1 // Created on: 1992-05-07
2 // Created by: Jacques GOUSSARD
3 // Copyright (c) 1992-1999 Matra Datavision
4 // Copyright (c) 1999-2014 OPEN CASCADE SAS
6 // This file is part of Open CASCADE Technology software library.
8 // This library is free software; you can redistribute it and/or modify it under
9 // the terms of the GNU Lesser General Public License version 2.1 as published
10 // by the Free Software Foundation, with special exception defined in the file
11 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12 // distribution for complete text of the license and disclaimer of any warranty.
14 // Alternatively, this file may be used under the terms of Open CASCADE
15 // commercial license or contractual agreement.
17 // Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455
19 #include <IntPatch_ThePathPointOfTheSOnBounds.hxx>
20 #include <IntPatch_TheSegmentOfTheSOnBounds.hxx>
21 #include <IntPatch_RLine.hxx>
22 #include <IntSurf.hxx>
23 #include <TColStd_Array1OfInteger.hxx>
24 #include <TColStd_SequenceOfReal.hxx>
25 #include <IntPatch_GLine.hxx>
26 #include <Extrema_ExtPC.hxx>
27 #include <GeomAdaptor_Curve.hxx>
28 #include <Geom_Ellipse.hxx>
29 #include <Geom_Parabola.hxx>
30 #include <Geom_Hyperbola.hxx>
33 static void PutPointsOnLine(const Handle(Adaptor3d_HSurface)& S1,
34 const Handle(Adaptor3d_HSurface)& S2,
35 const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
36 const IntPatch_SequenceOfLine&,
37 const Standard_Boolean,
38 const Handle(Adaptor3d_TopolTool)&,
39 const IntSurf_Quadric&,
40 const IntSurf_Quadric&,
41 const Standard_Boolean,
44 static Standard_Boolean MultiplePoint (const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
45 const Handle(Adaptor3d_TopolTool)&,
46 const IntSurf_Quadric&,
48 const IntPatch_SequenceOfLine&,
49 TColStd_Array1OfInteger&,
50 TColStd_Array1OfInteger&,
51 const Standard_Integer,
52 const Standard_Boolean);
54 static Standard_Boolean PointOnSecondDom (const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
55 const Handle(Adaptor3d_TopolTool)&,
56 const IntSurf_Quadric&,
59 const Handle(IntPatch_Line)&,
60 TColStd_Array1OfInteger&,
61 const Standard_Integer);
63 static Standard_Boolean SingleLine (const gp_Pnt&,
64 const Handle(IntPatch_Line)&,
70 static Standard_Boolean FindLine (gp_Pnt&,
71 const IntPatch_SequenceOfLine&,
77 const Handle(Adaptor2d_HCurve2d)&,
80 const IntSurf_Quadric&);
82 static void ProcessSegments (const IntPatch_SequenceOfSegmentOfTheSOnBounds&,
83 IntPatch_SequenceOfLine&,
84 const IntSurf_Quadric&,
85 const IntSurf_Quadric&,
86 const Standard_Boolean,
89 static void ProcessRLine (IntPatch_SequenceOfLine&,
90 const IntSurf_Quadric&,
91 const IntSurf_Quadric&,
93 const Standard_Boolean theIsReqToKeepRLine);
95 //-- le calcul de dist est completement faux ds la routine ci dessous a revoir (lbr le 18 nov 97)
96 Standard_Boolean IntersectionWithAnArc(gp_Pnt& PSurf,
97 const Handle(IntPatch_ALine)& alin,
99 const Handle(Adaptor2d_HCurve2d)& thearc,
100 Standard_Real& _theparameteronarc,
101 gp_Pnt& thepointonarc,
102 const IntSurf_Quadric& QuadSurf,
103 const Standard_Real u0alin,
104 const Standard_Real u1alin,
105 Standard_Real& actualdist) {
106 Standard_Real dtheta,theta;
108 //Standard_Real u,v,A,B,C,cost,sint,sign;
110 //-- recherche bete du point le plus proche de thearc->Value(...)
111 dtheta = (u1alin-u0alin)*0.01;
112 Standard_Real du=0.000000001;
113 Standard_Real distmin = RealLast();
115 Standard_Real thetamin = 0.;
117 Standard_Real theparameteronarc = _theparameteronarc;
118 for(Standard_Real _theta=u0alin+dtheta; _theta<=u1alin-dtheta; _theta+=dtheta) {
119 gp_Pnt P=alin->Value(_theta);
120 Standard_Real d=P.Distance(PSurf);
127 Standard_Real bestpara =0., besttheta =0., bestdist =0., distinit =0. ;
129 //-- Distance initiale
131 gp_Pnt pp0 = alin->Value(thetamin);
132 Standard_Real ua0,va0;
133 QuadSurf.Parameters(pp0,ua0,va0);
136 thearc->D1(theparameteronarc,p2d,d2d);
137 gp_Vec2d PaPr(gp_Pnt2d(ua0,va0),p2d);
138 distinit=PaPr.Magnitude();
141 //-- recherche a partir de theta et theparameteronarc
142 Standard_Boolean cpasok=Standard_True;
143 Standard_Integer nbiter=0;
144 Standard_Real drmax = (thearc->LastParameter() - thearc->FirstParameter())*0.05;
145 Standard_Real damax = (u1alin-u0alin)*0.05;
149 bestdist = RealLast();
152 Standard_Real ua0,va0,ua1,va1;
153 //-- alin->Curve().InternalUVValue(theta,ua0,va0,A,B,C,cost,sint,sign);
154 //-- alin->Curve().InternalUVValue(theta+du,ua1,va1,A,B,C,cost,sint,sign);
155 gp_Pnt pp0 = alin->Value(theta);
156 gp_Pnt pp1 = alin->Value(theta+du);
157 QuadSurf.Parameters(pp0,ua0,va0);
158 QuadSurf.Parameters(pp1,ua1,va1);
161 gp_Vec2d D1a((ua1-ua0)/du,(va1-va0)/du);
164 thearc->D1(theparameteronarc,p2d,d2d);
165 gp_Vec2d PaPr(gp_Pnt2d(ua0,va0),p2d);
167 Standard_Real pbd=PaPr.Magnitude();
170 bestpara = theparameteronarc;
174 D1a.SetCoord(-D1a.X(),-D1a.Y());
176 Standard_Real d = D1a.X() * d2d.Y() - D1a.Y() * d2d.X();
178 Standard_Real da = (-PaPr.X())* d2d.Y() - (-PaPr.Y()) * d2d.X();
179 Standard_Real dr = D1a.X() * (-PaPr.Y()) - D1a.Y() * (-PaPr.X());
185 if(Abs(PaPr.X())>Abs(PaPr.Y())) {
186 Standard_Real xx=PaPr.X();
196 Standard_Real yy=PaPr.Y();
206 //-- Standard_Real da = -PaPr.Dot(D1a);
207 //-- Standard_Real dr = -PaPr.Dot(d2d);
209 if(da<-damax) da=-damax;
210 else if(da>damax) da=damax;
211 if(dr<-drmax) dr=-drmax;
212 else if(dr>drmax) dr=drmax;
214 if(Abs(da)<1e-10 && Abs(dr)<1e-10) {
216 PSurf = alin->Value(para);
217 _theparameteronarc=theparameteronarc;
218 thepointonarc = alin->Value(para);
219 cpasok=Standard_False;
220 //-- printf("\nt:%d",nbiter);
221 actualdist = bestdist;
222 return(Standard_True);
226 theparameteronarc+=dr;
227 if( theparameteronarc>thearc->LastParameter() ) {
228 theparameteronarc = thearc->LastParameter();
230 if( theparameteronarc<thearc->FirstParameter() ) {
231 theparameteronarc = thearc->FirstParameter();
233 if( theta < u0alin) {
236 if( theta > u1alin-du) {
237 theta = u1alin-du-du;
242 while(cpasok && nbiter<20);
243 if(bestdist < distinit) {
245 PSurf = alin->Value(para);
246 _theparameteronarc=bestpara;
247 thepointonarc = alin->Value(para);
248 //-- printf("\nT:%d",nbiter);
250 return(Standard_True);
252 //-- printf("\nF:%d",nbiter);
253 return(Standard_False);
260 //-- ======================================================================
261 static void Recadre(const Handle(Adaptor3d_HSurface)& myHS1,
262 const Handle(Adaptor3d_HSurface)& myHS2,
267 Standard_Real f,l,lmf,fpls2;
268 GeomAbs_SurfaceType typs1 = myHS1->GetType();
269 GeomAbs_SurfaceType typs2 = myHS2->GetType();
271 Standard_Boolean myHS1IsUPeriodic,myHS1IsVPeriodic;
273 case GeomAbs_Cylinder:
277 myHS1IsUPeriodic = Standard_True;
278 myHS1IsVPeriodic = Standard_False;
283 myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_True;
288 //-- Le cas de biparametrees periodiques est gere en amont
289 myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_False;
294 Standard_Boolean myHS2IsUPeriodic,myHS2IsVPeriodic;
296 case GeomAbs_Cylinder:
300 myHS2IsUPeriodic = Standard_True;
301 myHS2IsVPeriodic = Standard_False;
306 myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_True;
311 //-- Le cas de biparametrees periodiques est gere en amont
312 myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_False;
316 if(myHS1IsUPeriodic) {
317 lmf = M_PI+M_PI; //-- myHS1->UPeriod();
318 f = myHS1->FirstUParameter();
319 l = myHS1->LastUParameter();
321 while((u1 < f)&&((fpls2-u1) > (u1+lmf-fpls2) )) { u1+=lmf; }
322 while((u1 > l)&&((u1-fpls2) > (fpls2-(u1-lmf)) )) { u1-=lmf; }
325 if(myHS1IsVPeriodic) {
326 lmf = M_PI+M_PI; //-- myHS1->VPeriod();
327 f = myHS1->FirstVParameter();
328 l = myHS1->LastVParameter();
330 while((v1 < f)&&((fpls2-v1) > (v1+lmf-fpls2) )) { v1+=lmf; }
331 while((v1 > l)&&((v1-fpls2) > (fpls2-(v1-lmf)) )) { v1-=lmf; }
332 //-- while(v1 < f) { v1+=lmf; }
333 //-- while(v1 > l) { v1-=lmf; }
335 if(myHS2IsUPeriodic) {
336 lmf = M_PI+M_PI; //-- myHS2->UPeriod();
337 f = myHS2->FirstUParameter();
338 l = myHS2->LastUParameter();
340 while((u2 < f)&&((fpls2-u2) > (u2+lmf-fpls2) )) { u2+=lmf; }
341 while((u2 > l)&&((u2-fpls2) > (fpls2-(u2-lmf)) )) { u2-=lmf; }
342 //-- while(u2 < f) { u2+=lmf; }
343 //-- while(u2 > l) { u2-=lmf; }
345 if(myHS2IsVPeriodic) {
346 lmf = M_PI+M_PI; //-- myHS2->VPeriod();
347 f = myHS2->FirstVParameter();
348 l = myHS2->LastVParameter();
350 while((v2 < f)&&((fpls2-v2) > (v2+lmf-fpls2) )) { v2+=lmf; }
351 while((v2 > l)&&((v2-fpls2) > (fpls2-(v2-lmf)) )) { v2-=lmf; }
352 //-- while(v2 < f) { v2+=lmf; }
353 //-- while(v2 > l) { v2-=lmf; }
356 //=======================================================================
357 //function : PutPointsOnLine
359 //=======================================================================
360 void PutPointsOnLine(const Handle(Adaptor3d_HSurface)& S1,
361 const Handle(Adaptor3d_HSurface)& S2,
362 const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
363 const IntPatch_SequenceOfLine& slin,
364 const Standard_Boolean OnFirst,
365 const Handle(Adaptor3d_TopolTool)& Domain,
366 const IntSurf_Quadric& QuadSurf,
367 const IntSurf_Quadric& OtherQuad,
368 const Standard_Boolean multpoint,
369 const Standard_Real Tolarc) {
371 // Traitement des point (de listpnt) de depart. On les replace sur
372 // la ligne d intersection, en leur affectant la transition correcte sur
374 Standard_Integer nbpnt = listpnt.Length();
375 Standard_Integer nblin=slin.Length();
377 if (!slin.Length() || !nbpnt) {
381 Standard_Integer i,k;
382 Standard_Integer linenumber;
383 Standard_Real paraint = 0.,currentparameter,tolerance;
384 Standard_Real U1,V1,U2,V2;
385 Standard_Boolean goon;
389 gp_Vec Normale, Vtgint, Vtgrst;
395 IntSurf_Transition Transline,Transarc;
397 Handle(Adaptor2d_HCurve2d) currentarc;
398 Handle(Adaptor3d_HVertex) vtx,vtxbis;
400 IntPatch_Point solpnt;
401 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst;
402 IntPatch_IType TheType;
404 TColStd_Array1OfInteger UsedLine(1,nblin);
405 TColStd_Array1OfInteger Done(1,nbpnt);
406 for(i=1;i<=nbpnt;i++) Done(i) = 0; //-- Initialisation a la main
408 for (i=1; i<=nbpnt; i++) {
411 currentpointonrst = listpnt.Value(i);
412 Psurf = currentpointonrst.Value(); // Point dans l espace
413 tolerance = currentpointonrst.Tolerance();
415 // On recherche d abord si on a correspondance avec un "point multiple"
418 goon = Standard_True;
421 Normale = QuadSurf.Normale(Psurf); // Normale a la surface au point
422 currentarc = currentpointonrst.Arc();
423 currentparameter = currentpointonrst.Parameter();
424 currentarc->D1(currentparameter,p2d,d2d);
425 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
426 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
428 goon = MultiplePoint(listpnt,Domain,QuadSurf,Normale,slin,Done, UsedLine,
432 Standard_Boolean linefound;
434 for(Standard_Integer indiceline = 1; indiceline <=slin.Length(); indiceline++) {
435 if( UsedLine(indiceline) != 0 )
437 linenumber = indiceline;
439 //-- Attention , les points peuvent etre deplaces
440 //-- il faut reprendre le point original
441 currentpointonrst = listpnt.Value(i);
442 currentarc = currentpointonrst.Arc();
443 currentparameter = currentpointonrst.Parameter();
444 Psurf = currentpointonrst.Value(); // Point dans l espace
445 tolerance = currentpointonrst.Tolerance();
449 // Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455 Begin
450 if (! currentpointonrst.IsNew()) {
451 Handle(Adaptor3d_HVertex) aVtx = currentpointonrst.Vertex();
452 Standard_Real aVtxTol = aVtx->Resolution(currentarc);
453 Standard_Real aTolAng = 0.01*tolerance;
455 tolerance = Max(tolerance, aVtxTol);
457 gp_Vec aNorm1 = QuadSurf.Normale(Psurf);
458 gp_Vec aNorm2 = OtherQuad.Normale(Psurf);
460 if (aNorm1.Magnitude()>gp::Resolution() &&
461 aNorm2.Magnitude()>gp::Resolution()) {
463 if (aNorm1.IsParallel(aNorm2, aTolAng))
464 tolerance = Sqrt(tolerance);
467 // Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455 End
469 Vtgint.SetCoord(0,0,0);
470 linefound = FindLine(Psurf,slin,tolerance,paraint,Vtgint,linenumber,indiceline,
471 currentarc,currentparameter,pointonarc,QuadSurf);
475 Normale = QuadSurf.Normale(Psurf); // Normale a la surface au point
476 currentarc = currentpointonrst.Arc();
477 //-- currentparameter = currentpointonrst.Parameter();
478 currentarc->D1(currentparameter,p2d,d2d);
479 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
480 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
485 const Handle(IntPatch_Line)& lin = slin.Value(linenumber);
486 TheType = lin->ArcType();
488 if (!OnFirst) { // on cherche la correspondance entre point sur domaine
489 // de la premiere surface et point sur domaine de la
492 goon = PointOnSecondDom (listpnt, Domain, QuadSurf, Normale,
493 Vtgint, lin, Done, i);
497 //-- Modification du 4 avril 97 tolerance->Tolarc
498 //-- on replace sur le vertex la tolerance d entree et
499 //-- non la tolerance qui a servi au FindLine
500 solpnt.SetValue(Psurf,Tolarc,Standard_False);
502 U1 = p2d.X(); V1 = p2d.Y();
503 OtherQuad.Parameters(Psurf,U2,V2);
506 Recadre(S1,S2,U1,V1,U2,V2);
507 solpnt.SetParameters(U1,V1,U2,V2);
510 Recadre(S1,S2,U2,V2,U1,V1);
511 solpnt.SetParameters(U2,V2,U1,V1);
513 solpnt.SetParameter(paraint);
515 if (! currentpointonrst.IsNew()) {
516 vtx = currentpointonrst.Vertex();
517 solpnt.SetVertex(OnFirst,vtx);
520 //-- goon = Standard_False; ????
523 if(Normale.SquareMagnitude()<1e-16) {
524 Transline.SetValue(Standard_True,IntSurf_Undecided);
525 Transarc.SetValue(Standard_True,IntSurf_Undecided);
528 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
530 solpnt.SetArc(OnFirst,currentarc, currentparameter,
532 if (TheType == IntPatch_Analytic) {
533 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(solpnt);
536 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(solpnt);
541 for (k=i+1; k<= nbpnt; k++) {
543 currentpointonrst = listpnt.Value(k);
544 if (!currentpointonrst.IsNew()) {
545 vtxbis = currentpointonrst.Vertex();
548 else if (Domain->Identical(vtx, vtxbis)) {
549 solpnt.SetVertex(OnFirst,vtxbis);
550 currentarc = currentpointonrst.Arc();
551 currentparameter = currentpointonrst.Parameter();
553 // currentarc->D1(currentparameter,ptbid,Vtgrst);
554 currentarc->D1(currentparameter,p2d,d2d);
555 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
556 if(Normale.SquareMagnitude()<1e-16) {
557 Transline.SetValue(Standard_True,IntSurf_Undecided);
558 Transarc.SetValue(Standard_True,IntSurf_Undecided);
561 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
564 solpnt.SetArc(OnFirst,currentarc,currentparameter,
566 if (TheType == IntPatch_Analytic) {
567 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(solpnt);
570 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(solpnt);
581 Done(i) = 1; // il faudra tester si IsNew ou pas
582 // et traiter en consequence
591 Standard_Boolean MultiplePoint (const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
592 const Handle(Adaptor3d_TopolTool)& Domain,
593 const IntSurf_Quadric& QuadSurf,
594 const gp_Vec& Normale,
595 const IntPatch_SequenceOfLine& slin,
596 TColStd_Array1OfInteger& Done,
597 TColStd_Array1OfInteger& UsedLine,
598 const Standard_Integer Index,
599 const Standard_Boolean OnFirst) {
601 // Traitement des points "multiples".
604 Standard_Integer k,ii,jj,nbvtx;
605 Standard_Integer nblin = slin.Length();
606 IntPatch_IType TheType;
609 IntSurf_Transition Transline,Transarc;
612 IntPatch_Point intpt;
613 Handle(Adaptor2d_HCurve2d) currentarc;
614 Handle(Adaptor3d_HVertex) vtx,vtxbis;
616 Standard_Integer nbpnt = listpnt.Length();
617 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst = listpnt.Value(Index);
618 IntPatch_ThePathPointOfTheSOnBounds otherpt;
619 gp_Pnt Point = currentpointonrst.Value();
620 TColStd_Array1OfInteger localdone(1,nbpnt); localdone.Init(0);
621 for (ii=1; ii<=nbpnt; ii++) {
622 localdone(ii)=Done(ii);
625 Standard_Real currentparameter;
626 Standard_Real Paraint;
627 gp_Vec Vtgint,Vtgrst;
634 Standard_Boolean goon;
636 Standard_Boolean Retvalue = Standard_True;
638 for (ii = 1; ii <= nblin; ii++) {
639 const Handle(IntPatch_Line)& slinValueii = slin.Value(ii);
640 TheType = slinValueii->ArcType();
641 if (TheType == IntPatch_Analytic) {
642 nbvtx = (*((Handle(IntPatch_ALine)*)&slinValueii))->NbVertex();
645 nbvtx = (*((Handle(IntPatch_GLine)*)&slinValueii))->NbVertex();
648 while (jj <= nbvtx) {
649 if (TheType == IntPatch_Analytic) {
650 intpt = (*((Handle(IntPatch_ALine)*)&slinValueii))->Vertex(jj);
653 intpt = (*((Handle(IntPatch_GLine)*)&slinValueii))->Vertex(jj);
655 if (intpt.IsMultiple() &&
656 (( OnFirst && !intpt.IsOnDomS1()) ||
657 (!OnFirst && !intpt.IsOnDomS2()))) {
658 if (Point.Distance(intpt.Value()) <= intpt.Tolerance()) {
659 Retvalue = Standard_False;
660 Standard_Boolean foo = SingleLine(Point,slinValueii,
661 intpt.Tolerance(),Paraint,Vtgint);
663 return Standard_False; // ne doit pas se produire
666 if (!currentpointonrst.IsNew()) {
667 goon = Standard_True;
668 vtx = currentpointonrst.Vertex();
669 intpt.SetVertex(OnFirst,vtx);
672 goon = Standard_False;
674 currentarc = currentpointonrst.Arc();
675 currentparameter = currentpointonrst.Parameter();
676 currentarc->D1(currentparameter,p2d,d2d);
677 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
678 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
680 //-- Si la normale est nulle (apex d un cone) On simule une transition UNKNOWN
681 if(Normale.SquareMagnitude()<1e-16) {
682 Transline.SetValue(Standard_True,IntSurf_Undecided);
683 Transarc.SetValue(Standard_True,IntSurf_Undecided);
686 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
689 //-- Avant, on ne mettait pas ce point (17 nov 97)
690 //--printf("\n ImpImp_0 : Point(%g,%g,%g) intpt(%g,%g,%g) \n",
691 //-- Point.X(),Point.Y(),Point.Z(),intpt.Value().X(),intpt.Value().Y(),intpt.Value().Z());
692 intpt.SetValue(Point);
694 intpt.SetArc(OnFirst,currentarc,currentparameter,
698 if (TheType == IntPatch_Analytic) {
699 (*((Handle(IntPatch_ALine)*)&slinValueii))->Replace(jj,intpt);
702 (*((Handle(IntPatch_GLine)*)&slinValueii))->Replace(jj,intpt);
704 localdone(Index) = 1;
706 for (k=Index+1; k<= nbpnt; k++) {
708 otherpt= listpnt.Value(k);
709 if (!otherpt.IsNew()) {
710 vtxbis = otherpt.Vertex();
711 if (Domain->Identical(vtx, vtxbis)) {
712 intpt.SetVertex(OnFirst,vtxbis);
713 currentarc = otherpt.Arc();
714 currentparameter = otherpt.Parameter();
716 currentarc->D1(currentparameter,p2d,d2d);
717 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
718 if(Normale.SquareMagnitude()<1e-16) {
719 Transline.SetValue(Standard_True,IntSurf_Undecided);
720 Transarc.SetValue(Standard_True,IntSurf_Undecided);
723 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
726 intpt.SetArc(OnFirst,currentarc,currentparameter,
728 if (TheType == IntPatch_Analytic) {
729 (*((Handle(IntPatch_ALine)*)&slinValueii))->AddVertex(intpt);
732 (*((Handle(IntPatch_GLine)*)&slinValueii))->AddVertex(intpt);
735 Retvalue = Standard_True;
754 for (ii=1; ii<=nbpnt;ii++) {
755 Done(ii) = localdone(ii);
763 Standard_Boolean PointOnSecondDom (const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
764 const Handle(Adaptor3d_TopolTool)& Domain,
765 const IntSurf_Quadric& QuadSurf,
766 const gp_Vec& Normale,
767 const gp_Vec& Vtgint,
768 const Handle(IntPatch_Line)& lin,
769 TColStd_Array1OfInteger& Done,
770 const Standard_Integer Index)
773 // Duplication des points sur domaine de l autre surface.
774 // On sait que le vertex sous-jacent est PntRef
779 Standard_Integer k,jj,nbvtx;
780 IntPatch_IType TheType;
782 IntSurf_Transition Transline,Transarc;
783 IntPatch_Point intpt;
784 Handle(Adaptor2d_HCurve2d) currentarc;
785 Handle(Adaptor3d_HVertex) vtx,vtxbis;
793 Standard_Integer nbpnt = listpnt.Length();
794 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst = listpnt.Value(Index);
795 Standard_Real currentparameter;
797 Standard_Boolean goon;
798 Standard_Boolean Retvalue = Standard_True;
800 TheType = lin->ArcType();
801 if (TheType == IntPatch_Analytic) {
802 nbvtx = (*((Handle(IntPatch_ALine)*)&lin))->NbVertex();
805 nbvtx = (*((Handle(IntPatch_GLine)*)&lin))->NbVertex();
808 while (jj <= nbvtx) {
809 if (TheType == IntPatch_Analytic) {
810 intpt = (*((Handle(IntPatch_ALine)*)&lin))->Vertex(jj);
813 intpt = (*((Handle(IntPatch_GLine)*)&lin))->Vertex(jj);
815 if (!intpt.IsOnDomS2()) {
816 if (currentpointonrst.Value().Distance(intpt.Value()) <=
818 Retvalue = Standard_False;
819 if (!currentpointonrst.IsNew()) {
820 goon = Standard_True;
821 vtx = currentpointonrst.Vertex();
822 intpt.SetVertex(Standard_False,vtx);
825 goon = Standard_False;
827 currentarc = currentpointonrst.Arc();
828 currentparameter = currentpointonrst.Parameter();
829 currentarc->D1(currentparameter,p2d,d2d);
830 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
831 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
832 if(Normale.SquareMagnitude()<1e-16) {
833 Transline.SetValue(Standard_True,IntSurf_Undecided);
834 Transarc.SetValue(Standard_True,IntSurf_Undecided);
837 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
839 intpt.SetArc(Standard_False,currentarc,currentparameter,
841 if (TheType == IntPatch_Analytic) {
842 (*((Handle(IntPatch_ALine)*)&lin))->Replace(jj,intpt);
845 (*((Handle(IntPatch_GLine)*)&lin))->Replace(jj,intpt);
850 for (k=Index+1; k<= nbpnt; k++) {
852 currentpointonrst = listpnt.Value(k);
853 if (!currentpointonrst.IsNew()) {
854 vtxbis = currentpointonrst.Vertex();
855 if (Domain->Identical(vtx, vtxbis)) {
856 intpt.SetVertex(Standard_False,vtxbis);
857 currentarc = currentpointonrst.Arc();
858 currentparameter = currentpointonrst.Parameter();
859 currentarc->D1(currentparameter,p2d,d2d);
860 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
861 if(Normale.SquareMagnitude()<1e-16) {
862 Transline.SetValue(Standard_True,IntSurf_Undecided);
863 Transarc.SetValue(Standard_True,IntSurf_Undecided);
866 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
869 intpt.SetArc(Standard_False,currentarc,currentparameter,
871 if (TheType == IntPatch_Analytic) {
872 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(intpt);
875 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(intpt);
893 if (TheType == IntPatch_Analytic) {
894 nbvtx = (*((Handle(IntPatch_ALine)*)&lin))->NbVertex();
897 nbvtx = (*((Handle(IntPatch_GLine)*)&lin))->NbVertex();
905 Standard_Boolean FindLine (gp_Pnt& Psurf,
906 const IntPatch_SequenceOfLine& slin,
907 const Standard_Real Tol,
908 Standard_Real& Paraint,
910 Standard_Integer& Range,
911 Standard_Integer OnlyThisLine,
912 const Handle(Adaptor2d_HCurve2d)& thearc,
913 Standard_Real& theparameteronarc,
914 gp_Pnt& thepointonarc,
915 const IntSurf_Quadric& QuadSurf)
918 // Traitement du point de depart ayant pour representation Psurf
919 // dans l espace. On recherche la ligne d intersection contenant ce point.
920 // On a en sortie la ligne, et le parametre et sa tangente du point sur
921 // la ligne d intersection.
923 Standard_Real distmin = RealLast();
924 Standard_Real dist,para;
925 Standard_Real lower,upper;
928 IntPatch_IType typarc;
930 Standard_Integer nblin = slin.Length();
931 for (i=1; i<=nblin; i++) {
932 if(OnlyThisLine) { i=OnlyThisLine; nblin=0; }
933 const Handle(IntPatch_Line)& lin = slin.Value(i);
934 typarc = lin->ArcType();
935 if (typarc == IntPatch_Analytic) {
936 Standard_Boolean foo;
937 lower = (*((Handle(IntPatch_ALine)*)&lin))->FirstParameter(foo);
938 upper = (*((Handle(IntPatch_ALine)*)&lin))->LastParameter(foo);
941 if ((*((Handle(IntPatch_GLine)*)&lin))->HasFirstPoint()) {
942 lower = (*((Handle(IntPatch_GLine)*)&lin))->FirstPoint().ParameterOnLine();
947 if ((*((Handle(IntPatch_GLine)*)&lin))->HasLastPoint()) {
948 upper = (*((Handle(IntPatch_GLine)*)&lin))->LastPoint().ParameterOnLine();
958 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Line(),Psurf);
959 if (para <= upper && para >= lower) {
960 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Line());
961 dist = Psurf.Distance(pt);
970 case IntPatch_Circle :
972 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Circle(),Psurf);
973 if ((para <= upper && para >= lower) ||
974 (para + 2.*M_PI <=upper && para + 2.*M_PI >= lower) ||
975 (para - 2.*M_PI <=upper && para - 2.*M_PI >= lower)) {
976 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Circle());
977 dist = Psurf.Distance(pt);
986 case IntPatch_Ellipse :
988 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),Psurf);
989 if ((para <= upper && para >= lower) ||
990 (para + 2.*M_PI <=upper && para + 2.*M_PI >= lower) ||
991 (para - 2.*M_PI <=upper && para - 2.*M_PI >= lower)) {
992 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Ellipse());
993 dist = Psurf.Distance(pt);
1002 case IntPatch_Parabola :
1006 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Parabola(),Psurf);
1007 if (para <= upper && para >= lower) {
1008 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Parabola());
1009 dist = Psurf.Distance(pt);
1010 if (dist< distmin) {
1017 //-- Le calcul du parametre sur une parabole est mal fait ds ElCLib. Il ne tient pas compte
1018 //-- de la meilleure facon de calculer (axe X ou axe Y). Bilan : Si la parabole est tres
1019 //-- pointue (focal de l'ordre de 1e-2 et si le point est a un parametre grand, ca foire. )
1020 //-- On ne peut pas modifier faciolement ds ElCLib car on ne passe pas la focale. ...
1021 const gp_Parab& Parab=(*((Handle(IntPatch_GLine)*)&lin))->Parabola();
1022 para = ElCLib::Parameter(Parab,Psurf);
1023 if (para <= upper && para >= lower) {
1024 Standard_Integer amelioration=0;
1025 //-- cout<<"\n ****** \n";
1027 Standard_Real parabis = para+0.0000001;
1029 pt = ElCLib::Value(para,Parab);
1030 dist = Psurf.Distance(pt);
1032 gp_Pnt ptbis = ElCLib::Value(parabis,Parab);
1033 Standard_Real distbis = Psurf.Distance(ptbis);
1035 Standard_Real ddist = distbis-dist;
1037 //--cout<<" para: "<<para<<" dist:"<<dist<<" ddist:"<<ddist<<endl;
1039 if (dist< distmin) {
1044 if(dist<1.0e-9 && dist>-1.0e-9) { amelioration=100; }
1046 if(ddist>1.0e-9 || ddist<-1.0e-9 ) {
1047 para=para-dist*(parabis-para)/ddist;
1053 while(++amelioration < 5);
1060 case IntPatch_Hyperbola :
1062 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),Psurf);
1063 if (para <= upper && para >= lower) {
1064 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Hyperbola());
1065 dist = Psurf.Distance(pt);
1066 if (dist< distmin) {
1075 case IntPatch_Analytic :
1077 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&lin));
1078 Standard_Boolean ok = alin->FindParameter(Psurf,para);
1080 pt = alin->Value(para);
1081 dist = Psurf.Distance(pt);
1082 if (dist< distmin) {
1089 //-- le point n a pas ete trouve par bete projection.
1090 //-- on essaie l intersection avec la restriction en 2d
1091 Standard_Real theparamonarc = theparameteronarc;
1093 // Standard_Real anpara=para;
1095 gp_Pnt CopiePsurf=Psurf;
1096 Standard_Boolean ok=IntersectionWithAnArc(CopiePsurf,alin,para,thearc,theparamonarc,thepointonarc,QuadSurf,lower,upper,dist);
1098 //--printf("\nIntersectionWithAnArc %d \n Psurf(%g,%g,%g)->(%g,%g,%g) dist=%g\n para(%g)->(%g)\n paraonarc(%g)->(%g)",
1099 //-- ok,Psurf.X(),Psurf.Y(),Psurf.Z(),thepointonarc.X(),thepointonarc.Y(),thepointonarc.Z(),dist,
1100 //-- anpara,para,theparameteronarc,theparamonarc);
1101 dist = CopiePsurf.Distance(Psurf);
1104 theparameteronarc = theparamonarc;
1105 Psurf = thepointonarc;
1115 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1118 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1124 if (distmin > Tol) {
1125 return Standard_False;
1128 typarc = slin.Value(Range)->ArcType();
1130 // Calcul de la tangente.
1133 Vtgtint = (*((Handle(IntPatch_GLine)*)&slin(Range)))->Line().Direction();
1135 case IntPatch_Circle :
1136 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Circle(),1);
1138 case IntPatch_Ellipse :
1139 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Ellipse(),1);
1141 case IntPatch_Parabola :
1142 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Parabola(),1);
1144 case IntPatch_Hyperbola :
1145 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Hyperbola(),1);
1148 case IntPatch_Analytic:
1150 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&slin(Range)));
1151 Standard_Boolean abid = alin->D1(Paraint,pt,Vtgtint);
1153 Standard_Real domaininf,domainsup,paramproche;
1154 Standard_Boolean boolbid;
1155 domaininf = alin->FirstParameter(boolbid);
1156 domainsup = alin->LastParameter(boolbid);
1157 if(Paraint>=domaininf && Paraint<=domainsup) {
1158 Standard_Real DeltaParam = 0.001 * (domainsup-domaininf);
1159 if(Paraint-domaininf >= domainsup-Paraint) {
1160 //-- On decale le point vers le parametre le plus eloigne.
1161 DeltaParam = -DeltaParam;
1163 Standard_Integer kountbid = 0;
1164 Standard_Boolean bornok = Standard_True;
1165 paramproche = Paraint;
1167 paramproche+=DeltaParam;
1170 if(paramproche>=domaininf && paramproche<=domainsup) {
1171 abid = alin->D1(paramproche,ptbid,Vtgtint);
1174 bornok = Standard_False;
1177 while(abid==Standard_False && kountbid<5 && bornok);
1178 //-- Attention aux points de tangence (croisement de 4 lignes )
1179 bornok = Standard_True;
1181 gp_Vec OVtgtint(0.0,0.0,0.0);
1182 paramproche = Paraint;
1184 paramproche-=DeltaParam;
1187 if(paramproche>=domaininf && paramproche<=domainsup) {
1188 abid = alin->D1(paramproche,ptbid,OVtgtint);
1191 bornok = Standard_False;
1194 while(abid==Standard_False && kountbid<5 && bornok);
1196 paramproche = Vtgtint.Dot(OVtgtint);
1197 if(paramproche<=0.0) abid = Standard_False;
1201 //-- cout << "Pb sur Calcul de derivee 111 " << endl;
1202 Vtgtint.SetCoord(0.,0.,0.);
1207 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1210 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1215 return Standard_True;
1219 Standard_Boolean SingleLine (const gp_Pnt& Psurf,
1220 const Handle(IntPatch_Line)& lin,
1221 const Standard_Real Tol,
1222 Standard_Real& Paraint,
1225 // Traitement du point de depart ayant pour representation Psurf
1226 // dans l espace. On le replace sur la ligne d intersection; On a en sortie
1227 // son parametre et sa tangente sur la ligne d intersection.
1228 // La fonction renvoie False si le point projete est a une distance
1229 // superieure a Tol du point a projeter.
1231 IntPatch_IType typarc = lin->ArcType();
1233 Standard_Real parproj = 0.;
1236 Standard_Boolean retvalue;
1241 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Line(),Psurf);
1242 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Line(),ptproj,tgint);
1244 case IntPatch_Circle :
1245 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Circle(),Psurf);
1246 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Circle(),ptproj,tgint);
1248 case IntPatch_Ellipse :
1249 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),Psurf);
1250 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),ptproj,tgint);
1252 case IntPatch_Parabola :
1253 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Parabola(),Psurf);
1254 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Parabola(),ptproj,tgint);
1256 case IntPatch_Hyperbola :
1257 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),Psurf);
1258 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),ptproj,tgint);
1260 case IntPatch_Analytic :
1262 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&lin));
1263 Standard_Boolean ok = alin->FindParameter(Psurf,parproj);
1266 Standard_Boolean bid = alin->D1(parproj,ptbid,tgint);
1268 Standard_Real domaininf,domainsup,paramproche;
1269 Standard_Boolean boolbid;
1270 domaininf = alin->FirstParameter(boolbid);
1271 domainsup = alin->LastParameter(boolbid);
1272 if(parproj>=domaininf && parproj<=domainsup) {
1273 Standard_Real DeltaParam = 0.001 * (domainsup-domaininf);
1274 if(parproj-domaininf >= domainsup-parproj) {
1275 //-- On decale le point vers le parametre le plus eloigne.
1276 DeltaParam = -DeltaParam;
1278 Standard_Integer kountbid = 0;
1279 paramproche = parproj;
1281 paramproche+=DeltaParam;
1283 bid = alin->D1(paramproche,ptbid,tgint);
1285 while(bid==Standard_False && kountbid<5);
1289 //-- cout << "Pb sur Calcul de derivee ALine " << endl;
1290 tgint.SetCoord(0.,0.,0.);
1291 return(Standard_False);
1299 //-- cout << "---- Pb sur ligne analytique dans SingleLine" << endl;
1300 //-- cout << " Find Parameter"<<endl;
1301 return Standard_False;
1305 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1308 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1313 if (Psurf.Distance(ptproj) <= Tol) {
1316 retvalue = Standard_True;
1319 retvalue = Standard_False;
1325 void ProcessSegments (const IntPatch_SequenceOfSegmentOfTheSOnBounds& listedg,
1326 IntPatch_SequenceOfLine& slin,
1327 const IntSurf_Quadric& Quad1,
1328 const IntSurf_Quadric& Quad2,
1329 const Standard_Boolean OnFirst,
1330 const Standard_Real TolArc) {
1332 Standard_Integer i,j,k;
1333 Standard_Integer nbedg = listedg.Length();
1334 Standard_Integer Nblines,Nbpts;
1336 Handle(Adaptor2d_HCurve2d) arcRef;
1337 IntPatch_Point ptvtx, newptvtx;
1339 Handle(IntPatch_RLine) rline; //-- On fait rline = new ... par la suite
1341 IntPatch_TheSegmentOfTheSOnBounds thesegsol;
1342 IntPatch_ThePathPointOfTheSOnBounds PStartf,PStartl;
1343 Standard_Boolean dofirst,dolast,procf,procl;
1345 Standard_Real paramf =0.,paraml =0.,U1 =0.,V1 =0.,U2 =0.,V2 =0.;
1348 IntSurf_TypeTrans trans1,trans2;
1349 IntSurf_Transition TRest,TArc;
1350 gp_Vec tgline,norm1,norm2,tgarc;
1358 for (i = 1; i <= nbedg; i++) {
1359 Standard_Boolean EdgeDegenere=Standard_False;
1360 thesegsol = listedg.Value(i);
1361 arcRef = thesegsol.Curve();
1364 rline = new IntPatch_RLine(Standard_False);
1366 rline->SetArcOnS1(arcRef);
1369 rline->SetArcOnS2(arcRef);
1372 // Traitement des points debut/fin du segment solution.
1374 dofirst = Standard_False;
1375 dolast = Standard_False;
1376 procf = Standard_False;
1377 procl = Standard_False;
1379 if (thesegsol.HasFirstPoint()) {
1380 dofirst = Standard_True;
1381 PStartf = thesegsol.FirstPoint();
1382 paramf = PStartf.Parameter();
1384 if (thesegsol.HasLastPoint()) {
1385 dolast = Standard_True;
1386 PStartl = thesegsol.LastPoint();
1387 paraml = PStartl.Parameter();
1390 if (dofirst && dolast) { // determination de la transition de la ligne
1391 arcRef->D1(0.5*(paramf+paraml),p2d,d2d);
1393 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1396 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1398 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1400 if(d1u.Magnitude()<1e-7) { //-- edge degenere ?
1401 EdgeDegenere=Standard_True;
1402 for(Standard_Integer edg=0;edg<=10;edg++) {
1403 arcRef->D1(paramf+(paraml-paramf)*edg*0.1,p2d,d2d);
1405 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1408 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1411 if(d1u.Magnitude()>1e-7) {
1412 EdgeDegenere=Standard_False;
1415 rline = new IntPatch_RLine(Standard_False);
1417 rline->SetArcOnS1(arcRef);
1420 rline->SetArcOnS2(arcRef);
1424 norm2 = Quad2.Normale(valpt);
1425 norm1 = Quad1.Normale(valpt);
1427 if (tgline.DotCross(norm2,norm1) > 0.000000001) {
1428 trans1 = IntSurf_Out;
1429 trans2 = IntSurf_In;
1431 else if (tgline.DotCross(norm2,norm1) < -0.000000001){
1432 trans1 = IntSurf_In;
1433 trans2 = IntSurf_Out;
1436 trans1 = trans2 = IntSurf_Undecided;
1438 rline = new IntPatch_RLine(Standard_False,trans1,trans2);
1440 rline->SetArcOnS1(arcRef);
1443 rline->SetArcOnS2(arcRef);
1448 rline = new IntPatch_RLine(Standard_False);
1450 rline->SetArcOnS1(arcRef);
1453 rline->SetArcOnS2(arcRef);
1457 if (dofirst || dolast) {
1458 Nblines = slin.Length();
1459 for (j=1; j<=Nblines; j++) {
1460 const Handle(IntPatch_Line)& slinj = slin(j);
1461 typ = slinj->ArcType();
1462 if (typ == IntPatch_Analytic) {
1463 Nbpts = (*((Handle(IntPatch_ALine)*)&slinj))->NbVertex();
1465 else if (typ == IntPatch_Restriction) {
1466 Nbpts = (*((Handle(IntPatch_RLine)*)&slinj))->NbVertex();
1469 Nbpts = (*((Handle(IntPatch_GLine)*)&slinj))->NbVertex();
1471 for (k=1; k<=Nbpts;k++) {
1472 if (typ == IntPatch_Analytic) {
1473 ptvtx = (*((Handle(IntPatch_ALine)*)&slinj))->Vertex(k);
1475 else if (typ == IntPatch_Restriction) {
1476 ptvtx = (*((Handle(IntPatch_RLine)*)&slinj))->Vertex(k);
1479 ptvtx = (*((Handle(IntPatch_GLine)*)&slinj))->Vertex(k);
1482 if (EdgeDegenere==Standard_False && dofirst) {
1483 if (ptvtx.Value().Distance(PStartf.Value()) <=TolArc) {
1484 ptvtx.SetMultiple(Standard_True);
1485 if (typ == IntPatch_Analytic) {
1486 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,ptvtx);
1488 else if (typ == IntPatch_Restriction) {
1489 (*((Handle(IntPatch_RLine)*)&slinj))->Replace(k,ptvtx);
1492 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,ptvtx);
1495 newptvtx.SetParameter(paramf);
1496 //Recalcul des transitions si point sur restriction
1498 arcRef->D1(paramf,p2d,d2d);
1500 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1503 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1505 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1506 if (ptvtx.IsOnDomS1()) {
1507 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS1();
1508 thearc->D1(ptvtx.ParameterOnArc1(),p2d,d2d);
1509 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1510 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1511 norm1 = d1u.Crossed(d1v);
1512 if(norm1.SquareMagnitude()<1e-16) {
1513 TRest.SetValue(Standard_True,IntSurf_Undecided);
1514 TArc.SetValue(Standard_True,IntSurf_Undecided);
1517 IntSurf::MakeTransition(tgline,tgarc,norm1,TRest,TArc);
1519 newptvtx.SetArc(Standard_True,thearc,ptvtx.ParameterOnArc1(),
1522 if (ptvtx.IsOnDomS2()) {
1523 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS2();
1524 thearc->D1(ptvtx.ParameterOnArc2(),p2d,d2d);
1525 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1526 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1527 norm2 = d1u.Crossed(d1v);
1528 if(norm2.SquareMagnitude()<1e-16) {
1529 TRest.SetValue(Standard_True,IntSurf_Undecided);
1530 TArc.SetValue(Standard_True,IntSurf_Undecided);
1533 IntSurf::MakeTransition(tgline,tgarc,norm2,TRest,TArc);
1535 newptvtx.SetArc(Standard_False,thearc,ptvtx.ParameterOnArc2(),
1539 rline->AddVertex(newptvtx);
1541 procf=Standard_True;
1542 rline->SetFirstPoint(rline->NbVertex());
1546 if (EdgeDegenere==Standard_False && dolast) {
1547 if (ptvtx.Value().Distance(PStartl.Value()) <=TolArc) {
1548 ptvtx.SetMultiple(Standard_True);
1549 if (typ == IntPatch_Analytic) {
1550 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,ptvtx);
1552 else if (typ == IntPatch_Restriction) {
1553 (*((Handle(IntPatch_RLine)*)&slinj))->Replace(k,ptvtx);
1556 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,ptvtx);
1560 newptvtx.SetParameter(paraml);
1561 //Recalcul des transitions si point sur restriction
1563 arcRef->D1(paraml,p2d,d2d);
1565 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1568 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1570 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1571 if (ptvtx.IsOnDomS1()) {
1572 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS1();
1573 thearc->D1(ptvtx.ParameterOnArc1(),p2d,d2d);
1574 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1575 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1576 norm1 = d1u.Crossed(d1v);
1577 if(norm1.SquareMagnitude()<1e-16) {
1578 TRest.SetValue(Standard_True,IntSurf_Undecided);
1579 TArc.SetValue(Standard_True,IntSurf_Undecided);
1582 IntSurf::MakeTransition(tgline,tgarc,norm1,TRest,TArc);
1584 newptvtx.SetArc(Standard_True,thearc,ptvtx.ParameterOnArc1(),
1587 if (ptvtx.IsOnDomS2()) {
1588 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS2();
1589 thearc->D1(ptvtx.ParameterOnArc2(),p2d,d2d);
1590 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1591 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1592 norm2 = d1u.Crossed(d1v);
1593 if(norm2.SquareMagnitude()<1e-16) {
1594 TRest.SetValue(Standard_True,IntSurf_Undecided);
1595 TArc.SetValue(Standard_True,IntSurf_Undecided);
1598 IntSurf::MakeTransition(tgline,tgarc,norm2,TRest,TArc);
1600 newptvtx.SetArc(Standard_False,thearc,ptvtx.ParameterOnArc2(),
1604 rline->AddVertex(newptvtx);
1606 procl=Standard_True;
1607 rline->SetLastPoint(rline->NbVertex());
1612 // Si on a traite le pt debut et/ou fin, on ne doit pas recommencer si
1613 // il (ils) correspond(ent) a un point multiple.
1616 dofirst = Standard_False;
1619 dolast = Standard_False;
1623 // Si on n a pas trouve le point debut et./ou fin sur une des lignes
1624 // d intersection, il faut quand-meme le placer sur la restriction solution
1627 ptvtx.SetValue(PStartf.Value(),PStartf.Tolerance(),Standard_False);
1628 Quad1.Parameters(PStartf.Value(),U1,V1);
1629 Quad2.Parameters(PStartf.Value(),U2,V2);
1630 ptvtx.SetParameters(U1,V1,U2,V2);
1631 ptvtx.SetParameter(paramf);
1632 if (! PStartf.IsNew()) {
1633 IntSurf_Transition Transline;
1634 IntSurf_Transition Transarc;
1635 ptvtx.SetVertex(OnFirst,PStartf.Vertex());
1636 ptvtx.SetArc(OnFirst,PStartf.Arc(),PStartf.Parameter(),
1637 Transline,Transarc);
1640 rline->AddVertex(ptvtx);
1641 rline->SetFirstPoint(rline->NbVertex());
1644 ptvtx.SetValue(PStartl.Value(),PStartl.Tolerance(),Standard_False);
1645 Quad1.Parameters(PStartl.Value(),U1,V1);
1646 Quad2.Parameters(PStartl.Value(),U2,V2);
1647 ptvtx.SetParameters(U1,V1,U2,V2);
1648 ptvtx.SetParameter(paraml);
1649 if (! PStartl.IsNew()) {
1650 IntSurf_Transition Transline;
1651 IntSurf_Transition Transarc;
1653 ptvtx.SetVertex(OnFirst,PStartl.Vertex());
1654 ptvtx.SetArc(OnFirst,PStartl.Arc(),PStartl.Parameter(),
1655 Transline,Transarc);
1658 rline->AddVertex(ptvtx);
1659 rline->SetLastPoint(rline->NbVertex());
1665 inline const gp_Pnt& PointValue(const Handle(IntPatch_RLine) theRLine,
1666 const Standard_Integer theIndex)
1668 return theRLine->Point(theIndex).Value();
1671 inline const gp_Pnt& VertexValue( const Handle(IntPatch_RLine) theRLine,
1672 const Standard_Integer theIndex)
1674 return theRLine->Vertex(theIndex).Value();
1677 static Standard_Real SquareDistance(const Handle(IntPatch_GLine)& theGLine,
1679 Extrema_ExtPC& theExtr)
1681 Standard_Real aSQDist = RealLast();
1682 switch(theGLine->ArcType())
1685 aSQDist = theGLine->Line().SquareDistance(theP);
1687 case IntPatch_Circle:
1688 aSQDist = theGLine->Circle().SquareDistance(theP);
1691 theExtr.Perform(theP);
1692 if(!theExtr.IsDone() || !theExtr.NbExt())
1694 //Lines are not overlapped
1698 aSQDist = theExtr.SquareDistance(1);
1699 const Standard_Integer aNbExtr = theExtr.NbExt();
1700 for ( Standard_Integer i = 2; i <= aNbExtr; i++)
1702 const Standard_Real aSQD = theExtr.SquareDistance(i);
1713 static Standard_Boolean IsRLineGood(const IntSurf_Quadric& Quad1,
1714 const IntSurf_Quadric& Quad2,
1715 const Handle(IntPatch_GLine) theGLine,
1716 const Handle(IntPatch_RLine) theRLine,
1717 const Standard_Real theTol)
1719 const Standard_Real aSQTol = theTol*theTol;
1720 const IntPatch_IType aGType = theGLine->ArcType();
1721 Standard_Integer aNbPntsM1 = 0;
1723 const gp_Pnt& (*Value) (const Handle(IntPatch_RLine), const Standard_Integer);
1725 if(theRLine->HasPolygon())
1727 aNbPntsM1 = theRLine->NbPnts()-1;
1732 aNbPntsM1 = theRLine->NbVertex()-1;
1733 Value = VertexValue;
1737 return Standard_False;
1739 Extrema_ExtPC anExtr;
1740 GeomAdaptor_Curve anAC;
1741 Handle(Geom_Curve) aCurv;
1743 if(aGType == IntPatch_Ellipse)
1744 aCurv = new Geom_Ellipse(theGLine->Ellipse());
1745 else if(aGType == IntPatch_Parabola)
1746 aCurv = new Geom_Parabola(theGLine->Parabola());
1747 else if(aGType == IntPatch_Hyperbola)
1748 aCurv = new Geom_Hyperbola(theGLine->Hyperbola());
1752 const Standard_Real anUinf = aCurv->FirstParameter(),
1753 anUsup = aCurv->LastParameter();
1754 anAC.Load(aCurv, anUinf, anUsup);
1755 anExtr.Initialize(anAC, anUinf, anUsup);
1760 gp_Pnt aP1(Value(theRLine, 1)), aP2(Value(theRLine, 2));
1762 if(aP1.SquareDistance(aP2) < aSQTol)
1764 //RLine is degenerated
1765 return Standard_False;
1769 if(theRLine->IsArcOnS1())
1771 const Handle(Adaptor2d_HCurve2d)& anAC2d = theRLine->ArcOnS1();
1772 const Standard_Real aParF = anAC2d->FirstParameter(),
1773 aParL = anAC2d->LastParameter();
1774 gp_Pnt2d aP2d(anAC2d->Value(0.5*(aParF+aParL)));
1775 aPMid = Quad1.Value(aP2d.X(), aP2d.Y());
1779 const Handle(Adaptor2d_HCurve2d)& anAC2d = theRLine->ArcOnS2();
1780 const Standard_Real aParF = anAC2d->FirstParameter(),
1781 aParL = anAC2d->LastParameter();
1782 gp_Pnt2d aP2d(anAC2d->Value(0.5*(aParF+aParL)));
1783 aPMid = Quad2.Value(aP2d.X(), aP2d.Y());
1786 const Standard_Real aSQDist = SquareDistance(theGLine, aPMid, anExtr);
1787 return (aSQDist > aSQTol);
1790 for(Standard_Integer i = 2; i <= aNbPntsM1; i++)
1792 const gp_Pnt aP(Value(theRLine, i));
1793 const Standard_Real aSQDist = SquareDistance(theGLine, aP, anExtr);
1795 if(aSQDist > aSQTol)
1796 return Standard_True;
1799 return Standard_False;
1803 void ProcessRLine (IntPatch_SequenceOfLine& slin,
1804 // const Handle(Adaptor3d_HSurface)& Surf1,
1805 // const Handle(Adaptor3d_HSurface)& Surf2,
1806 const IntSurf_Quadric& Quad1,
1807 const IntSurf_Quadric& Quad2,
1808 const Standard_Real _TolArc,
1809 const Standard_Boolean theIsReqToKeepRLine) {
1811 // On cherche a placer sur les restrictions solutions les points "multiples"
1812 // des autres lignes d intersection
1813 // Pas forcemment le plus efficace : on rique de projeter plusieurs fois
1814 // le meme point sur la meme restriction...
1816 Standard_Real TolArc=100.0*_TolArc;
1817 if(TolArc>0.1) TolArc=0.1;
1819 Standard_Integer i,j,k;
1820 Standard_Integer Nblin,Nbvtx, Nbpt;
1822 Standard_Boolean OnFirst = Standard_False,project = Standard_False,keeppoint = Standard_False;
1824 Handle(Adaptor2d_HCurve2d) arcref;
1825 Standard_Real paramproj,paramf,paraml;
1827 TColgp_SequenceOfPnt seq_Pnt3d;
1828 TColStd_SequenceOfReal seq_Real;
1830 gp_Pnt ptproj,toproj,valpt;
1834 gp_Vec d1u,d1v,tgrest,tgarc,norm;
1835 IntSurf_Transition TRest,TArc;
1837 Standard_Real U =0.,V =0.;
1841 IntPatch_Point Ptvtx,newptvtx;
1843 IntPatch_IType typ1,typ2;
1846 Nblin = slin.Length();
1847 for (i=1; i<=Nblin; i++) {
1848 const Handle(IntPatch_Line)& slini = slin(i);
1849 typ1 = slini->ArcType();
1851 Standard_Boolean HasToDeleteRLine = Standard_False;
1852 if (typ1 == IntPatch_Restriction) {
1856 for (j=1; j<=Nblin; j++) {
1857 const Handle(IntPatch_Line)& slinj = slin(j);
1858 Nbpt = seq_Pnt3d.Length(); // important que ce soit ici
1859 typ2 = slinj->ArcType();
1860 if (typ2 != IntPatch_Restriction) {
1861 //-- arcref = (*((Handle(IntPatch_RLine)*)&slini))->Arc();
1862 //-- OnFirst = (*((Handle(IntPatch_RLine)*)&slini))->IsOnFirstSurface();
1864 //-- DES CHOSES A FAIRE ICI
1865 if((*((Handle(IntPatch_RLine)*)&slini))->IsArcOnS1()) {
1866 OnFirst=Standard_True;
1867 arcref= (*((Handle(IntPatch_RLine)*)&slini))->ArcOnS1();
1869 else if((*((Handle(IntPatch_RLine)*)&slini))->IsArcOnS2()) {
1870 arcref= (*((Handle(IntPatch_RLine)*)&slini))->ArcOnS2();
1871 OnFirst=Standard_False;
1873 if ((*((Handle(IntPatch_RLine)*)&slini))->HasFirstPoint()) {
1874 paramf = (*((Handle(IntPatch_RLine)*)&slini))->FirstPoint().ParameterOnLine();
1877 // cout << "Pas de param debut sur rst solution" << endl;
1878 paramf = RealFirst();
1880 if ((*((Handle(IntPatch_RLine)*)&slini))->HasLastPoint()) {
1881 paraml = (*((Handle(IntPatch_RLine)*)&slini))->LastPoint().ParameterOnLine();
1884 // cout << "Pas de param debut sur rst solution" << endl;
1885 paraml = RealLast();
1888 if (typ2 == IntPatch_Analytic) {
1889 Nbvtx = (*((Handle(IntPatch_ALine)*)&slinj))->NbVertex();
1892 Nbvtx = (*((Handle(IntPatch_GLine)*)&slinj))->NbVertex();
1896 Standard_Boolean EdgeDegenere=Standard_True;
1897 for(Standard_Integer edg=0;EdgeDegenere && edg<=10;edg++) {
1898 arcref->D1(paramf+(paraml-paramf)*edg*0.1,p2d,d2d);
1900 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1903 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1905 if(d1u.Magnitude()>1e-7) {
1906 EdgeDegenere=Standard_False;
1910 for (k=1; EdgeDegenere==Standard_False && k<=Nbvtx; k++) {
1911 if (typ2 == IntPatch_Analytic) {
1912 Ptvtx = (*((Handle(IntPatch_ALine)*)&slinj))->Vertex(k);
1915 Ptvtx = (*((Handle(IntPatch_GLine)*)&slinj))->Vertex(k);
1917 if ((OnFirst && !Ptvtx.IsOnDomS1()) ||
1918 (!OnFirst && !Ptvtx.IsOnDomS2())) {
1919 // Si OnFirst && OnDomS1, c est qu on est a une extremite
1920 // ca doit etre traite par Process Segment...
1921 project = Standard_True;
1922 keeppoint = Standard_False;
1923 toproj = Ptvtx.Value();
1925 Standard_Integer jj;
1926 for (jj = 1; jj <= Nbpt; jj++) {
1927 //for (Standard_Integer jj = 1; jj <= Nbpt; jj++) {
1928 if (toproj.Distance(seq_Pnt3d(jj)) < _TolArc) {
1929 project = Standard_False;
1933 if (project) { //-- il faut projeter pour trouver le point sur la rline.
1935 Ptvtx.ParametersOnS1(U,V);
1938 Ptvtx.ParametersOnS2(U,V);
1941 project = IntPatch_HInterTool::Project(arcref,gp_Pnt2d(U,V),
1946 ptproj = Quad1.Value(p2d.X(),p2d.Y());
1949 ptproj = Quad2.Value(p2d.X(),p2d.Y());
1951 if ((toproj.Distance(ptproj) <=100*TolArc) &&
1952 (paramproj >= paramf) && (paramproj <= paraml)){
1954 newptvtx.SetParameter(paramproj);
1955 keeppoint = Standard_True;
1956 seq_Pnt3d.Append(toproj);
1957 seq_Real.Append(paramproj);
1959 //-- verifier que si la restriction arcref est trouvee, elle porte ce vertex
1960 for (int ri=1; ri<=Nblin; ri++) {
1961 const Handle(IntPatch_Line)& slinri = slin(ri);
1962 if (slinri->ArcType() == IntPatch_Restriction) {
1963 if(OnFirst && (*((Handle(IntPatch_RLine)*)&slinri))->IsArcOnS1()) {
1964 if(arcref == (*((Handle(IntPatch_RLine)*)&slinri))->ArcOnS1()) {
1965 (*((Handle(IntPatch_RLine)*)&slinri))->AddVertex(newptvtx);
1966 //printf("\n ImpImpIntersection_0.gxx CAS1 \n");
1969 else if(OnFirst==Standard_False && (*((Handle(IntPatch_RLine)*)&slinri))->IsArcOnS2()) {
1970 if(arcref == (*((Handle(IntPatch_RLine)*)&slinri))->ArcOnS2()) {
1971 (*((Handle(IntPatch_RLine)*)&slinri))->AddVertex(newptvtx);
1972 //printf("\n ImpImpIntersection_0.gxx CAS2 \n");
1977 // -- --------------------------------------------------
1982 keeppoint = Standard_True;
1984 newptvtx.SetParameter(seq_Real(jj));
1987 Ptvtx.SetMultiple(Standard_True);
1988 newptvtx.SetMultiple(Standard_True);
1990 if (typ2 == IntPatch_Analytic) {
1991 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,Ptvtx);
1994 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,Ptvtx);
1997 if (Ptvtx.IsOnDomS1() || Ptvtx.IsOnDomS2()) {
1999 arcref->D1(newptvtx.ParameterOnLine(),p2d,d2d);
2001 if (OnFirst) { // donc OnDomS2
2002 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
2003 tgrest.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
2005 const Handle(Adaptor2d_HCurve2d)& thearc = Ptvtx.ArcOnS2();
2006 thearc->D1(Ptvtx.ParameterOnArc2(),p2d,d2d);
2007 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
2008 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
2009 norm = d1u.Crossed(d1v); //Quad2.Normale(valpt);
2010 if(norm.SquareMagnitude()<1e-16) {
2011 TRest.SetValue(Standard_True,IntSurf_Undecided);
2012 TArc.SetValue(Standard_True,IntSurf_Undecided);
2015 IntSurf::MakeTransition(tgrest,tgarc,norm,TRest,TArc);
2017 newptvtx.SetArc(Standard_False,thearc,
2018 Ptvtx.ParameterOnArc2(),TRest,TArc);
2021 else { // donc OnDomS1
2022 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
2023 tgrest.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
2025 const Handle(Adaptor2d_HCurve2d)& thearc = Ptvtx.ArcOnS1();
2026 thearc->D1(Ptvtx.ParameterOnArc1(),p2d,d2d);
2027 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
2028 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
2029 norm = d1u.Crossed(d1v); //Quad1.Normale(valpt);
2030 if(norm.SquareMagnitude()<1e-16) {
2031 TRest.SetValue(Standard_True,IntSurf_Undecided);
2032 TArc.SetValue(Standard_True,IntSurf_Undecided);
2035 IntSurf::MakeTransition(tgrest,tgarc,norm,TRest,TArc);
2037 newptvtx.SetArc(Standard_True,thearc,
2038 Ptvtx.ParameterOnArc1(),TRest,TArc);
2040 } //-- if (Ptvtx.IsOnDomS1() || Ptvtx.IsOnDomS2())
2042 (*((Handle(IntPatch_RLine)*)&slini))->AddVertex(newptvtx);
2044 } //-- if (keeppoint)
2045 } //-- if ((OnFirst && !Ptvtx.IsOnDomS1())||(!OnFirst && !Ptvtx.IsOnDomS2()))
2046 } //-- boucle sur les vertex
2048 if(!theIsReqToKeepRLine)
2050 Handle(IntPatch_GLine) aGL = Handle(IntPatch_GLine)::DownCast(slinj);
2054 HasToDeleteRLine = !IsRLineGood(Quad1, Quad2, aGL,
2055 Handle(IntPatch_RLine)::DownCast(slini), TolArc);
2058 if(HasToDeleteRLine)
2063 } //-- if (typ2 != IntPatch_Restriction)
2064 } //-- for (j=1; j<=Nblin; j++)
2065 } //-- if (typ1 == IntPatch_Restriction)
2067 if(HasToDeleteRLine)
2071 Nblin = slin.Length();
2074 } //-- for (i=1; i<=Nblin; i++)