4 aDirect (GLfloat(aX),
1970                            GLfloat(aY),
1971                            1.0f,
1972                            1.0f);
1973
1974       aDirect = theUnview * aDirect;
1975
1976       aDirect.x() = aDirect.x() / aDirect.w();
1977       aDirect.y() = aDirect.y() / aDirect.w();
1978       aDirect.z() = aDirect.z() / aDirect.w();
1979
1980       aDirect = aDirect - aOrigin;
1981
1982       theOrigins[aOriginIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aOrigin.x()),
1983                                                 static_cast<GLfloat> (aOrigin.y()),
1984                                                 static_cast<GLfloat> (aOrigin.z()));
1985
1986       theDirects[aDirectIndex++] = OpenGl_Vec3 (static_cast<GLfloat> (aDirect.x()),
1987                                                 static_cast<GLfloat> (aDirect.y()),
1988                                                 static_cast<GLfloat> (aDirect.z()));
1989     }
1990   }
1991 }
1992
1993 // =======================================================================
1994 // function : updatePerspCameraPT
1995 // purpose  : Generates viewing rays (path tracing, perspective camera)
1996 // =======================================================================
1997 void OpenGl_View::updatePerspCameraPT (const OpenGl_Mat4&           theOrientation,
1998                                        const OpenGl_Mat4&           theViewMapping,
1999                                        Graphic3d_Camera::Projection theProjection,
2000                                        OpenGl_Mat4&                 theViewPr,
2001                                        OpenGl_Mat4&                 theUnview,
2002                                        const int                    theWinSizeX,
2003                                        const int                    theWinSizeY)
2004 {
2005   // compute view-projection matrix
2006   theViewPr = theViewMapping * theOrientation;
2007
2008   // compute inverse view-projection matrix
2009   theViewPr.Inverted(theUnview);
2010   
2011   // get camera stereo params
2012   float anIOD = myCamera->GetIODType() == Graphic3d_Camera::IODType_Relative
2013     ? static_cast<float> (myCamera->IOD() * myCamera->Distance())
2014     : static_cast<float> (myCamera->IOD());
2015
2016   float aZFocus = myCamera->ZFocusType() == Graphic3d_Camera::FocusType_Relative
2017     ? static_cast<float> (myCamera->ZFocus() * myCamera->Distance())
2018     : static_cast<float> (myCamera->ZFocus());
2019
2020   // get camera view vectors
2021   const gp_Pnt anOrig = myCamera->Eye();
2022
2023   myEyeOrig = OpenGl_Vec3 (static_cast<float> (anOrig.X()),
2024                            static_cast<float> (anOrig.Y()),
2025                            static_cast<float> (anOrig.Z()));
2026
2027   const gp_Dir aView = myCamera->Direction();
2028
2029   OpenGl_Vec3 anEyeViewMono = OpenGl_Vec3 (static_cast<float> (aView.X()),
2030                                            static_cast<float> (aView.Y()),
2031                                            static_cast<float> (aView.Z()));
2032
2033   const gp_Dir anUp = myCamera->Up();
2034
2035   myEyeVert = OpenGl_Vec3 (static_cast<float> (anUp.X()),
2036                            static_cast<float> (anUp.Y()),
2037                            static_cast<float> (anUp.Z()));
2038
2039   myEyeSide = OpenGl_Vec3::Cross (anEyeViewMono, myEyeVert);
2040
2041   const double aScaleY = tan (myCamera->FOVy() / 360 * M_PI);
2042   const double aScaleX = theWinSizeX * aScaleY / theWinSizeY;
2043  
2044   myEyeSize = OpenGl_Vec2 (static_cast<float> (aScaleX),
2045                            static_cast<float> (aScaleY));
2046
2047   if (theProjection == Graphic3d_Camera::Projection_Perspective)
2048   {
2049     myEyeView = anEyeViewMono;
2050   }
2051   else // stereo camera
2052   {
2053     // compute z-focus point
2054     OpenGl_Vec3 aZFocusPoint = myEyeOrig + anEyeViewMono * aZFocus;
2055
2056     // compute stereo camera shift
2057     float aDx = theProjection == Graphic3d_Camera::Projection_MonoRightEye ? 0.5f * anIOD : -0.5f * anIOD;
2058     myEyeOrig += myEyeSide.Normalized() * aDx;
2059
2060     // estimate new camera direction vector and correct its length
2061     myEyeView = (aZFocusPoint - myEyeOrig).Normalized();
2062     myEyeView *= 1.f / anEyeViewMono.Dot (myEyeView);
2063   }
2064 }
2065
2066 // =======================================================================
2067 // function : uploadRaytraceData
2068 // purpose  : Uploads ray-trace data to the GPU
2069 // =======================================================================
2070 Standard_Boolean OpenGl_View::uploadRaytraceData (const Handle(OpenGl_Context)& theGlContext)
2071 {
2072   if (!theGlContext->IsGlGreaterEqual (3, 1))
2073   {
2074 #ifdef RAY_TRACE_PRINT_INFO
2075     std::cout << "Error: OpenGL version is less than 3.1" << std::endl;
2076 #endif
2077     return Standard_False;
2078   }
2079
2080   myAccumFrames = 0; // accumulation should be restarted
2081
2082   /////////////////////////////////////////////////////////////////////////////
2083   // Prepare OpenGL textures
2084
2085   if (theGlContext->arbTexBindless != NULL)
2086   {
2087     // If OpenGL driver supports bindless textures we need
2088     // to get unique 64- bit handles for using on the GPU
2089     if (!myRaytraceGeometry.UpdateTextureHandles (theGlContext))
2090     {
2091 #ifdef RAY_TRACE_PRINT_INFO
2092       std::cout << "Error: Failed to get OpenGL texture handles" << std::endl;
2093 #endif
2094       return Standard_False;
2095     }
2096   }
2097
2098   /////////////////////////////////////////////////////////////////////////////
2099   // Create OpenGL BVH buffers
2100
2101   if (mySceneNodeInfoTexture.IsNull()) // create scene BVH buffers
2102   {
2103     mySceneNodeInfoTexture  = new OpenGl_TextureBufferArb;
2104     mySceneMinPointTexture  = new OpenGl_TextureBufferArb;
2105     mySceneMaxPointTexture  = new OpenGl_TextureBufferArb;
2106     mySceneTransformTexture = new OpenGl_TextureBufferArb;
2107
2108     if (!mySceneNodeInfoTexture->Create  (theGlContext)
2109      || !mySceneMinPointTexture->Create  (theGlContext)
2110      || !mySceneMaxPointTexture->Create  (theGlContext)
2111      || !mySceneTransformTexture->Create (theGlContext))
2112     {
2113 #ifdef RAY_TRACE_PRINT_INFO
2114       std::cout << "Error: Failed to create scene BVH buffers" << std::endl;
2115 #endif
2116       return Standard_False;
2117     }
2118   }
2119
2120   if (myGeometryVertexTexture.IsNull()) // create geometry buffers
2121   {
2122     myGeometryVertexTexture = new OpenGl_TextureBufferArb;
2123     myGeometryNormalTexture = new OpenGl_TextureBufferArb;
2124     myGeometryTexCrdTexture = new OpenGl_TextureBufferArb;
2125     myGeometryTriangTexture = new OpenGl_TextureBufferArb;
2126
2127     if (!myGeometryVertexTexture->Create (theGlContext)
2128      || !myGeometryNormalTexture->Create (theGlContext)
2129      || !myGeometryTexCrdTexture->Create (theGlContext)
2130      || !myGeometryTriangTexture->Create (theGlContext))
2131     {
2132 #ifdef RAY_TRACE_PRINT_INFO
2133       std::cout << "Error: Failed to create buffers for triangulation data" << std::endl;
2134 #endif
2135       return Standard_False;
2136     }
2137   }
2138
2139   if (myRaytraceMaterialTexture.IsNull()) // create material buffer
2140   {
2141     myRaytraceMaterialTexture = new OpenGl_TextureBufferArb;
2142
2143     if (!myRaytraceMaterialTexture->Create (theGlContext))
2144     {
2145 #ifdef RAY_TRACE_PRINT_INFO
2146       std::cout << "Error: Failed to create buffers for material data" << std::endl;
2147 #endif
2148       return Standard_False;
2149     }
2150   }
2151   
2152   /////////////////////////////////////////////////////////////////////////////
2153   // Write transform buffer
2154
2155   BVH_Mat4f* aNodeTransforms = new BVH_Mat4f[myRaytraceGeometry.Size()];
2156
2157   bool aResult = true;
2158
2159   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2160   {
2161     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2162       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2163
2164     const BVH_Transform<Standard_ShortReal, 4>* aTransform = dynamic_cast<const BVH_Transform<Standard_ShortReal, 4>* > (aTriangleSet->Properties().get());
2165     Standard_ASSERT_RETURN (aTransform != NULL,
2166       "OpenGl_TriangleSet does not contain transform", Standard_False);
2167
2168     aNodeTransforms[anElemIndex] = aTransform->Inversed();
2169   }
2170
2171   aResult &= mySceneTransformTexture->Init (theGlContext, 4,
2172     myRaytraceGeometry.Size() * 4, reinterpret_cast<const GLfloat*> (aNodeTransforms));
2173
2174   delete [] aNodeTransforms;
2175
2176   /////////////////////////////////////////////////////////////////////////////
2177   // Write geometry and bottom-level BVH buffers
2178
2179   Standard_Size aTotalVerticesNb = 0;
2180   Standard_Size aTotalElementsNb = 0;
2181   Standard_Size aTotalBVHNodesNb = 0;
2182
2183   for (Standard_Integer anElemIndex = 0; anElemIndex < myRaytraceGeometry.Size(); ++anElemIndex)
2184   {
2185     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (
2186       myRaytraceGeometry.Objects().ChangeValue (anElemIndex).operator->());
2187
2188     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2189       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2190
2191     aTotalVerticesNb += aTriangleSet->Vertices.size();
2192     aTotalElementsNb += aTriangleSet->Elements.size();
2193
2194     Standard_ASSERT_RETURN (!aTriangleSet->QuadBVH().IsNull(),
2195       "Error: Failed to get bottom-level BVH of OpenGL element", Standard_False);
2196
2197     aTotalBVHNodesNb += aTriangleSet->QuadBVH()->NodeInfoBuffer().size();
2198   }
2199
2200   aTotalBVHNodesNb += myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size();
2201
2202   if (aTotalBVHNodesNb != 0)
2203   {
2204     aResult &= mySceneNodeInfoTexture->Init (
2205       theGlContext, 4, GLsizei (aTotalBVHNodesNb), static_cast<const GLuint*>  (NULL));
2206     aResult &= mySceneMinPointTexture->Init (
2207       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2208     aResult &= mySceneMaxPointTexture->Init (
2209       theGlContext, 3, GLsizei (aTotalBVHNodesNb), static_cast<const GLfloat*> (NULL));
2210   }
2211
2212   if (!aResult)
2213   {
2214 #ifdef RAY_TRACE_PRINT_INFO
2215     std::cout << "Error: Failed to upload buffers for bottom-level scene BVH" << std::endl;
2216 #endif
2217     return Standard_False;
2218   }
2219
2220   if (aTotalElementsNb != 0)
2221   {
2222     aResult &= myGeometryTriangTexture->Init (
2223       theGlContext, 4, GLsizei (aTotalElementsNb), static_cast<const GLuint*> (NULL));
2224   }
2225
2226   if (aTotalVerticesNb != 0)
2227   {
2228     aResult &= myGeometryVertexTexture->Init (
2229       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2230     aResult &= myGeometryNormalTexture->Init (
2231       theGlContext, 3, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2232     aResult &= myGeometryTexCrdTexture->Init (
2233       theGlContext, 2, GLsizei (aTotalVerticesNb), static_cast<const GLfloat*> (NULL));
2234   }
2235
2236   if (!aResult)
2237   {
2238 #ifdef RAY_TRACE_PRINT_INFO
2239     std::cout << "Error: Failed to upload buffers for scene geometry" << std::endl;
2240 #endif
2241     return Standard_False;
2242   }
2243
2244   const QuadBvhHandle& aBVH = myRaytraceGeometry.QuadBVH();
2245
2246   if (aBVH->Length() > 0)
2247   {
2248     aResult &= mySceneNodeInfoTexture->SubData (theGlContext, 0, aBVH->Length(),
2249       reinterpret_cast<const GLuint*> (&aBVH->NodeInfoBuffer().front()));
2250     aResult &= mySceneMinPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2251       reinterpret_cast<const GLfloat*> (&aBVH->MinPointBuffer().front()));
2252     aResult &= mySceneMaxPointTexture->SubData (theGlContext, 0, aBVH->Length(),
2253       reinterpret_cast<const GLfloat*> (&aBVH->MaxPointBuffer().front()));
2254   }
2255
2256   for (Standard_Integer aNodeIdx = 0; aNodeIdx < aBVH->Length(); ++aNodeIdx)
2257   {
2258     if (!aBVH->IsOuter (aNodeIdx))
2259       continue;
2260
2261     OpenGl_TriangleSet* aTriangleSet = myRaytraceGeometry.TriangleSet (aNodeIdx);
2262
2263     Standard_ASSERT_RETURN (aTriangleSet != NULL,
2264       "Error: Failed to get triangulation of OpenGL element", Standard_False);
2265
2266     Standard_Integer aBVHOffset = myRaytraceGeometry.AccelerationOffset (aNodeIdx);
2267
2268     Standard_ASSERT_RETURN (aBVHOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2269       "Error: Failed to get offset for bottom-level BVH", Standard_False);
2270
2271     const Standard_Integer aBvhBuffersSize = aTriangleSet->QuadBVH()->Length();
2272
2273     if (aBvhBuffersSize != 0)
2274     {
2275       aResult &= mySceneNodeInfoTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2276         reinterpret_cast<const GLuint*> (&aTriangleSet->QuadBVH()->NodeInfoBuffer().front()));
2277       aResult &= mySceneMinPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2278         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MinPointBuffer().front()));
2279       aResult &= mySceneMaxPointTexture->SubData (theGlContext, aBVHOffset, aBvhBuffersSize,
2280         reinterpret_cast<const GLfloat*> (&aTriangleSet->QuadBVH()->MaxPointBuffer().front()));
2281
2282       if (!aResult)
2283       {
2284 #ifdef RAY_TRACE_PRINT_INFO
2285         std::cout << "Error: Failed to upload buffers for bottom-level scene BVHs" << std::endl;
2286 #endif
2287         return Standard_False;
2288       }
2289     }
2290
2291     const Standard_Integer aVerticesOffset = myRaytraceGeometry.VerticesOffset (aNodeIdx);
2292
2293     Standard_ASSERT_RETURN (aVerticesOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2294       "Error: Failed to get offset for triangulation vertices of OpenGL element", Standard_False);
2295
2296     if (!aTriangleSet->Vertices.empty())
2297     {
2298       aResult &= myGeometryNormalTexture->SubData (theGlContext, aVerticesOffset,
2299         GLsizei (aTriangleSet->Normals.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Normals.front()));
2300       aResult &= myGeometryTexCrdTexture->SubData (theGlContext, aVerticesOffset,
2301         GLsizei (aTriangleSet->TexCrds.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->TexCrds.front()));
2302       aResult &= myGeometryVertexTexture->SubData (theGlContext, aVerticesOffset,
2303         GLsizei (aTriangleSet->Vertices.size()), reinterpret_cast<const GLfloat*> (&aTriangleSet->Vertices.front()));
2304     }
2305
2306     const Standard_Integer anElementsOffset = myRaytraceGeometry.ElementsOffset (aNodeIdx);
2307
2308     Standard_ASSERT_RETURN (anElementsOffset != OpenGl_RaytraceGeometry::INVALID_OFFSET,
2309       "Error: Failed to get offset for triangulation elements of OpenGL element", Standard_False);
2310
2311     if (!aTriangleSet->Elements.empty())
2312     {
2313       aResult &= myGeometryTriangTexture->SubData (theGlContext, anElementsOffset, GLsizei (aTriangleSet->Elements.size()),
2314                                                    reinterpret_cast<const GLuint*> (&aTriangleSet->Elements.front()));
2315     }
2316
2317     if (!aResult)
2318     {
2319 #ifdef RAY_TRACE_PRINT_INFO
2320       std::cout << "Error: Failed to upload triangulation buffers for OpenGL element" << std::endl;
2321 #endif
2322       return Standard_False;
2323     }
2324   }
2325
2326   /////////////////////////////////////////////////////////////////////////////
2327   // Write material buffer
2328
2329   if (myRaytraceGeometry.Materials.size() != 0)
2330   {
2331     aResult &= myRaytraceMaterialTexture->Init (theGlContext, 4,
2332       GLsizei (myRaytraceGeometry.Materials.size() * 19), myRaytraceGeometry.Materials.front().Packed());
2333
2334     if (!aResult)
2335     {
2336 #ifdef RAY_TRACE_PRINT_INFO
2337       std::cout << "Error: Failed to upload material buffer" << std::endl;
2338 #endif
2339       return Standard_False;
2340     }
2341   }
2342
2343   myIsRaytraceDataValid = myRaytraceGeometry.Objects().Size() != 0;
2344
2345 #ifdef RAY_TRACE_PRINT_INFO
2346
2347   Standard_ShortReal aMemTrgUsed = 0.f;
2348   Standard_ShortReal aMemBvhUsed = 0.f;
2349
2350   for (Standard_Integer anElemIdx = 0; anElemIdx < myRaytraceGeometry.Size(); ++anElemIdx)
2351   {
2352     OpenGl_TriangleSet* aTriangleSet = dynamic_cast<OpenGl_TriangleSet*> (myRaytraceGeometry.Objects()(anElemIdx).get());
2353
2354     aMemTrgUsed += static_cast<Standard_ShortReal> (
2355       aTriangleSet->Vertices.size() * sizeof (BVH_Vec3f));
2356     aMemTrgUsed += static_cast<Standard_ShortReal> (
2357       aTriangleSet->Normals.size() * sizeof (BVH_Vec3f));
2358     aMemTrgUsed += static_cast<Standard_ShortReal> (
2359       aTriangleSet->TexCrds.size() * sizeof (BVH_Vec2f));
2360     aMemTrgUsed += static_cast<Standard_ShortReal> (
2361       aTriangleSet->Elements.size() * sizeof (BVH_Vec4i));
2362
2363     aMemBvhUsed += static_cast<Standard_ShortReal> (
2364       aTriangleSet->QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2365     aMemBvhUsed += static_cast<Standard_ShortReal> (
2366       aTriangleSet->QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2367     aMemBvhUsed += static_cast<Standard_ShortReal> (
2368       aTriangleSet->QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2369   }
2370
2371   aMemBvhUsed += static_cast<Standard_ShortReal> (
2372     myRaytraceGeometry.QuadBVH()->NodeInfoBuffer().size() * sizeof (BVH_Vec4i));
2373   aMemBvhUsed += static_cast<Standard_ShortReal> (
2374     myRaytraceGeometry.QuadBVH()->MinPointBuffer().size() * sizeof (BVH_Vec3f));
2375   aMemBvhUsed += static_cast<Standard_ShortReal> (
2376     myRaytraceGeometry.QuadBVH()->MaxPointBuffer().size() * sizeof (BVH_Vec3f));
2377
2378   std::cout << "GPU Memory Used (Mb):\n"
2379     << "\tFor mesh: " << aMemTrgUsed / 1048576 << "\n"
2380     << "\tFor BVHs: " << aMemBvhUsed / 1048576 << "\n";
2381
2382 #endif
2383
2384   return aResult;
2385 }
2386
2387 // =======================================================================
2388 // function : updateRaytraceLightSources
2389 // purpose  : Updates 3D scene light sources for ray-tracing
2390 // =======================================================================
2391 Standard_Boolean OpenGl_View::updateRaytraceLightSources (const OpenGl_Mat4& theInvModelView, const Handle(OpenGl_Context)& theGlContext)
2392 {
2393   std::vector<Handle(Graphic3d_CLight)> aLightSources;
2394   myRaytraceGeometry.Ambient = BVH_Vec4f (0.f, 0.f, 0.f, 0.f);
2395   if (myShadingModel != Graphic3d_TOSM_UNLIT
2396   && !myLights.IsNull())
2397   {
2398     const Graphic3d_Vec4& anAmbient = myLights->AmbientColor();
2399     myRaytraceGeometry.Ambient = BVH_Vec4f (anAmbient.r(), anAmbient.g(), anAmbient.b(), 0.0f);
2400
2401     // move positional light sources at the front of the list
2402     aLightSources.reserve (myLights->Extent());
2403     for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
2404          aLightIter.More(); aLightIter.Next())
2405     {
2406       const Graphic3d_CLight& aLight = *aLightIter.Value();
2407       if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
2408       {
2409         aLightSources.push_back (aLightIter.Value());
2410       }
2411     }
2412
2413     for (Graphic3d_LightSet::Iterator aLightIter (myLights, Graphic3d_LightSet::IterationFilter_ExcludeDisabledAndAmbient);
2414          aLightIter.More(); aLightIter.Next())
2415     {
2416       if (aLightIter.Value()->Type() == Graphic3d_TOLS_DIRECTIONAL)
2417       {
2418         aLightSources.push_back (aLightIter.Value());
2419       }
2420     }
2421   }
2422
2423   // get number of 'real' (not ambient) light sources
2424   const size_t aNbLights = aLightSources.size();
2425   Standard_Boolean wasUpdated = myRaytraceGeometry.Sources.size () != aNbLights;
2426   if (wasUpdated)
2427   {
2428     myRaytraceGeometry.Sources.resize (aNbLights);
2429   }
2430
2431   for (size_t aLightIdx = 0, aRealIdx = 0; aLightIdx < aLightSources.size(); ++aLightIdx)
2432   {
2433     const Graphic3d_CLight& aLight = *aLightSources[aLightIdx];
2434     const Graphic3d_Vec4& aLightColor = aLight.PackedColor();
2435     BVH_Vec4f aEmission  (aLightColor.r() * aLight.Intensity(),
2436                           aLightColor.g() * aLight.Intensity(),
2437                           aLightColor.b() * aLight.Intensity(),
2438                           1.0f);
2439
2440     BVH_Vec4f aPosition (-aLight.PackedDirection().x(),
2441                          -aLight.PackedDirection().y(),
2442                          -aLight.PackedDirection().z(),
2443                          0.0f);
2444
2445     if (aLight.Type() != Graphic3d_TOLS_DIRECTIONAL)
2446     {
2447       aPosition = BVH_Vec4f (static_cast<float>(aLight.Position().X()),
2448                              static_cast<float>(aLight.Position().Y()),
2449                              static_cast<float>(aLight.Position().Z()),
2450                              1.0f);
2451
2452       // store smoothing radius in W-component
2453       aEmission.w() = Max (aLight.Smoothness(), 0.f);
2454     }
2455     else
2456     {
2457       // store cosine of smoothing angle in W-component
2458       aEmission.w() = cosf (Min (Max (aLight.Smoothness(), 0.f), static_cast<Standard_ShortReal> (M_PI / 2.0)));
2459     }
2460
2461     if (aLight.IsHeadlight())
2462     {
2463       aPosition = theInvModelView * aPosition;
2464     }
2465
2466     for (int aK = 0; aK < 4; ++aK)
2467     {
2468       wasUpdated |= (aEmission[aK] != myRaytraceGeometry.Sources[aRealIdx].Emission[aK])
2469                  || (aPosition[aK] != myRaytraceGeometry.Sources[aRealIdx].Position[aK]);
2470     }
2471
2472     if (wasUpdated)
2473     {
2474       myRaytraceGeometry.Sources[aRealIdx] = OpenGl_RaytraceLight (aEmission, aPosition);
2475     }
2476
2477     ++aRealIdx;
2478   }
2479
2480   if (myRaytraceLightSrcTexture.IsNull()) // create light source buffer
2481   {
2482     myRaytraceLightSrcTexture = new OpenGl_TextureBufferArb;
2483   }
2484
2485   if (myRaytraceGeometry.Sources.size() != 0 && wasUpdated)
2486   {
2487     const GLfloat* aDataPtr = myRaytraceGeometry.Sources.front().Packed();
2488     if (!myRaytraceLightSrcTexture->Init (theGlContext, 4, GLsizei (myRaytraceGeometry.Sources.size() * 2), aDataPtr))
2489     {
2490 #ifdef RAY_TRACE_PRINT_INFO
2491       std::cout << "Error: Failed to upload light source buffer" << std::endl;
2492 #endif
2493       return Standard_False;
2494     }
2495
2496     myAccumFrames = 0; // accumulation should be restarted
2497   }
2498
2499   return Standard_True;
2500 }
2501
2502 // =======================================================================
2503 // function : setUniformState
2504 // purpose  : Sets uniform state for the given ray-tracing shader program
2505 // =======================================================================
2506 Standard_Boolean OpenGl_View::setUniformState (const Standard_Integer        theProgramId,
2507                                                const Standard_Integer        theWinSizeX,
2508                                                const Standard_Integer        theWinSizeY,
2509                                                Graphic3d_Camera::Projection  theProjection,
2510                                                const Handle(OpenGl_Context)& theGlContext)
2511 {
2512   // Get projection state
2513   OpenGl_MatrixState<Standard_ShortReal>& aCntxProjectionState = theGlContext->ProjectionState;
2514
2515   OpenGl_Mat4 aViewPrjMat;
2516   OpenGl_Mat4 anUnviewMat;
2517   OpenGl_Vec3 aOrigins[4];
2518   OpenGl_Vec3 aDirects[4];
2519
2520   if (myCamera->IsOrthographic()
2521    || !myRenderParams.IsGlobalIlluminationEnabled)
2522   {
2523     updateCamera (myCamera->OrientationMatrixF(),
2524                   aCntxProjectionState.Current(),
2525                   aOrigins,
2526                   aDirects,
2527                   aViewPrjMat,
2528                   anUnviewMat);
2529   }
2530   else
2531   {
2532     updatePerspCameraPT (myCamera->OrientationMatrixF(),
2533                          aCntxProjectionState.Current(),
2534                          theProjection,
2535                          aViewPrjMat,
2536                          anUnviewMat,
2537                          theWinSizeX,
2538                          theWinSizeY);
2539   }
2540
2541   Handle(OpenGl_ShaderProgram)& theProgram = theProgramId == 0
2542                                            ? myRaytraceProgram
2543                                            : myPostFSAAProgram;
2544
2545   if (theProgram.IsNull())
2546   {
2547     return Standard_False;
2548   }
2549   
2550   theProgram->SetUniform(theGlContext, "uEyeOrig", myEyeOrig);
2551   theProgram->SetUniform(theGlContext, "uEyeView", myEyeView);
2552   theProgram->SetUniform(theGlContext, "uEyeVert", myEyeVert);
2553   theProgram->SetUniform(theGlContext, "uEyeSide", myEyeSide);
2554   theProgram->SetUniform(theGlContext, "uEyeSize", myEyeSize);
2555
2556   theProgram->SetUniform(theGlContext, "uApertureRadius", myRenderParams.CameraApertureRadius);
2557   theProgram->SetUniform(theGlContext, "uFocalPlaneDist", myRenderParams.CameraFocalPlaneDist);
2558   
2559   // Set camera state
2560   theProgram->SetUniform (theGlContext,
2561     myUniformLocations[theProgramId][OpenGl_RT_uOriginLB], aOrigins[0]);
2562   theProgram->SetUniform (theGlContext,
2563     myUniformLocations[theProgramId][OpenGl_RT_uOriginRB], aOrigins[1]);
2564   theProgram->SetUniform (theGlContext,
2565     myUniformLocations[theProgramId][OpenGl_RT_uOriginLT], aOrigins[2]);
2566   theProgram->SetUniform (theGlContext,
2567     myUniformLocations[theProgramId][OpenGl_RT_uOriginRT], aOrigins[3]);
2568   theProgram->SetUniform (theGlContext,
2569     myUniformLocations[theProgramId][OpenGl_RT_uDirectLB], aDirects[0]);
2570   theProgram->SetUniform (theGlContext,
2571     myUniformLocations[theProgramId][OpenGl_RT_uDirectRB], aDirects[1]);
2572   theProgram->SetUniform (theGlContext,
2573     myUniformLocations[theProgramId][OpenGl_RT_uDirectLT], aDirects[2]);
2574   theProgram->SetUniform (theGlContext,
2575     myUniformLocations[theProgramId][OpenGl_RT_uDirectRT], aDirects[3]);
2576   theProgram->SetUniform (theGlContext,
2577     myUniformLocations[theProgramId][OpenGl_RT_uViewPrMat], aViewPrjMat);
2578   theProgram->SetUniform (theGlContext,
2579     myUniformLocations[theProgramId][OpenGl_RT_uUnviewMat], anUnviewMat);
2580
2581   // Set screen dimensions
2582   myRaytraceProgram->SetUniform (theGlContext,
2583     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeX], theWinSizeX);
2584   myRaytraceProgram->SetUniform (theGlContext,
2585     myUniformLocations[theProgramId][OpenGl_RT_uWinSizeY], theWinSizeY);
2586
2587   // Set 3D scene parameters
2588   theProgram->SetUniform (theGlContext,
2589     myUniformLocations[theProgramId][OpenGl_RT_uSceneRad], myRaytraceSceneRadius);
2590   theProgram->SetUniform (theGlContext,
2591     myUniformLocations[theProgramId][OpenGl_RT_uSceneEps], myRaytraceSceneEpsilon);
2592
2593   // Set light source parameters
2594   const Standard_Integer aLightSourceBufferSize =
2595     static_cast<Standard_Integer> (myRaytraceGeometry.Sources.size());
2596   
2597   theProgram->SetUniform (theGlContext,
2598     myUniformLocations[theProgramId][OpenGl_RT_uLightCount], aLightSourceBufferSize);
2599
2600   // Set array of 64-bit texture handles
2601   if (theGlContext->arbTexBindless != NULL && myRaytraceGeometry.HasTextures())
2602   {
2603     const std::vector<GLuint64>& aTextures = myRaytraceGeometry.TextureHandles();
2604
2605     theProgram->SetUniform (theGlContext, myUniformLocations[theProgramId][OpenGl_RT_uTexSamplersArray],
2606       static_cast<GLsizei> (aTextures.size()), reinterpret_cast<const OpenGl_Vec2u*> (&aTextures.front()));
2607   }
2608
2609   // Set background colors (only gradient background supported)
2610   if (myBgGradientArray != NULL && myBgGradientArray->IsDefined())
2611   {
2612     theProgram->SetUniform (theGlContext,
2613       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], myBgGradientArray->GradientColor (0));
2614     theProgram->SetUniform (theGlContext,
2615       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], myBgGradientArray->GradientColor (1));
2616   }
2617   else
2618   {
2619     const OpenGl_Vec4& aBackColor = myBgColor;
2620
2621     theProgram->SetUniform (theGlContext,
2622       myUniformLocations[theProgramId][OpenGl_RT_uBackColorTop], aBackColor);
2623     theProgram->SetUniform (theGlContext,
2624       myUniformLocations[theProgramId][OpenGl_RT_uBackColorBot], aBackColor);
2625   }
2626
2627   // Set environment map parameters
2628   const Standard_Boolean toDisableEnvironmentMap = myTextureEnv.IsNull()
2629                                                ||  myTextureEnv->IsEmpty()
2630                                                || !myTextureEnv->First()->IsValid();
2631
2632   theProgram->SetUniform (theGlContext,
2633     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapEnabled], toDisableEnvironmentMap ? 0 : 1);
2634
2635   theProgram->SetUniform (theGlContext,
2636     myUniformLocations[theProgramId][OpenGl_RT_uSphereMapForBack], myRenderParams.UseEnvironmentMapBackground ?  1 : 0);
2637
2638   if (myRenderParams.IsGlobalIlluminationEnabled) // GI parameters
2639   {
2640     theProgram->SetUniform (theGlContext,
2641       myUniformLocations[theProgramId][OpenGl_RT_uMaxRadiance], myRenderParams.RadianceClampingValue);
2642
2643     theProgram->SetUniform (theGlContext,
2644       myUniformLocations[theProgramId][OpenGl_RT_uBlockedRngEnabled], myRenderParams.CoherentPathTracingMode ? 1 : 0);
2645
2646     // Check whether we should restart accumulation for run-time parameters
2647     if (myRenderParams.RadianceClampingValue       != myRaytraceParameters.RadianceClampingValue
2648      || myRenderParams.UseEnvironmentMapBackground != myRaytraceParameters.UseEnvMapForBackground)
2649     {
2650       myAccumFrames = 0; // accumulation should be restarted
2651
2652       myRaytraceParameters.RadianceClampingValue  = myRenderParams.RadianceClampingValue;
2653       myRaytraceParameters.UseEnvMapForBackground = myRenderParams.UseEnvironmentMapBackground;
2654     }
2655   }
2656   else // RT parameters
2657   {
2658     // Set ambient light source
2659     theProgram->SetUniform (theGlContext,
2660       myUniformLocations[theProgramId][OpenGl_RT_uLightAmbnt], myRaytraceGeometry.Ambient);
2661
2662     // Enable/disable run-time ray-tracing effects
2663     theProgram->SetUniform (theGlContext,
2664       myUniformLocations[theProgramId][OpenGl_RT_uShadowsEnabled], myRenderParams.IsShadowEnabled ?  1 : 0);
2665     theProgram->SetUniform (theGlContext,
2666       myUniformLocations[theProgramId][OpenGl_RT_uReflectEnabled], myRenderParams.IsReflectionEnabled ?  1 : 0);
2667   }
2668
2669   return Standard_True;
2670 }
2671
2672 // =======================================================================
2673 // function : bindRaytraceTextures
2674 // purpose  : Binds ray-trace textures to corresponding texture units
2675 // =======================================================================
2676 void OpenGl_View::bindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext,
2677                                         int theStereoView)
2678 {
2679   if (myRaytraceParameters.AdaptiveScreenSampling
2680    && myRaytraceParameters.GlobalIllumination)
2681   {
2682   #if !defined(GL_ES_VERSION_2_0)
2683     theGlContext->core42->glBindImageTexture (OpenGl_RT_OutputImage,
2684                                               myRaytraceOutputTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32F);
2685     theGlContext->core42->glBindImageTexture (OpenGl_RT_VisualErrorImage,
2686                                               myRaytraceVisualErrorTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_WRITE, GL_R32I);
2687     theGlContext->core42->glBindImageTexture (OpenGl_RT_TileOffsetsImage,
2688                                               myRaytraceTileOffsetsTexture[theStereoView]->TextureId(), 0, GL_TRUE, 0, GL_READ_ONLY, GL_RG32I);
2689   #else
2690     (void )theStereoView;
2691   #endif
2692   }
2693
2694   if (!myTextureEnv.IsNull()
2695    && !myTextureEnv->IsEmpty()
2696    &&  myTextureEnv->First()->IsValid())
2697   {
2698     myTextureEnv->First()->Bind (theGlContext, OpenGl_RT_EnvironmentMapTexture);
2699   }
2700
2701   mySceneMinPointTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
2702   mySceneMaxPointTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
2703   mySceneNodeInfoTexture   ->BindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
2704   myGeometryVertexTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
2705   myGeometryNormalTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
2706   myGeometryTexCrdTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
2707   myGeometryTriangTexture  ->BindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
2708   mySceneTransformTexture  ->BindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
2709   myRaytraceMaterialTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
2710   myRaytraceLightSrcTexture->BindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
2711 }
2712
2713 // =======================================================================
2714 // function : unbindRaytraceTextures
2715 // purpose  : Unbinds ray-trace textures from corresponding texture units
2716 // =======================================================================
2717 void OpenGl_View::unbindRaytraceTextures (const Handle(OpenGl_Context)& theGlContext)
2718 {
2719   mySceneMinPointTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneMinPointTexture);
2720   mySceneMaxPointTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneMaxPointTexture);
2721   mySceneNodeInfoTexture   ->UnbindTexture (theGlContext, OpenGl_RT_SceneNodeInfoTexture);
2722   myGeometryVertexTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryVertexTexture);
2723   myGeometryNormalTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryNormalTexture);
2724   myGeometryTexCrdTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTexCrdTexture);
2725   myGeometryTriangTexture  ->UnbindTexture (theGlContext, OpenGl_RT_GeometryTriangTexture);
2726   mySceneTransformTexture  ->UnbindTexture (theGlContext, OpenGl_RT_SceneTransformTexture);
2727   myRaytraceMaterialTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceMaterialTexture);
2728   myRaytraceLightSrcTexture->UnbindTexture (theGlContext, OpenGl_RT_RaytraceLightSrcTexture);
2729
2730   theGlContext->core15fwd->glActiveTexture (GL_TEXTURE0);
2731 }
2732
2733 // =======================================================================
2734 // function : runRaytraceShaders
2735 // purpose  : Runs ray-tracing shader programs
2736 // =======================================================================
2737 Standard_Boolean OpenGl_View::runRaytraceShaders (const Standard_Integer        theSizeX,
2738                                                   const Standard_Integer        theSizeY,
2739                                                   Graphic3d_Camera::Projection  theProjection,
2740                                                   OpenGl_FrameBuffer*           theReadDrawFbo,
2741                                                   const Handle(OpenGl_Context)& theGlContext)
2742 {
2743   Standard_Boolean aResult = theGlContext->BindProgram (myRaytraceProgram);
2744
2745   aResult &= setUniformState (0,
2746                               theSizeX,
2747                               theSizeY,
2748                               theProjection,
2749                               theGlContext);
2750
2751   if (myRaytraceParameters.GlobalIllumination) // path tracing
2752   {
2753     aResult &= runPathtrace    (theSizeX, theSizeY, theProjection, theGlContext);
2754     aResult &= runPathtraceOut (theProjection, theReadDrawFbo, theGlContext);
2755   }
2756   else // Whitted-style ray-tracing
2757   {
2758     aResult &= runRaytrace (theSizeX, theSizeY, theProjection, theReadDrawFbo, theGlContext);
2759   }
2760
2761   return aResult;
2762 }
2763
2764 // =======================================================================
2765 // function : runRaytrace
2766 // purpose  : Runs Whitted-style ray-tracing
2767 // =======================================================================
2768 Standard_Boolean OpenGl_View::runRaytrace (const Standard_Integer        theSizeX,
2769                                            const Standard_Integer        theSizeY,
2770                                            Graphic3d_Camera::Projection  theProjection,
2771                                            OpenGl_FrameBuffer*           theReadDrawFbo,
2772                                            const Handle(OpenGl_Context)& theGlContext)
2773 {
2774   Standard_Boolean aResult = Standard_True;
2775
2776   // Choose proper set of frame buffers for stereo rendering
2777   const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
2778   bindRaytraceTextures (theGlContext, aFBOIdx);
2779
2780   if (myRenderParams.IsAntialiasingEnabled) // if second FSAA pass is used
2781   {
2782     myRaytraceFBO1[aFBOIdx]->BindBuffer (theGlContext);
2783
2784     glClear (GL_DEPTH_BUFFER_BIT); // render the image with depth
2785   }
2786
2787   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2788
2789   if (myRenderParams.IsAntialiasingEnabled)
2790   {
2791     glDisable (GL_DEPTH_TEST); // improve jagged edges without depth buffer
2792
2793     // bind ray-tracing output image as input
2794     myRaytraceFBO1[aFBOIdx]->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
2795
2796     aResult &= theGlContext->BindProgram (myPostFSAAProgram);
2797
2798     aResult &= setUniformState (1 /* FSAA ID */,
2799                                 theSizeX,
2800                                 theSizeY,
2801                                 theProjection,
2802                                 theGlContext);
2803
2804     // Perform multi-pass adaptive FSAA using ping-pong technique.
2805     // We use 'FLIPTRI' sampling pattern changing for every pixel
2806     // (3 additional samples per pixel, the 1st sample is already
2807     // available from initial ray-traced image).
2808     for (Standard_Integer anIt = 1; anIt < 4; ++anIt)
2809     {
2810       GLfloat aOffsetX = 1.f / theSizeX;
2811       GLfloat aOffsetY = 1.f / theSizeY;
2812
2813       if (anIt == 1)
2814       {
2815         aOffsetX *= -0.55f;
2816         aOffsetY *=  0.55f;
2817       }
2818       else if (anIt == 2)
2819       {
2820         aOffsetX *=  0.00f;
2821         aOffsetY *= -0.55f;
2822       }
2823       else if (anIt == 3)
2824       {
2825         aOffsetX *= 0.55f;
2826         aOffsetY *= 0.00f;
2827       }
2828
2829       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2830         myUniformLocations[1][OpenGl_RT_uSamples], anIt + 1);
2831       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2832         myUniformLocations[1][OpenGl_RT_uOffsetX], aOffsetX);
2833       aResult &= myPostFSAAProgram->SetUniform (theGlContext,
2834         myUniformLocations[1][OpenGl_RT_uOffsetY], aOffsetY);
2835
2836       Handle(OpenGl_FrameBuffer)& aFramebuffer = anIt % 2
2837                                                ? myRaytraceFBO2[aFBOIdx]
2838                                                : myRaytraceFBO1[aFBOIdx];
2839
2840       aFramebuffer->BindBuffer (theGlContext);
2841
2842       // perform adaptive FSAA pass
2843       theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2844
2845       aFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_FsaaInputTexture);
2846     }
2847
2848     const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myRaytraceFBO2[aFBOIdx];
2849     const Handle(OpenGl_FrameBuffer)& aDepthSourceFramebuffer = myRaytraceFBO1[aFBOIdx];
2850
2851     glEnable (GL_DEPTH_TEST);
2852
2853     // Display filtered image
2854     theGlContext->BindProgram (myOutImageProgram);
2855
2856     if (theReadDrawFbo != NULL)
2857     {
2858       theReadDrawFbo->BindBuffer (theGlContext);
2859     }
2860     else
2861     {
2862       aRenderImageFramebuffer->UnbindBuffer (theGlContext);
2863     }
2864
2865     aRenderImageFramebuffer->ColorTexture()       ->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
2866     aDepthSourceFramebuffer->DepthStencilTexture()->Bind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
2867
2868     // copy the output image with depth values
2869     theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2870
2871     aDepthSourceFramebuffer->DepthStencilTexture()->Unbind (theGlContext, OpenGl_RT_RaytraceDepthTexture);
2872     aRenderImageFramebuffer->ColorTexture()       ->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
2873   }
2874
2875   unbindRaytraceTextures (theGlContext);
2876
2877   theGlContext->BindProgram (NULL);
2878
2879   return aResult;
2880 }
2881
2882 // =======================================================================
2883 // function : runPathtrace
2884 // purpose  : Runs path tracing shader
2885 // =======================================================================
2886 Standard_Boolean OpenGl_View::runPathtrace (const Standard_Integer              theSizeX,
2887                                             const Standard_Integer              theSizeY,
2888                                             const Graphic3d_Camera::Projection  theProjection,
2889                                             const Handle(OpenGl_Context)&       theGlContext)
2890 {
2891   if (myToUpdateEnvironmentMap) // check whether the map was changed
2892   {
2893     myAccumFrames = myToUpdateEnvironmentMap = 0;
2894   }
2895   
2896   if (myRenderParams.CameraApertureRadius != myPrevCameraApertureRadius
2897    || myRenderParams.CameraFocalPlaneDist != myPrevCameraFocalPlaneDist)
2898   {
2899     myPrevCameraApertureRadius = myRenderParams.CameraApertureRadius;
2900     myPrevCameraFocalPlaneDist = myRenderParams.CameraFocalPlaneDist;
2901     myAccumFrames = 0;
2902   }
2903
2904   // Choose proper set of frame buffers for stereo rendering
2905   const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
2906
2907   if (myRaytraceParameters.AdaptiveScreenSampling)
2908   {
2909     if (myAccumFrames == 0)
2910     {
2911       myTileSampler.Reset(); // reset tile sampler to its initial state
2912
2913       // Adaptive sampling is starting at the second frame
2914       myTileSampler.UploadOffsets (theGlContext, myRaytraceTileOffsetsTexture[aFBOIdx], false);
2915
2916     #if !defined(GL_ES_VERSION_2_0)
2917       theGlContext->core44->glClearTexImage (myRaytraceOutputTexture[aFBOIdx]->TextureId(), 0, GL_RED, GL_FLOAT, NULL);
2918     #endif
2919     }
2920
2921     // Clear adaptive screen sampling images
2922   #if !defined(GL_ES_VERSION_2_0)
2923     theGlContext->core44->glClearTexImage (myRaytraceVisualErrorTexture[aFBOIdx]->TextureId(), 0, GL_RED_INTEGER, GL_INT, NULL);
2924   #endif
2925   }
2926
2927   bindRaytraceTextures (theGlContext, aFBOIdx);
2928
2929   const Handle(OpenGl_FrameBuffer)& anAccumImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO2[aFBOIdx] : myRaytraceFBO1[aFBOIdx];
2930   anAccumImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
2931
2932   // Set frame accumulation weight
2933   myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uAccumSamples], myAccumFrames);
2934
2935   // Set random number generator seed
2936   if (myAccumFrames == 0)
2937   {
2938     myRNG.SetSeed(); // start RNG from beginning
2939   }
2940   myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uFrameRndSeed], static_cast<Standard_Integer> (myRNG.NextInt() >> 2));
2941
2942   // Set image uniforms for render program
2943   if (myRaytraceParameters.AdaptiveScreenSampling)
2944   {
2945     myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uRenderImage], OpenGl_RT_OutputImage);
2946     myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uOffsetImage], OpenGl_RT_TileOffsetsImage);
2947     myRaytraceProgram->SetUniform (theGlContext, myUniformLocations[0][OpenGl_RT_uTileSize], myTileSampler.TileSize());
2948   }
2949
2950   const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
2951   aRenderImageFramebuffer->BindBuffer (theGlContext);
2952   if (myRaytraceParameters.AdaptiveScreenSampling)
2953   {
2954     // extend viewport here, so that tiles at boundaries (cut tile size by target rendering viewport)
2955     // redirected to inner tiles (full tile size) are drawn entirely
2956     const Graphic3d_Vec2i anOffsetViewport = myTileSampler.OffsetTilesViewport (myAccumFrames > 1); // shrunk offsets texture will be uploaded since 3rd frame
2957     glViewport (0, 0, anOffsetViewport.x(), anOffsetViewport.y());
2958   }
2959
2960   // Generate for the given RNG seed
2961   glDisable (GL_DEPTH_TEST);
2962   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
2963
2964   aRenderImageFramebuffer->UnbindBuffer (theGlContext);
2965
2966   if (myRaytraceParameters.AdaptiveScreenSampling)
2967   {
2968     glViewport (0, 0, theSizeX, theSizeY);
2969   }
2970   return true;
2971 }
2972
2973 // =======================================================================
2974 // function : runPathtraceOut
2975 // purpose  :
2976 // =======================================================================
2977 Standard_Boolean OpenGl_View::runPathtraceOut (const Graphic3d_Camera::Projection  theProjection,
2978                                                OpenGl_FrameBuffer*                 theReadDrawFbo,
2979                                                const Handle(OpenGl_Context)&       theGlContext)
2980 {
2981   // Output accumulated path traced image
2982   theGlContext->BindProgram (myOutImageProgram);
2983
2984   // Choose proper set of frame buffers for stereo rendering
2985   const Standard_Integer aFBOIdx = (theProjection == Graphic3d_Camera::Projection_MonoRightEye) ? 1 : 0;
2986
2987   if (myRaytraceParameters.AdaptiveScreenSampling)
2988   {
2989     // Set uniforms for display program
2990     myOutImageProgram->SetUniform (theGlContext, "uRenderImage",   OpenGl_RT_OutputImage);
2991     myOutImageProgram->SetUniform (theGlContext, "uAccumFrames",   myAccumFrames);
2992     myOutImageProgram->SetUniform (theGlContext, "uVarianceImage", OpenGl_RT_VisualErrorImage);
2993     myOutImageProgram->SetUniform (theGlContext, "uDebugAdaptive", myRenderParams.ShowSamplingTiles ?  1 : 0);
2994     myOutImageProgram->SetUniform (theGlContext, "uTileSize",      myTileSampler.TileSize());
2995     myOutImageProgram->SetUniform (theGlContext, "uVarianceScaleFactor", myTileSampler.VarianceScaleFactor());
2996   }
2997
2998   if (myRaytraceParameters.GlobalIllumination)
2999   {
3000     myOutImageProgram->SetUniform(theGlContext, "uExposure", myRenderParams.Exposure);
3001     switch (myRaytraceParameters.ToneMappingMethod)
3002     {
3003       case Graphic3d_ToneMappingMethod_Disabled:
3004         break;
3005       case Graphic3d_ToneMappingMethod_Filmic:
3006         myOutImageProgram->SetUniform (theGlContext, "uWhitePoint", myRenderParams.WhitePoint);
3007         break;
3008     }
3009   }
3010
3011   if (theReadDrawFbo != NULL)
3012   {
3013     theReadDrawFbo->BindBuffer (theGlContext);
3014   }
3015
3016   const Handle(OpenGl_FrameBuffer)& aRenderImageFramebuffer = myAccumFrames % 2 ? myRaytraceFBO1[aFBOIdx] : myRaytraceFBO2[aFBOIdx];
3017   aRenderImageFramebuffer->ColorTexture()->Bind (theGlContext, OpenGl_RT_PrevAccumTexture);
3018
3019   // Copy accumulated image with correct depth values
3020   glEnable (GL_DEPTH_TEST);
3021   theGlContext->core20fwd->glDrawArrays (GL_TRIANGLES, 0, 6);
3022
3023   aRenderImageFramebuffer->ColorTexture()->Unbind (theGlContext, OpenGl_RT_PrevAccumTexture);
3024
3025   if (myRaytraceParameters.AdaptiveScreenSampling)
3026   {
3027     // Download visual error map from the GPU and build adjusted tile offsets for optimal image sampling
3028     myTileSampler.GrabVarianceMap (theGlContext, myRaytraceVisualErrorTexture[aFBOIdx]);
3029     myTileSampler.UploadOffsets (theGlContext, myRaytraceTileOffsetsTexture[aFBOIdx], myAccumFrames != 0);
3030   }
3031
3032   unbindRaytraceTextures (theGlContext);
3033   theGlContext->BindProgram (NULL);
3034   return true;
3035 }
3036
3037 // =======================================================================
3038 // function : raytrace
3039 // purpose  : Redraws the window using OpenGL/GLSL ray-tracing
3040 // =======================================================================
3041 Standard_Boolean OpenGl_View::raytrace (const Standard_Integer        theSizeX,
3042                                         const Standard_Integer        theSizeY,
3043                                         Graphic3d_Camera::Projection  theProjection,
3044                                         OpenGl_FrameBuffer*           theReadDrawFbo,
3045                                         const Handle(OpenGl_Context)& theGlContext)
3046 {
3047   if (!initRaytraceResources (theSizeX, theSizeY, theGlContext))
3048   {
3049     return Standard_False;
3050   }
3051
3052   if (!updateRaytraceBuffers (theSizeX, theSizeY, theGlContext))
3053   {
3054     return Standard_False;
3055   }
3056
3057   OpenGl_Mat4 aLightSourceMatrix;
3058
3059   // Get inversed model-view matrix for transforming lights
3060   myCamera->OrientationMatrixF().Inverted (aLightSourceMatrix);
3061
3062   if (!updateRaytraceLightSources (aLightSourceMatrix, theGlContext))
3063   {
3064     return Standard_False;
3065   }
3066
3067   // Generate image using Whitted-style ray-tracing or path tracing
3068   if (myIsRaytraceDataValid)
3069   {
3070     myRaytraceScreenQuad.BindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3071
3072     if (!myRaytraceGeometry.AcquireTextures (theGlContext))
3073     {
3074       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3075         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to acquire OpenGL image textures");
3076     }
3077
3078     glDisable (GL_BLEND);
3079
3080     const Standard_Boolean aResult = runRaytraceShaders (theSizeX,
3081                                                          theSizeY,
3082                                                          theProjection,
3083                                                          theReadDrawFbo,
3084                                                          theGlContext);
3085
3086     if (!aResult)
3087     {
3088       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3089         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to execute ray-tracing shaders");
3090     }
3091
3092     if (!myRaytraceGeometry.ReleaseTextures (theGlContext))
3093     {
3094       theGlContext->PushMessage (GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_ERROR,
3095         0, GL_DEBUG_SEVERITY_MEDIUM, "Error: Failed to release OpenGL image textures");
3096     }
3097
3098     myRaytraceScreenQuad.UnbindVertexAttrib (theGlContext, Graphic3d_TOA_POS);
3099   }
3100
3101   return Standard_True;
3102 }