0026937: Eliminate NO_CXX_EXCEPTION macro support
[occt.git] / src / Convert / Convert_CircleToBSplineCurve.cxx
1 // Copyright (c) 1995-1999 Matra Datavision
2 // Copyright (c) 1999-2014 OPEN CASCADE SAS
3 //
4 // This file is part of Open CASCADE Technology software library.
5 //
6 // This library is free software; you can redistribute it and/or modify it under
7 // the terms of the GNU Lesser General Public License version 2.1 as published
8 // by the Free Software Foundation, with special exception defined in the file
9 // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
10 // distribution for complete text of the license and disclaimer of any warranty.
11 //
12 // Alternatively, this file may be used under the terms of Open CASCADE
13 // commercial license or contractual agreement.
14
15 //JCV 16/10/91
16
17 #include <Convert_CircleToBSplineCurve.hxx>
18 #include <gp.hxx>
19 #include <gp_Ax2d.hxx>
20 #include <gp_Circ2d.hxx>
21 #include <gp_Dir2d.hxx>
22 #include <gp_Trsf2d.hxx>
23 #include <Precision.hxx>
24 #include <Standard_DomainError.hxx>
25 #include <TColgp_Array1OfPnt2d.hxx>
26 #include <TColgp_HArray1OfPnt2d.hxx>
27 #include <TColStd_Array1OfReal.hxx>
28 #include <TColStd_HArray1OfInteger.hxx>
29 #include <TColStd_HArray1OfReal.hxx>
30
31 //Attention :
32 //To avoid use of persistent tables in the fields
33 //the tables are dimensioned to the maximum (TheNbKnots and TheNbPoles)
34 //that correspond to the full circle. For an arc of circle there is a
35 //need of less poles and nodes, that is why the fields
36 //nbKnots and nbPoles are present and updated in the 
37 //constructor of an arc of B-spline circle to take into account 
38 //the real number of poles and nodes.
39 // parametrization :
40 // Reference : Rational B-spline for Curve and Surface Representation
41 //             Wayne Tiller  CADG September 1983
42 // x(t) = (1 - t^2) / (1 + t^2)
43 // y(t) =  2 t / (1 + t^2)
44 // then t = Sqrt(2) u /  ((Sqrt(2) - 2) u + 2)
45 // => u = 2 t / (Sqrt(2) + (2 - Sqrt(2)) t)
46 //=======================================================================
47 //function : Convert_CircleToBSplineCurve
48 //purpose  : this constructs a periodic circle 
49 //=======================================================================
50 Convert_CircleToBSplineCurve::Convert_CircleToBSplineCurve 
51   (const gp_Circ2d& C, const Convert_ParameterisationType Parameterisation)
52 :Convert_ConicToBSplineCurve(0,0,0){
53
54   Standard_Integer ii ;
55
56   Standard_Real R,
57   value ;
58   Handle(TColStd_HArray1OfReal) CosNumeratorPtr,
59   SinNumeratorPtr ;
60
61
62   R = C.Radius() ; 
63   if (Parameterisation != Convert_TgtThetaOver2 &&
64     Parameterisation != Convert_RationalC1) {
65     // In case if BuildCosAndSin does not know how to manage the periodicity
66     // => trim on 0,2*PI
67     isperiodic = Standard_False;
68     Convert_ConicToBSplineCurve::
69       BuildCosAndSin(Parameterisation,
70                      0, 2*M_PI,
71                      CosNumeratorPtr,
72                      SinNumeratorPtr,
73                      weights,
74                      degree,
75                      knots,
76                      mults);
77       }   
78   else { 
79     isperiodic = Standard_True;
80     Convert_ConicToBSplineCurve::
81       BuildCosAndSin(Parameterisation,
82                      CosNumeratorPtr,
83                      SinNumeratorPtr,
84                      weights,
85                      degree,
86                      knots,
87                      mults);
88   }
89
90
91   nbPoles = CosNumeratorPtr->Length();
92   nbKnots = knots->Length();
93
94   poles = 
95     new TColgp_HArray1OfPnt2d(1,nbPoles);
96
97
98   gp_Dir2d Ox = C.XAxis().Direction();
99   gp_Dir2d Oy = C.YAxis().Direction();
100   gp_Trsf2d Trsf;
101   Trsf.SetTransformation( C.XAxis(), gp::OX2d());
102   if  ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
103     value = R ;
104   }
105   else {
106     value = -R ;
107    }
108   
109   // Replace the bspline in the reference of the circle.
110   // and calculate the weight of the bspline.
111
112   for (ii = 1; ii <= nbPoles ; ii++) {
113      poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
114      poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
115      poles->ChangeArray1()(ii).Transform( Trsf); 
116    }
117
118 }
119 //=======================================================================
120 //function : Convert_CircleToBSplineCurve
121 //purpose  : this constructs a non periodic circle
122 //=======================================================================
123
124 Convert_CircleToBSplineCurve::Convert_CircleToBSplineCurve 
125   (const gp_Circ2d& C, 
126    const Standard_Real  UFirst,
127    const Standard_Real  ULast,
128    const Convert_ParameterisationType Parameterisation)
129 :Convert_ConicToBSplineCurve(0,0,0)
130 {
131   Standard_Real delta = ULast - UFirst ;
132   Standard_Real Eps = Precision::PConfusion();
133
134   if ( (delta > (2*M_PI + Eps)) || (delta <= 0.0e0) ) {
135     throw Standard_DomainError( "Convert_CircleToBSplineCurve");
136   }
137
138   Standard_Integer ii;
139   Standard_Real R, value ;
140   Handle(TColStd_HArray1OfReal) CosNumeratorPtr,SinNumeratorPtr ;
141
142
143   R = C.Radius() ;    
144   isperiodic = Standard_False;
145   Convert_ConicToBSplineCurve::BuildCosAndSin(Parameterisation,
146                                               UFirst,
147                                               ULast,
148                                               CosNumeratorPtr,
149                                               SinNumeratorPtr,
150                                               weights,
151                                               degree,
152                                               knots,
153                                               mults) ;
154
155
156
157   nbPoles = CosNumeratorPtr->Length();
158   nbKnots = knots->Length();
159
160   poles = 
161     new TColgp_HArray1OfPnt2d(1,nbPoles)   ;
162
163   gp_Dir2d Ox = C.XAxis().Direction();
164   gp_Dir2d Oy = C.YAxis().Direction();
165   gp_Trsf2d Trsf;
166   Trsf.SetTransformation( C.XAxis(), gp::OX2d());
167   if  ( Ox.X() * Oy.Y() - Ox.Y() * Oy.X() > 0.0e0) {
168     value = R ;
169   }
170   else {
171     value = -R ;
172    }
173   
174   // Replace the bspline in the reference of the circle.
175   // and calculate the weight of the bspline.
176
177   for (ii = 1; ii <= nbPoles ; ii++) {
178      poles->ChangeArray1()(ii).SetCoord(1, R * CosNumeratorPtr->Value(ii)) ;
179      poles->ChangeArray1()(ii).SetCoord(2, value * SinNumeratorPtr->Value(ii)) ;
180      poles->ChangeArray1()(ii).Transform( Trsf); 
181    }
182
183 }
184