0022922: Clean up warnings on uninitialized / unused variables
[occt.git] / src / IntPatch / IntPatch_ImpImpIntersection_0.gxx
CommitLineData
7fd59977 1// File: IntPatch_ImpImpIntersection_0.gxx
2// Created: Thu May 7 08:47:45 1992
3// Author: Jacques GOUSSARD
4// Copyright: OPEN CASCADE 1992
5
6// Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455
7
8static void PutPointsOnLine(const Handle(Adaptor3d_HSurface)& S1,
9 const Handle(Adaptor3d_HSurface)& S2,
10 const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
11 const IntPatch_SequenceOfLine&,
12 const Standard_Boolean,
13 const Handle(Adaptor3d_TopolTool)&,
14 const IntSurf_Quadric&,
15 const IntSurf_Quadric&,
16 const Standard_Boolean,
17 const Standard_Real);
18
19static Standard_Boolean MultiplePoint (const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
20 const Handle(Adaptor3d_TopolTool)&,
21 const IntSurf_Quadric&,
22 const gp_Vec&,
23 const IntPatch_SequenceOfLine&,
24 TColStd_Array1OfInteger&,
25 TColStd_Array1OfInteger&,
26 const Standard_Integer,
27 const Standard_Boolean);
28
29static Standard_Boolean PointOnSecondDom (const IntPatch_SequenceOfPathPointOfTheSOnBounds&,
30 const Handle(Adaptor3d_TopolTool)&,
31 const IntSurf_Quadric&,
32 const gp_Vec&,
33 const gp_Vec&,
34 const Handle(IntPatch_Line)&,
35 TColStd_Array1OfInteger&,
36 const Standard_Integer);
37
38static Standard_Boolean SingleLine (const gp_Pnt&,
39 const Handle(IntPatch_Line)&,
40 const Standard_Real,
41 Standard_Real&,
42 gp_Vec&);
43
44
45static Standard_Boolean FindLine (gp_Pnt&,
46 const IntPatch_SequenceOfLine&,
47 const Standard_Real,
48 Standard_Real&,
49 gp_Vec&,
50 Standard_Integer&,
51 Standard_Integer,
52 const Handle(Adaptor2d_HCurve2d)&,
53 Standard_Real&,
54 gp_Pnt& pointonarc,
55 const IntSurf_Quadric&);
56
57static void ProcessSegments (const IntPatch_SequenceOfSegmentOfTheSOnBounds&,
58 IntPatch_SequenceOfLine&,
59 const IntSurf_Quadric&,
60 const IntSurf_Quadric&,
61 const Standard_Boolean,
62 const Standard_Real);
63
64static void ProcessRLine (IntPatch_SequenceOfLine&,
65#ifndef DEB
66 const IntSurf_Quadric&,
67 const IntSurf_Quadric&,
68#else
69 const Handle(Adaptor3d_HSurface)&,
70 const Handle(Adaptor3d_HSurface)&,
71#endif
72 const Standard_Real);
73
74
75
76
77//-- le calcul de dist est completement faux ds la routine ci dessous a revoir (lbr le 18 nov 97)
78Standard_Boolean IntersectionWithAnArc(gp_Pnt& PSurf,
79 const Handle(IntPatch_ALine)& alin,
80 Standard_Real& para,
81 const Handle(Adaptor2d_HCurve2d)& thearc,
82 Standard_Real& _theparameteronarc,
83 gp_Pnt& thepointonarc,
84 const IntSurf_Quadric& QuadSurf,
85 const Standard_Real u0alin,
86 const Standard_Real u1alin,
87 Standard_Real& actualdist) {
88 Standard_Real dtheta,theta;
89#ifdef DEB
90 //Standard_Real u,v,A,B,C,cost,sint,sign;
91#endif
92 //-- recherche bete du point le plus proche de thearc->Value(...)
93 dtheta = (u1alin-u0alin)*0.01;
94 Standard_Real du=0.000000001;
95 Standard_Real distmin = RealLast();
96#ifndef DEB
97 Standard_Real thetamin = 0.;
98#else
99 Standard_Real thetamin;
100#endif
101 Standard_Real theparameteronarc = _theparameteronarc;
102 for(Standard_Real _theta=u0alin+dtheta; _theta<=u1alin-dtheta; _theta+=dtheta) {
103 gp_Pnt P=alin->Value(_theta);
104 Standard_Real d=P.Distance(PSurf);
105 if(d<distmin) {
106 thetamin=_theta;
107 distmin=d;
108 }
109 }
110#ifndef DEB
111 Standard_Real bestpara =0., besttheta =0., bestdist =0., distinit =0. ;
112#else
113 Standard_Real bestpara,besttheta,bestdist,distinit;
114#endif
115 //-- Distance initiale
116 {
117 gp_Pnt pp0 = alin->Value(thetamin);
118 Standard_Real ua0,va0;
119 QuadSurf.Parameters(pp0,ua0,va0);
120 gp_Pnt2d p2d;
121 gp_Vec2d d2d;
122 thearc->D1(theparameteronarc,p2d,d2d);
123 gp_Vec2d PaPr(gp_Pnt2d(ua0,va0),p2d);
124 distinit=PaPr.Magnitude();
125 }
126 theta = thetamin;
127 //-- recherche a partir de theta et theparameteronarc
128 Standard_Boolean cpasok=Standard_True;
129 Standard_Integer nbiter=0;
130 Standard_Real drmax = (thearc->LastParameter() - thearc->FirstParameter())*0.05;
131 Standard_Real damax = (u1alin-u0alin)*0.05;
132
133
134
135 bestdist = RealLast();
136
137 do {
138 Standard_Real ua0,va0,ua1,va1;
139 //-- alin->Curve().InternalUVValue(theta,ua0,va0,A,B,C,cost,sint,sign);
140 //-- alin->Curve().InternalUVValue(theta+du,ua1,va1,A,B,C,cost,sint,sign);
141 gp_Pnt pp0 = alin->Value(theta);
142 gp_Pnt pp1 = alin->Value(theta+du);
143 QuadSurf.Parameters(pp0,ua0,va0);
144 QuadSurf.Parameters(pp1,ua1,va1);
145
146
147 gp_Vec2d D1a((ua1-ua0)/du,(va1-va0)/du);
148 gp_Pnt2d p2d;
149 gp_Vec2d d2d;
150 thearc->D1(theparameteronarc,p2d,d2d);
151 gp_Vec2d PaPr(gp_Pnt2d(ua0,va0),p2d);
152
153 Standard_Real pbd=PaPr.Magnitude();
154 if(bestdist>pbd) {
155 bestdist = pbd;
156 bestpara = theparameteronarc;
157 besttheta = theta;
158 }
159
160 D1a.SetCoord(-D1a.X(),-D1a.Y());
161
162 Standard_Real d = D1a.X() * d2d.Y() - D1a.Y() * d2d.X();
163
164 Standard_Real da = (-PaPr.X())* d2d.Y() - (-PaPr.Y()) * d2d.X();
165 Standard_Real dr = D1a.X() * (-PaPr.Y()) - D1a.Y() * (-PaPr.X());
166 if(Abs(d)>1e-15) {
167 da/=d;
168 dr/=d;
169 }
170 else {
171 if(Abs(PaPr.X())>Abs(PaPr.Y())) {
172 Standard_Real xx=PaPr.X();
173 xx*=0.5;
174 if(D1a.X()) {
175 da = -xx/D1a.X();
176 }
177 if(d2d.X()) {
178 dr = -xx/d2d.X();
179 }
180 }
181 else {
182 Standard_Real yy=PaPr.Y();
183 yy*=0.5;
184 if(D1a.Y()) {
185 da = -yy/D1a.Y();
186 }
187 if(d2d.Y()) {
188 dr = -yy/d2d.Y();
189 }
190 }
191 }
192//-- Standard_Real da = -PaPr.Dot(D1a);
193//-- Standard_Real dr = -PaPr.Dot(d2d);
194
195 if(da<-damax) da=-damax;
196 else if(da>damax) da=damax;
197 if(dr<-drmax) dr=-drmax;
198 else if(dr>drmax) dr=drmax;
199
200 if(Abs(da)<1e-10 && Abs(dr)<1e-10) {
201 para = theta;
202 PSurf = alin->Value(para);
203 _theparameteronarc=theparameteronarc;
204 thepointonarc = alin->Value(para);
205 cpasok=Standard_False;
206//-- printf("\nt:%d",nbiter);
207 actualdist = bestdist;
208 return(Standard_True);
209 }
210 else {
211 theta+=da;
212 theparameteronarc+=dr;
213 if( theparameteronarc>thearc->LastParameter() ) {
214 theparameteronarc = thearc->LastParameter();
215 }
216 if( theparameteronarc<thearc->FirstParameter() ) {
217 theparameteronarc = thearc->FirstParameter();
218 }
219 if( theta < u0alin) {
220 theta = u0alin;
221 }
222 if( theta > u1alin-du) {
223 theta = u1alin-du-du;
224 }
225 }
226 nbiter++;
227 }
228 while(cpasok && nbiter<20);
229 if(bestdist < distinit) {
230 para = besttheta;
231 PSurf = alin->Value(para);
232 _theparameteronarc=bestpara;
233 thepointonarc = alin->Value(para);
234//-- printf("\nT:%d",nbiter);
235 actualdist=bestdist;
236 return(Standard_True);
237 }
238//-- printf("\nF:%d",nbiter);
239 return(Standard_False);
240}
241
242
243
244
245
246//-- ======================================================================
247static void Recadre(const Handle(Adaptor3d_HSurface)& myHS1,
248 const Handle(Adaptor3d_HSurface)& myHS2,
249 Standard_Real& u1,
250 Standard_Real& v1,
251 Standard_Real& u2,
252 Standard_Real& v2) {
253 Standard_Real f,l,lmf,fpls2;
254 GeomAbs_SurfaceType typs1 = myHS1->GetType();
255 GeomAbs_SurfaceType typs2 = myHS2->GetType();
256
257 Standard_Boolean myHS1IsUPeriodic,myHS1IsVPeriodic;
258 switch (typs1) {
259 case GeomAbs_Cylinder:
260 case GeomAbs_Cone:
261 case GeomAbs_Sphere:
262 {
263 myHS1IsUPeriodic = Standard_True;
264 myHS1IsVPeriodic = Standard_False;
265 break;
266 }
267 case GeomAbs_Torus:
268 {
269 myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_True;
270 break;
271 }
272 default:
273 {
274 //-- Le cas de biparametrees periodiques est gere en amont
275 myHS1IsUPeriodic = myHS1IsVPeriodic = Standard_False;
276 break;
277 }
278 }
279
280 Standard_Boolean myHS2IsUPeriodic,myHS2IsVPeriodic;
281 switch (typs2) {
282 case GeomAbs_Cylinder:
283 case GeomAbs_Cone:
284 case GeomAbs_Sphere:
285 {
286 myHS2IsUPeriodic = Standard_True;
287 myHS2IsVPeriodic = Standard_False;
288 break;
289 }
290 case GeomAbs_Torus:
291 {
292 myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_True;
293 break;
294 }
295 default:
296 {
297 //-- Le cas de biparametrees periodiques est gere en amont
298 myHS2IsUPeriodic = myHS2IsVPeriodic = Standard_False;
299 break;
300 }
301 }
302 if(myHS1IsUPeriodic) {
c6541a0c 303 lmf = M_PI+M_PI; //-- myHS1->UPeriod();
7fd59977 304 f = myHS1->FirstUParameter();
305 l = myHS1->LastUParameter();
306 fpls2=0.5*(f+l);
307 while((u1 < f)&&((fpls2-u1) > (u1+lmf-fpls2) )) { u1+=lmf; }
308 while((u1 > l)&&((u1-fpls2) > (fpls2-(u1-lmf)) )) { u1-=lmf; }
309
310 }
311 if(myHS1IsVPeriodic) {
c6541a0c 312 lmf = M_PI+M_PI; //-- myHS1->VPeriod();
7fd59977 313 f = myHS1->FirstVParameter();
314 l = myHS1->LastVParameter();
315 fpls2=0.5*(f+l);
316 while((v1 < f)&&((fpls2-v1) > (v1+lmf-fpls2) )) { v1+=lmf; }
317 while((v1 > l)&&((v1-fpls2) > (fpls2-(v1-lmf)) )) { v1-=lmf; }
318 //-- while(v1 < f) { v1+=lmf; }
319 //-- while(v1 > l) { v1-=lmf; }
320 }
321 if(myHS2IsUPeriodic) {
c6541a0c 322 lmf = M_PI+M_PI; //-- myHS2->UPeriod();
7fd59977 323 f = myHS2->FirstUParameter();
324 l = myHS2->LastUParameter();
325 fpls2=0.5*(f+l);
326 while((u2 < f)&&((fpls2-u2) > (u2+lmf-fpls2) )) { u2+=lmf; }
327 while((u2 > l)&&((u2-fpls2) > (fpls2-(u2-lmf)) )) { u2-=lmf; }
328 //-- while(u2 < f) { u2+=lmf; }
329 //-- while(u2 > l) { u2-=lmf; }
330 }
331 if(myHS2IsVPeriodic) {
c6541a0c 332 lmf = M_PI+M_PI; //-- myHS2->VPeriod();
7fd59977 333 f = myHS2->FirstVParameter();
334 l = myHS2->LastVParameter();
335 fpls2=0.5*(f+l);
336 while((v2 < f)&&((fpls2-v2) > (v2+lmf-fpls2) )) { v2+=lmf; }
337 while((v2 > l)&&((v2-fpls2) > (fpls2-(v2-lmf)) )) { v2-=lmf; }
338 //-- while(v2 < f) { v2+=lmf; }
339 //-- while(v2 > l) { v2-=lmf; }
340 }
341}
342//=======================================================================
343//function : PutPointsOnLine
344//purpose :
345//=======================================================================
346void PutPointsOnLine(const Handle(Adaptor3d_HSurface)& S1,
347 const Handle(Adaptor3d_HSurface)& S2,
348 const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
349 const IntPatch_SequenceOfLine& slin,
350 const Standard_Boolean OnFirst,
351 const Handle(Adaptor3d_TopolTool)& Domain,
352 const IntSurf_Quadric& QuadSurf,
353 const IntSurf_Quadric& OtherQuad,
354 const Standard_Boolean multpoint,
355 const Standard_Real Tolarc) {
356
357 // Traitement des point (de listpnt) de depart. On les replace sur
358 // la ligne d intersection, en leur affectant la transition correcte sur
359 // cette ligne.
360 Standard_Integer nbpnt = listpnt.Length();
361 Standard_Integer nblin=slin.Length();
362
363 if (!slin.Length() || !nbpnt) {
364 return;
365 }
366 //
367 Standard_Integer i,k;
368 Standard_Integer linenumber;
369 Standard_Real paraint,currentparameter,tolerance;
370 Standard_Real U1,V1,U2,V2;
371 Standard_Boolean goon;
372
373
374 gp_Pnt Psurf, ptbid;
375 gp_Vec Normale, Vtgint, Vtgrst;
376
377 gp_Vec d1u,d1v;
378 gp_Pnt2d p2d;
379 gp_Vec2d d2d;
380
381 IntSurf_Transition Transline,Transarc;
382
383 Handle(Adaptor2d_HCurve2d) currentarc;
384 Handle(Adaptor3d_HVertex) vtx,vtxbis;
385
386 IntPatch_Point solpnt;
387 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst;
388 IntPatch_IType TheType;
389
390 TColStd_Array1OfInteger UsedLine(1,nblin);
391 TColStd_Array1OfInteger Done(1,nbpnt);
392 for(i=1;i<=nbpnt;i++) Done(i) = 0; //-- Initialisation a la main
393
394 for (i=1; i<=nbpnt; i++) {
395
396 if (Done(i) != 1) {
397 currentpointonrst = listpnt.Value(i);
398 Psurf = currentpointonrst.Value(); // Point dans l espace
399 tolerance = currentpointonrst.Tolerance();
400
401 // On recherche d abord si on a correspondance avec un "point multiple"
402 UsedLine.Init(0);
403
404 goon = Standard_True;
405 if (multpoint) {
406#if 1
407 Normale = QuadSurf.Normale(Psurf); // Normale a la surface au point
408 currentarc = currentpointonrst.Arc();
409 currentparameter = currentpointonrst.Parameter();
410 currentarc->D1(currentparameter,p2d,d2d);
411 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
412 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
413#endif
414 goon = MultiplePoint(listpnt,Domain,QuadSurf,Normale,slin,Done, UsedLine,
415 i,OnFirst);
416 }
417 if (goon) {
418 Standard_Boolean linefound;
419
420 for(Standard_Integer indiceline = 1; indiceline <=slin.Length(); indiceline++) {
421 if( UsedLine(indiceline) != 0 )
422 continue;
423 linenumber = indiceline;
424
425 //-- Attention , les points peuvent etre deplaces
426 //-- il faut reprendre le point original
427 currentpointonrst = listpnt.Value(i);
428 currentarc = currentpointonrst.Arc();
429 currentparameter = currentpointonrst.Parameter();
430 Psurf = currentpointonrst.Value(); // Point dans l espace
431 tolerance = currentpointonrst.Tolerance();
432 //--
433
434
435 // Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455 Begin
436 if (! currentpointonrst.IsNew()) {
437 Handle(Adaptor3d_HVertex) aVtx = currentpointonrst.Vertex();
438 Standard_Real aVtxTol = aVtx->Resolution(currentarc);
439 Standard_Real aTolAng = 0.01*tolerance;
440
441 tolerance = Max(tolerance, aVtxTol);
442
443 gp_Vec aNorm1 = QuadSurf.Normale(Psurf);
444 gp_Vec aNorm2 = OtherQuad.Normale(Psurf);
445 //
446 if (aNorm1.Magnitude()>gp::Resolution() &&
447 aNorm2.Magnitude()>gp::Resolution()) {
448
449 if (aNorm1.IsParallel(aNorm2, aTolAng))
450 tolerance = Sqrt(tolerance);
451 }//
452 }
453 // Modified by skv - Thu Jan 15 15:57:15 2004 OCC4455 End
454 gp_Pnt pointonarc;
455 Vtgint.SetCoord(0,0,0);
456 linefound = FindLine(Psurf,slin,tolerance,paraint,Vtgint,linenumber,indiceline,
457 currentarc,currentparameter,pointonarc,QuadSurf);
458 if (linefound) {
459
460#if 1
461 Normale = QuadSurf.Normale(Psurf); // Normale a la surface au point
462 currentarc = currentpointonrst.Arc();
463 //-- currentparameter = currentpointonrst.Parameter();
464 currentarc->D1(currentparameter,p2d,d2d);
465 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
466 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
467#endif
468
469
470
471 const Handle(IntPatch_Line)& lin = slin.Value(linenumber);
472 TheType = lin->ArcType();
473
474 if (!OnFirst) { // on cherche la correspondance entre point sur domaine
475 // de la premiere surface et point sur domaine de la
476 // deuxieme surface
477
478 goon = PointOnSecondDom (listpnt, Domain, QuadSurf, Normale,
479 Vtgint, lin, Done, i);
480 }
481
482 if (goon) {
483 //-- Modification du 4 avril 97 tolerance->Tolarc
484 //-- on replace sur le vertex la tolerance d entree et
485 //-- non la tolerance qui a servi au FindLine
486 solpnt.SetValue(Psurf,Tolarc,Standard_False);
487
488 U1 = p2d.X(); V1 = p2d.Y();
489 OtherQuad.Parameters(Psurf,U2,V2);
490
491 if (OnFirst) {
492 Recadre(S1,S2,U1,V1,U2,V2);
493 solpnt.SetParameters(U1,V1,U2,V2);
494 }
495 else {
496 Recadre(S1,S2,U2,V2,U1,V1);
497 solpnt.SetParameters(U2,V2,U1,V1);
498 }
499 solpnt.SetParameter(paraint);
500
501 if (! currentpointonrst.IsNew()) {
502 vtx = currentpointonrst.Vertex();
503 solpnt.SetVertex(OnFirst,vtx);
504 }
505 else {
506 //-- goon = Standard_False; ????
507 }
508
509 if(Normale.SquareMagnitude()<1e-16) {
510 Transline.SetValue(Standard_True,IntSurf_Undecided);
511 Transarc.SetValue(Standard_True,IntSurf_Undecided);
512 }
513 else {
514 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
515 }
516 solpnt.SetArc(OnFirst,currentarc, currentparameter,
517 Transline,Transarc);
518 if (TheType == IntPatch_Analytic) {
519 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(solpnt);
520 }
521 else {
522 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(solpnt);
523 }
524 Done(i) = 1;
525
526 if (goon) {
527 for (k=i+1; k<= nbpnt; k++) {
528 if (Done(k) != 1) {
529 currentpointonrst = listpnt.Value(k);
530 if (!currentpointonrst.IsNew()) {
531 vtxbis = currentpointonrst.Vertex();
532 if(vtx.IsNull()) {
533 }
534 else if (Domain->Identical(vtx, vtxbis)) {
535 solpnt.SetVertex(OnFirst,vtxbis);
536 currentarc = currentpointonrst.Arc();
537 currentparameter = currentpointonrst.Parameter();
538
539 // currentarc->D1(currentparameter,ptbid,Vtgrst);
540 currentarc->D1(currentparameter,p2d,d2d);
541 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
542 if(Normale.SquareMagnitude()<1e-16) {
543 Transline.SetValue(Standard_True,IntSurf_Undecided);
544 Transarc.SetValue(Standard_True,IntSurf_Undecided);
545 }
546 else {
547 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
548 Transline,Transarc);
549 }
550 solpnt.SetArc(OnFirst,currentarc,currentparameter,
551 Transline,Transarc);
552 if (TheType == IntPatch_Analytic) {
553 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(solpnt);
554 }
555 else {
556 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(solpnt);
557 }
558 Done(k) = 1;
559 }
560 }
561 }
562 }
563 }
564 }
565 }
566 else {
567 Done(i) = 1; // il faudra tester si IsNew ou pas
568 // et traiter en consequence
569 }
570 }
571 }
572 }
573 }
574}
575
576
577Standard_Boolean MultiplePoint (const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
578 const Handle(Adaptor3d_TopolTool)& Domain,
579 const IntSurf_Quadric& QuadSurf,
580 const gp_Vec& Normale,
581 const IntPatch_SequenceOfLine& slin,
582 TColStd_Array1OfInteger& Done,
583 TColStd_Array1OfInteger& UsedLine,
584 const Standard_Integer Index,
585 const Standard_Boolean OnFirst) {
586
587// Traitement des points "multiples".
588
589
590 Standard_Integer k,ii,jj,nbvtx;
591 Standard_Integer nblin = slin.Length();
592 IntPatch_IType TheType;
593
594
595 IntSurf_Transition Transline,Transarc;
596
597
598 IntPatch_Point intpt;
599 Handle(Adaptor2d_HCurve2d) currentarc;
600 Handle(Adaptor3d_HVertex) vtx,vtxbis;
601
602 Standard_Integer nbpnt = listpnt.Length();
603 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst = listpnt.Value(Index);
604 IntPatch_ThePathPointOfTheSOnBounds otherpt;
605 gp_Pnt Point = currentpointonrst.Value();
606 TColStd_Array1OfInteger localdone(1,nbpnt); localdone.Init(0);
607 for (ii=1; ii<=nbpnt; ii++) {
608 localdone(ii)=Done(ii);
609 }
610
611 Standard_Real currentparameter;
612 Standard_Real Paraint;
613 gp_Vec Vtgint,Vtgrst;
614 gp_Pnt ptbid;
615
616 gp_Vec d1u,d1v;
617 gp_Pnt2d p2d;
618 gp_Vec2d d2d;
619
620 Standard_Boolean goon;
621
622 Standard_Boolean Retvalue = Standard_True;
623
624 for (ii = 1; ii <= nblin; ii++) {
625 const Handle(IntPatch_Line)& slinValueii = slin.Value(ii);
626 TheType = slinValueii->ArcType();
627 if (TheType == IntPatch_Analytic) {
628 nbvtx = (*((Handle(IntPatch_ALine)*)&slinValueii))->NbVertex();
629 }
630 else {
631 nbvtx = (*((Handle(IntPatch_GLine)*)&slinValueii))->NbVertex();
632 }
633 jj = 1;
634 while (jj <= nbvtx) {
635 if (TheType == IntPatch_Analytic) {
636 intpt = (*((Handle(IntPatch_ALine)*)&slinValueii))->Vertex(jj);
637 }
638 else {
639 intpt = (*((Handle(IntPatch_GLine)*)&slinValueii))->Vertex(jj);
640 }
641 if (intpt.IsMultiple() &&
642 (( OnFirst && !intpt.IsOnDomS1()) ||
643 (!OnFirst && !intpt.IsOnDomS2()))) {
644 if (Point.Distance(intpt.Value()) <= intpt.Tolerance()) {
645 Retvalue = Standard_False;
646 Standard_Boolean foo = SingleLine(Point,slinValueii,
647 intpt.Tolerance(),Paraint,Vtgint);
648 if (!foo) {
649 return Standard_False; // ne doit pas se produire
650 }
651
652 if (!currentpointonrst.IsNew()) {
653 goon = Standard_True;
654 vtx = currentpointonrst.Vertex();
655 intpt.SetVertex(OnFirst,vtx);
656 }
657 else {
658 goon = Standard_False;
659 }
660 currentarc = currentpointonrst.Arc();
661 currentparameter = currentpointonrst.Parameter();
662 currentarc->D1(currentparameter,p2d,d2d);
663 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
664 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
665
666 //-- Si la normale est nulle (apex d un cone) On simule une transition UNKNOWN
667 if(Normale.SquareMagnitude()<1e-16) {
668 Transline.SetValue(Standard_True,IntSurf_Undecided);
669 Transarc.SetValue(Standard_True,IntSurf_Undecided);
670 }
671 else {
672 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
673 }
674
675 //-- Avant, on ne mettait pas ce point (17 nov 97)
676 //--printf("\n ImpImp_0 : Point(%g,%g,%g) intpt(%g,%g,%g) \n",
677 //-- Point.X(),Point.Y(),Point.Z(),intpt.Value().X(),intpt.Value().Y(),intpt.Value().Z());
678 intpt.SetValue(Point);
679
680 intpt.SetArc(OnFirst,currentarc,currentparameter,
681 Transline,Transarc);
682
683
684 if (TheType == IntPatch_Analytic) {
685 (*((Handle(IntPatch_ALine)*)&slinValueii))->Replace(jj,intpt);
686 }
687 else {
688 (*((Handle(IntPatch_GLine)*)&slinValueii))->Replace(jj,intpt);
689 }
690 localdone(Index) = 1;
691 if (goon) {
692 for (k=Index+1; k<= nbpnt; k++) {
693 if (Done(k) != 1) {
694 otherpt= listpnt.Value(k);
695 if (!otherpt.IsNew()) {
696 vtxbis = otherpt.Vertex();
697 if (Domain->Identical(vtx, vtxbis)) {
698 intpt.SetVertex(OnFirst,vtxbis);
699 currentarc = otherpt.Arc();
700 currentparameter = otherpt.Parameter();
701
702 currentarc->D1(currentparameter,p2d,d2d);
703 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
704 if(Normale.SquareMagnitude()<1e-16) {
705 Transline.SetValue(Standard_True,IntSurf_Undecided);
706 Transarc.SetValue(Standard_True,IntSurf_Undecided);
707 }
708 else {
709 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
710 Transline,Transarc);
711 }
712 intpt.SetArc(OnFirst,currentarc,currentparameter,
713 Transline,Transarc);
714 if (TheType == IntPatch_Analytic) {
715 (*((Handle(IntPatch_ALine)*)&slinValueii))->AddVertex(intpt);
716 }
717 else {
718 (*((Handle(IntPatch_GLine)*)&slinValueii))->AddVertex(intpt);
719 }
720 UsedLine(ii) = 1;
721 Retvalue = Standard_True;
722 localdone(k) = 1;
723 }
724 }
725 }
726 }
727 }
728//-- jj = nbvtx +1;
729 }
730//-- else {
731 jj = jj+1;
732//-- }
733 }
734 else {
735 jj = jj+1;
736 }
737 }
738 }
739
740 for (ii=1; ii<=nbpnt;ii++) {
741 Done(ii) = localdone(ii);
742 }
743
744 return Retvalue;
745}
746
747
748
749Standard_Boolean PointOnSecondDom (const IntPatch_SequenceOfPathPointOfTheSOnBounds& listpnt,
750 const Handle(Adaptor3d_TopolTool)& Domain,
751 const IntSurf_Quadric& QuadSurf,
752 const gp_Vec& Normale,
753 const gp_Vec& Vtgint,
754 const Handle(IntPatch_Line)& lin,
755 TColStd_Array1OfInteger& Done,
756 const Standard_Integer Index)
757
758
759// Duplication des points sur domaine de l autre surface.
760// On sait que le vertex sous-jacent est PntRef
761
762
763{
764
765 Standard_Integer k,jj,nbvtx;
766 IntPatch_IType TheType;
767
768 IntSurf_Transition Transline,Transarc;
769 IntPatch_Point intpt;
770 Handle(Adaptor2d_HCurve2d) currentarc;
771 Handle(Adaptor3d_HVertex) vtx,vtxbis;
772 gp_Pnt ptbid;
773 gp_Vec Vtgrst;
774
775 gp_Vec d1u,d1v;
776 gp_Pnt2d p2d;
777 gp_Vec2d d2d;
778
779 Standard_Integer nbpnt = listpnt.Length();
780 IntPatch_ThePathPointOfTheSOnBounds currentpointonrst = listpnt.Value(Index);
781 Standard_Real currentparameter;
782
783 Standard_Boolean goon;
784 Standard_Boolean Retvalue = Standard_True;
785
786 TheType = lin->ArcType();
787 if (TheType == IntPatch_Analytic) {
788 nbvtx = (*((Handle(IntPatch_ALine)*)&lin))->NbVertex();
789 }
790 else {
791 nbvtx = (*((Handle(IntPatch_GLine)*)&lin))->NbVertex();
792 }
793 jj = 1;
794 while (jj <= nbvtx) {
795 if (TheType == IntPatch_Analytic) {
796 intpt = (*((Handle(IntPatch_ALine)*)&lin))->Vertex(jj);
797 }
798 else {
799 intpt = (*((Handle(IntPatch_GLine)*)&lin))->Vertex(jj);
800 }
801 if (!intpt.IsOnDomS2()) {
802 if (currentpointonrst.Value().Distance(intpt.Value()) <=
803 intpt.Tolerance()) {
804 Retvalue = Standard_False;
805 if (!currentpointonrst.IsNew()) {
806 goon = Standard_True;
807 vtx = currentpointonrst.Vertex();
808 intpt.SetVertex(Standard_False,vtx);
809 }
810 else {
811 goon = Standard_False;
812 }
813 currentarc = currentpointonrst.Arc();
814 currentparameter = currentpointonrst.Parameter();
815 currentarc->D1(currentparameter,p2d,d2d);
816 QuadSurf.D1(p2d.X(),p2d.Y(),ptbid,d1u,d1v);
817 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
818 if(Normale.SquareMagnitude()<1e-16) {
819 Transline.SetValue(Standard_True,IntSurf_Undecided);
820 Transarc.SetValue(Standard_True,IntSurf_Undecided);
821 }
822 else {
823 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,Transline,Transarc);
824 }
825 intpt.SetArc(Standard_False,currentarc,currentparameter,
826 Transline,Transarc);
827 if (TheType == IntPatch_Analytic) {
828 (*((Handle(IntPatch_ALine)*)&lin))->Replace(jj,intpt);
829 }
830 else {
831 (*((Handle(IntPatch_GLine)*)&lin))->Replace(jj,intpt);
832 }
833 Done(Index) = 1;
834
835 if (goon) {
836 for (k=Index+1; k<= nbpnt; k++) {
837 if (Done(k) != 1) {
838 currentpointonrst = listpnt.Value(k);
839 if (!currentpointonrst.IsNew()) {
840 vtxbis = currentpointonrst.Vertex();
841 if (Domain->Identical(vtx, vtxbis)) {
842 intpt.SetVertex(Standard_False,vtxbis);
843 currentarc = currentpointonrst.Arc();
844 currentparameter = currentpointonrst.Parameter();
845 currentarc->D1(currentparameter,p2d,d2d);
846 Vtgrst.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
847 if(Normale.SquareMagnitude()<1e-16) {
848 Transline.SetValue(Standard_True,IntSurf_Undecided);
849 Transarc.SetValue(Standard_True,IntSurf_Undecided);
850 }
851 else {
852 IntSurf::MakeTransition(Vtgint,Vtgrst,Normale,
853 Transline,Transarc);
854 }
855 intpt.SetArc(Standard_False,currentarc,currentparameter,
856 Transline,Transarc);
857 if (TheType == IntPatch_Analytic) {
858 (*((Handle(IntPatch_ALine)*)&lin))->AddVertex(intpt);
859 }
860 else {
861 (*((Handle(IntPatch_GLine)*)&lin))->AddVertex(intpt);
862 }
863 Done(k) = 1;
864 }
865 }
866 }
867 }
868 }
869 //-- jj = nbvtx + 1;
870 jj++;
871 }
872 else {
873 jj = jj+1;
874 }
875 }
876 else {
877 jj = jj+1;
878 }
879 if (TheType == IntPatch_Analytic) {
880 nbvtx = (*((Handle(IntPatch_ALine)*)&lin))->NbVertex();
881 }
882 else {
883 nbvtx = (*((Handle(IntPatch_GLine)*)&lin))->NbVertex();
884 }
885 }
886 return Retvalue;
887}
888
889
890
891Standard_Boolean FindLine (gp_Pnt& Psurf,
892 const IntPatch_SequenceOfLine& slin,
893 const Standard_Real Tol,
894 Standard_Real& Paraint,
895 gp_Vec& Vtgtint,
896 Standard_Integer& Range,
897 Standard_Integer OnlyThisLine,
898 const Handle(Adaptor2d_HCurve2d)& thearc,
899 Standard_Real& theparameteronarc,
900 gp_Pnt& thepointonarc,
901 const IntSurf_Quadric& QuadSurf)
902{
903
904// Traitement du point de depart ayant pour representation Psurf
905// dans l espace. On recherche la ligne d intersection contenant ce point.
906// On a en sortie la ligne, et le parametre et sa tangente du point sur
907// la ligne d intersection.
908
909 Standard_Real distmin = RealLast();
910 Standard_Real dist,para;
911 Standard_Real lower,upper;
912 gp_Pnt pt;
913 Standard_Integer i;
914 IntPatch_IType typarc;
915
916 Standard_Integer nblin = slin.Length();
917 for (i=1; i<=nblin; i++) {
918 if(OnlyThisLine) { i=OnlyThisLine; nblin=0; }
919 const Handle(IntPatch_Line)& lin = slin.Value(i);
920 typarc = lin->ArcType();
921 if (typarc == IntPatch_Analytic) {
922 Standard_Boolean foo;
923 lower = (*((Handle(IntPatch_ALine)*)&lin))->FirstParameter(foo);
924 upper = (*((Handle(IntPatch_ALine)*)&lin))->LastParameter(foo);
925 }
926 else {
927 if ((*((Handle(IntPatch_GLine)*)&lin))->HasFirstPoint()) {
928 lower = (*((Handle(IntPatch_GLine)*)&lin))->FirstPoint().ParameterOnLine();
929 }
930 else {
931 lower = RealFirst();
932 }
933 if ((*((Handle(IntPatch_GLine)*)&lin))->HasLastPoint()) {
934 upper = (*((Handle(IntPatch_GLine)*)&lin))->LastPoint().ParameterOnLine();
935 }
936 else {
937 upper = RealLast();
938 }
939 }
940
941 switch (typarc) {
942 case IntPatch_Lin :
943 {
944 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Line(),Psurf);
945 if (para <= upper && para >= lower) {
946 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Line());
947 dist = Psurf.Distance(pt);
948 if (dist< distmin) {
949 distmin = dist;
950 Paraint = para;
951 Range = i;
952 }
953 }
954 }
955 break;
956 case IntPatch_Circle :
957 {
958 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Circle(),Psurf);
959 if ((para <= upper && para >= lower) ||
c6541a0c
D
960 (para + 2.*M_PI <=upper && para + 2.*M_PI >= lower) ||
961 (para - 2.*M_PI <=upper && para - 2.*M_PI >= lower)) {
7fd59977 962 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Circle());
963 dist = Psurf.Distance(pt);
964 if (dist< distmin) {
965 distmin = dist;
966 Paraint = para;
967 Range = i;
968 }
969 }
970 }
971 break;
972 case IntPatch_Ellipse :
973 {
974 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),Psurf);
975 if ((para <= upper && para >= lower) ||
c6541a0c
D
976 (para + 2.*M_PI <=upper && para + 2.*M_PI >= lower) ||
977 (para - 2.*M_PI <=upper && para - 2.*M_PI >= lower)) {
7fd59977 978 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Ellipse());
979 dist = Psurf.Distance(pt);
980 if (dist< distmin) {
981 distmin = dist;
982 Paraint = para;
983 Range = i;
984 }
985 }
986 }
987 break;
988 case IntPatch_Parabola :
989 {
990
991#if 0
992 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Parabola(),Psurf);
993 if (para <= upper && para >= lower) {
994 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Parabola());
995 dist = Psurf.Distance(pt);
996 if (dist< distmin) {
997 distmin = dist;
998 Paraint = para;
999 Range = i;
1000 }
1001 }
1002#else
1003 //-- Le calcul du parametre sur une parabole est mal fait ds ElCLib. Il ne tient pas compte
1004 //-- de la meilleure facon de calculer (axe X ou axe Y). Bilan : Si la parabole est tres
1005 //-- pointue (focal de l'ordre de 1e-2 et si le point est a un parametre grand, ca foire. )
1006 //-- On ne peut pas modifier faciolement ds ElCLib car on ne passe pas la focale. ...
1007 const gp_Parab& Parab=(*((Handle(IntPatch_GLine)*)&lin))->Parabola();
1008 para = ElCLib::Parameter(Parab,Psurf);
1009 if (para <= upper && para >= lower) {
1010 Standard_Integer amelioration=0;
1011 //-- cout<<"\n ****** \n";
1012 do {
1013 Standard_Real parabis = para+0.0000001;
1014
1015 pt = ElCLib::Value(para,Parab);
1016 dist = Psurf.Distance(pt);
1017
1018 gp_Pnt ptbis = ElCLib::Value(parabis,Parab);
1019 Standard_Real distbis = Psurf.Distance(ptbis);
1020
1021 Standard_Real ddist = distbis-dist;
1022
1023 //--cout<<" para: "<<para<<" dist:"<<dist<<" ddist:"<<ddist<<endl;
1024
1025 if (dist< distmin) {
1026 distmin = dist;
1027 Paraint = para;
1028 Range = i;
1029 }
1030 if(dist<1.0e-9 && dist>-1.0e-9) { amelioration=100; }
1031
1032 if(ddist>1.0e-9 || ddist<-1.0e-9 ) {
1033 para=para-dist*(parabis-para)/ddist;
1034 }
1035 else {
1036 amelioration=100;
1037 }
1038 }
1039 while(++amelioration < 5);
1040 }
1041
1042
1043#endif
1044 }
1045 break;
1046 case IntPatch_Hyperbola :
1047 {
1048 para = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),Psurf);
1049 if (para <= upper && para >= lower) {
1050 pt = ElCLib::Value(para,(*((Handle(IntPatch_GLine)*)&lin))->Hyperbola());
1051 dist = Psurf.Distance(pt);
1052 if (dist< distmin) {
1053 distmin = dist;
1054 Paraint = para;
1055 Range = i;
1056 }
1057 }
1058 }
1059 break;
1060
1061 case IntPatch_Analytic :
1062 {
1063 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&lin));
1064 Standard_Boolean ok = alin->FindParameter(Psurf,para);
1065 if (ok) {
1066 pt = alin->Value(para);
1067 dist = Psurf.Distance(pt);
1068 if (dist< distmin) {
1069 distmin = dist;
1070 Paraint = para;
1071 Range = i;
1072 }
1073 }
1074 else {
1075 //-- le point n a pas ete trouve par bete projection.
1076 //-- on essaie l intersection avec la restriction en 2d
1077 Standard_Real theparamonarc = theparameteronarc;
6e6cd5d9 1078//#ifdef DEB
1079// Standard_Real anpara=para;
1080//#endif
7fd59977 1081 gp_Pnt CopiePsurf=Psurf;
1082 Standard_Boolean ok=IntersectionWithAnArc(CopiePsurf,alin,para,thearc,theparamonarc,thepointonarc,QuadSurf,lower,upper,dist);
1083
1084 //--printf("\nIntersectionWithAnArc %d \n Psurf(%g,%g,%g)->(%g,%g,%g) dist=%g\n para(%g)->(%g)\n paraonarc(%g)->(%g)",
1085 //-- ok,Psurf.X(),Psurf.Y(),Psurf.Z(),thepointonarc.X(),thepointonarc.Y(),thepointonarc.Z(),dist,
1086 //-- anpara,para,theparameteronarc,theparamonarc);
1087 dist = CopiePsurf.Distance(Psurf);
1088 if(ok) {
1089 if(dist<Tol) {
1090 theparameteronarc = theparamonarc;
1091 Psurf = thepointonarc;
1092 distmin = dist;
1093 Paraint = para;
1094 Range = i;
1095 }
1096 }
1097 }
1098 }
1099 break;
1100
1101 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1102 {
1103 }
1104 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1105 {
1106 }
1107 }
1108 }
1109
1110 if (distmin > Tol) {
1111 return Standard_False;
1112 }
1113
1114 typarc = slin.Value(Range)->ArcType();
1115
1116 // Calcul de la tangente.
1117 switch (typarc) {
1118 case IntPatch_Lin :
1119 Vtgtint = (*((Handle(IntPatch_GLine)*)&slin(Range)))->Line().Direction();
1120 break;
1121 case IntPatch_Circle :
1122 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Circle(),1);
1123 break;
1124 case IntPatch_Ellipse :
1125 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Ellipse(),1);
1126 break;
1127 case IntPatch_Parabola :
1128 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Parabola(),1);
1129 break;
1130 case IntPatch_Hyperbola :
1131 Vtgtint = ElCLib::DN(Paraint,(*((Handle(IntPatch_GLine)*)&slin(Range)))->Hyperbola(),1);
1132 break;
1133
1134 case IntPatch_Analytic:
1135 {
1136 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&slin(Range)));
1137 Standard_Boolean abid = alin->D1(Paraint,pt,Vtgtint);
1138 if (!abid) {
1139 Standard_Real domaininf,domainsup,paramproche;
1140 Standard_Boolean boolbid;
1141 domaininf = alin->FirstParameter(boolbid);
1142 domainsup = alin->LastParameter(boolbid);
1143 if(Paraint>=domaininf && Paraint<=domainsup) {
1144 Standard_Real DeltaParam = 0.001 * (domainsup-domaininf);
1145 if(Paraint-domaininf >= domainsup-Paraint) {
1146 //-- On decale le point vers le parametre le plus eloigne.
1147 DeltaParam = -DeltaParam;
1148 }
1149 Standard_Integer kountbid = 0;
1150 Standard_Boolean bornok = Standard_True;
1151 paramproche = Paraint;
1152 do {
1153 paramproche+=DeltaParam;
1154 kountbid++;
1155 gp_Pnt ptbid;
1156 if(paramproche>=domaininf && paramproche<=domainsup) {
1157 abid = alin->D1(paramproche,ptbid,Vtgtint);
1158 }
1159 else {
1160 bornok = Standard_False;
1161 }
1162 }
1163 while(abid==Standard_False && kountbid<5 && bornok);
1164 //-- Attention aux points de tangence (croisement de 4 lignes )
1165 bornok = Standard_True;
1166 kountbid = 0;
1167 gp_Vec OVtgtint(0.0,0.0,0.0);
1168 paramproche = Paraint;
1169 do {
1170 paramproche-=DeltaParam;
1171 kountbid++;
1172 gp_Pnt ptbid;
1173 if(paramproche>=domaininf && paramproche<=domainsup) {
1174 abid = alin->D1(paramproche,ptbid,OVtgtint);
1175 }
1176 else {
1177 bornok = Standard_False;
1178 }
1179 }
1180 while(abid==Standard_False && kountbid<5 && bornok);
1181 if(bornok) {
1182 paramproche = Vtgtint.Dot(OVtgtint);
1183 if(paramproche<=0.0) abid = Standard_False;
1184 }
1185 }
1186 if(!abid) {
1187 //-- cout << "Pb sur Calcul de derivee 111 " << endl;
1188 Vtgtint.SetCoord(0.,0.,0.);
1189 }
1190 }
1191 }
1192 break;
1193 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1194 {
1195 }
1196 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1197 {
1198 }
1199
1200 }
1201 return Standard_True;
1202}
1203
1204
1205Standard_Boolean SingleLine (const gp_Pnt& Psurf,
1206 const Handle(IntPatch_Line)& lin,
1207 const Standard_Real Tol,
1208 Standard_Real& Paraint,
1209 gp_Vec& Vtgtint) {
1210
1211// Traitement du point de depart ayant pour representation Psurf
1212// dans l espace. On le replace sur la ligne d intersection; On a en sortie
1213// son parametre et sa tangente sur la ligne d intersection.
1214// La fonction renvoie False si le point projete est a une distance
1215// superieure a Tol du point a projeter.
1216
1217 IntPatch_IType typarc = lin->ArcType();
1218
1219 Standard_Real parproj;
1220 gp_Vec tgint;
1221 gp_Pnt ptproj;
1222 Standard_Boolean retvalue;
1223
1224
1225 switch (typarc) {
1226 case IntPatch_Lin :
1227 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Line(),Psurf);
1228 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Line(),ptproj,tgint);
1229 break;
1230 case IntPatch_Circle :
1231 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Circle(),Psurf);
1232 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Circle(),ptproj,tgint);
1233 break;
1234 case IntPatch_Ellipse :
1235 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),Psurf);
1236 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Ellipse(),ptproj,tgint);
1237 break;
1238 case IntPatch_Parabola :
1239 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Parabola(),Psurf);
1240 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Parabola(),ptproj,tgint);
1241 break;
1242 case IntPatch_Hyperbola :
1243 parproj = ElCLib::Parameter((*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),Psurf);
1244 ElCLib::D1(parproj,(*((Handle(IntPatch_GLine)*)&lin))->Hyperbola(),ptproj,tgint);
1245 break;
1246 case IntPatch_Analytic :
1247 {
1248 const Handle(IntPatch_ALine)& alin = (*((Handle(IntPatch_ALine)*)&lin));
1249 Standard_Boolean ok = alin->FindParameter(Psurf,parproj);
1250 if (ok) {
1251 gp_Pnt ptbid;
1252 Standard_Boolean bid = alin->D1(parproj,ptbid,tgint);
1253 if (!bid) {
1254 Standard_Real domaininf,domainsup,paramproche;
1255 Standard_Boolean boolbid;
1256 domaininf = alin->FirstParameter(boolbid);
1257 domainsup = alin->LastParameter(boolbid);
1258 if(parproj>=domaininf && parproj<=domainsup) {
1259 Standard_Real DeltaParam = 0.001 * (domainsup-domaininf);
1260 if(parproj-domaininf >= domainsup-parproj) {
1261 //-- On decale le point vers le parametre le plus eloigne.
1262 DeltaParam = -DeltaParam;
1263 }
1264 Standard_Integer kountbid = 0;
1265 paramproche = parproj;
1266 do {
1267 paramproche+=DeltaParam;
1268 kountbid++;
1269 bid = alin->D1(paramproche,ptbid,tgint);
1270 }
1271 while(bid==Standard_False && kountbid<5);
1272 ptproj = Psurf;
1273 }
1274 if(!bid) {
1275 //-- cout << "Pb sur Calcul de derivee ALine " << endl;
1276 tgint.SetCoord(0.,0.,0.);
1277 return(Standard_False);
1278 }
1279 }
1280 else {
1281 ptproj = Psurf;
1282 }
1283 }
1284 else {
1285 //-- cout << "---- Pb sur ligne analytique dans SingleLine" << endl;
1286 //-- cout << " Find Parameter"<<endl;
1287 return Standard_False;
1288 }
1289 }
1290 break;
1291 case IntPatch_Walking: // impossible . c est pour eviter les warnings
1292 {
1293 }
1294 case IntPatch_Restriction: // impossible . c est pour eviter les warnings
1295 {
1296 }
1297 }
1298
1299 if (Psurf.Distance(ptproj) <= Tol) {
1300 Paraint = parproj;
1301 Vtgtint = tgint;
1302 retvalue = Standard_True;
1303 }
1304 else {
1305 retvalue = Standard_False;
1306 }
1307 return retvalue;
1308}
1309
1310
1311void ProcessSegments (const IntPatch_SequenceOfSegmentOfTheSOnBounds& listedg,
1312 IntPatch_SequenceOfLine& slin,
1313 const IntSurf_Quadric& Quad1,
1314 const IntSurf_Quadric& Quad2,
1315 const Standard_Boolean OnFirst,
1316 const Standard_Real TolArc) {
1317
1318 Standard_Integer i,j,k;
1319 Standard_Integer nbedg = listedg.Length();
1320 Standard_Integer Nblines,Nbpts;
1321
1322 Handle(Adaptor2d_HCurve2d) arcRef;
1323 IntPatch_Point ptvtx, newptvtx;
1324
1325 Handle(IntPatch_RLine) rline; //-- On fait rline = new ... par la suite
1326
1327 IntPatch_TheSegmentOfTheSOnBounds thesegsol;
1328 IntPatch_ThePathPointOfTheSOnBounds PStartf,PStartl;
1329 Standard_Boolean dofirst,dolast,procf,procl;
1330#ifndef DEB
1331 Standard_Real paramf =0.,paraml =0.,U1 =0.,V1 =0.,U2 =0.,V2 =0.;
1332#else
1333 Standard_Real paramf,paraml,U1,V1,U2,V2;
1334#endif
1335 IntPatch_IType typ;
1336 IntSurf_TypeTrans trans1,trans2;
1337 IntSurf_Transition TRest,TArc;
1338 gp_Vec tgline,norm1,norm2,tgarc;
1339 gp_Pnt valpt;
1340
1341 gp_Vec d1u,d1v;
1342 gp_Pnt2d p2d;
1343 gp_Vec2d d2d;
1344
1345
1346 for (i = 1; i <= nbedg; i++) {
1347 Standard_Boolean EdgeDegenere=Standard_False;
1348 thesegsol = listedg.Value(i);
1349 arcRef = thesegsol.Curve();
1350
1351
1352 rline = new IntPatch_RLine(Standard_False);
1353 if(OnFirst) {
1354 rline->SetArcOnS1(arcRef);
1355 }
1356 else {
1357 rline->SetArcOnS2(arcRef);
1358 }
1359
1360// Traitement des points debut/fin du segment solution.
1361
1362 dofirst = Standard_False;
1363 dolast = Standard_False;
1364 procf = Standard_False;
1365 procl = Standard_False;
1366
1367 if (thesegsol.HasFirstPoint()) {
1368 dofirst = Standard_True;
1369 PStartf = thesegsol.FirstPoint();
1370 paramf = PStartf.Parameter();
1371 }
1372 if (thesegsol.HasLastPoint()) {
1373 dolast = Standard_True;
1374 PStartl = thesegsol.LastPoint();
1375 paraml = PStartl.Parameter();
1376 }
1377
1378 if (dofirst && dolast) { // determination de la transition de la ligne
1379 arcRef->D1(0.5*(paramf+paraml),p2d,d2d);
1380 if (OnFirst) {
1381 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1382 }
1383 else {
1384 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1385 }
1386 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1387
1388 if(d1u.Magnitude()<1e-7) { //-- edge degenere ?
1389 EdgeDegenere=Standard_True;
1390 for(Standard_Integer edg=0;edg<=10;edg++) {
1391 arcRef->D1(paramf+(paraml-paramf)*edg*0.1,p2d,d2d);
1392 if (OnFirst) {
1393 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1394 }
1395 else {
1396 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1397 }
1398
1399 if(d1u.Magnitude()>1e-7) {
1400 EdgeDegenere=Standard_False;
1401 }
1402 }
1403 rline = new IntPatch_RLine(Standard_False);
1404 if(OnFirst) {
1405 rline->SetArcOnS1(arcRef);
1406 }
1407 else {
1408 rline->SetArcOnS2(arcRef);
1409 }
1410 }
1411 else {
1412 norm2 = Quad2.Normale(valpt);
1413 norm1 = Quad1.Normale(valpt);
1414
1415 if (tgline.DotCross(norm2,norm1) > 0.000000001) {
1416 trans1 = IntSurf_Out;
1417 trans2 = IntSurf_In;
1418 }
1419 else if (tgline.DotCross(norm2,norm1) < -0.000000001){
1420 trans1 = IntSurf_In;
1421 trans2 = IntSurf_Out;
1422 }
1423 else {
1424 trans1 = trans2 = IntSurf_Undecided;
1425 }
1426 rline = new IntPatch_RLine(Standard_False,trans1,trans2);
1427 if(OnFirst) {
1428 rline->SetArcOnS1(arcRef);
1429 }
1430 else {
1431 rline->SetArcOnS2(arcRef);
1432 }
1433 }
1434 }
1435 else {
1436 rline = new IntPatch_RLine(Standard_False);
1437 if(OnFirst) {
1438 rline->SetArcOnS1(arcRef);
1439 }
1440 else {
1441 rline->SetArcOnS2(arcRef);
1442 }
1443 }
1444
1445 if (dofirst || dolast) {
1446 Nblines = slin.Length();
1447 for (j=1; j<=Nblines; j++) {
1448 const Handle(IntPatch_Line)& slinj = slin(j);
1449 typ = slinj->ArcType();
1450 if (typ == IntPatch_Analytic) {
1451 Nbpts = (*((Handle(IntPatch_ALine)*)&slinj))->NbVertex();
1452 }
1453 else if (typ == IntPatch_Restriction) {
1454 Nbpts = (*((Handle(IntPatch_RLine)*)&slinj))->NbVertex();
1455 }
1456 else {
1457 Nbpts = (*((Handle(IntPatch_GLine)*)&slinj))->NbVertex();
1458 }
1459 for (k=1; k<=Nbpts;k++) {
1460 if (typ == IntPatch_Analytic) {
1461 ptvtx = (*((Handle(IntPatch_ALine)*)&slinj))->Vertex(k);
1462 }
1463 else if (typ == IntPatch_Restriction) {
1464 ptvtx = (*((Handle(IntPatch_RLine)*)&slinj))->Vertex(k);
1465 }
1466 else {
1467 ptvtx = (*((Handle(IntPatch_GLine)*)&slinj))->Vertex(k);
1468 }
1469
1470 if (EdgeDegenere==Standard_False && dofirst) {
1471 if (ptvtx.Value().Distance(PStartf.Value()) <=TolArc) {
1472 ptvtx.SetMultiple(Standard_True);
1473 if (typ == IntPatch_Analytic) {
1474 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,ptvtx);
1475 }
1476 else if (typ == IntPatch_Restriction) {
1477 (*((Handle(IntPatch_RLine)*)&slinj))->Replace(k,ptvtx);
1478 }
1479 else {
1480 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,ptvtx);
1481 }
1482 newptvtx = ptvtx;
1483 newptvtx.SetParameter(paramf);
1484 //Recalcul des transitions si point sur restriction
1485
1486 arcRef->D1(paramf,p2d,d2d);
1487 if (OnFirst) {
1488 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1489 }
1490 else {
1491 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1492 }
1493 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1494 if (ptvtx.IsOnDomS1()) {
1495 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS1();
1496 thearc->D1(ptvtx.ParameterOnArc1(),p2d,d2d);
1497 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1498 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1499 norm1 = d1u.Crossed(d1v);
1500 if(norm1.SquareMagnitude()<1e-16) {
1501 TRest.SetValue(Standard_True,IntSurf_Undecided);
1502 TArc.SetValue(Standard_True,IntSurf_Undecided);
1503 }
1504 else {
1505 IntSurf::MakeTransition(tgline,tgarc,norm1,TRest,TArc);
1506 }
1507 newptvtx.SetArc(Standard_True,thearc,ptvtx.ParameterOnArc1(),
1508 TRest,TArc);
1509 }
1510 if (ptvtx.IsOnDomS2()) {
1511 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS2();
1512 thearc->D1(ptvtx.ParameterOnArc2(),p2d,d2d);
1513 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1514 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1515 norm2 = d1u.Crossed(d1v);
1516 if(norm2.SquareMagnitude()<1e-16) {
1517 TRest.SetValue(Standard_True,IntSurf_Undecided);
1518 TArc.SetValue(Standard_True,IntSurf_Undecided);
1519 }
1520 else {
1521 IntSurf::MakeTransition(tgline,tgarc,norm2,TRest,TArc);
1522 }
1523 newptvtx.SetArc(Standard_False,thearc,ptvtx.ParameterOnArc2(),
1524 TRest,TArc);
1525 }
1526
1527 rline->AddVertex(newptvtx);
1528 if (!procf){
1529 procf=Standard_True;
1530 rline->SetFirstPoint(rline->NbVertex());
1531 }
1532 }
1533 }
1534 if (EdgeDegenere==Standard_False && dolast) {
1535 if (ptvtx.Value().Distance(PStartl.Value()) <=TolArc) {
1536 ptvtx.SetMultiple(Standard_True);
1537 if (typ == IntPatch_Analytic) {
1538 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,ptvtx);
1539 }
1540 else if (typ == IntPatch_Restriction) {
1541 (*((Handle(IntPatch_RLine)*)&slinj))->Replace(k,ptvtx);
1542 }
1543 else {
1544 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,ptvtx);
1545 }
1546
1547 newptvtx = ptvtx;
1548 newptvtx.SetParameter(paraml);
1549 //Recalcul des transitions si point sur restriction
1550
1551 arcRef->D1(paraml,p2d,d2d);
1552 if (OnFirst) {
1553 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1554 }
1555 else {
1556 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1557 }
1558 tgline.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1559 if (ptvtx.IsOnDomS1()) {
1560 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS1();
1561 thearc->D1(ptvtx.ParameterOnArc1(),p2d,d2d);
1562 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1563 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1564 norm1 = d1u.Crossed(d1v);
1565 if(norm1.SquareMagnitude()<1e-16) {
1566 TRest.SetValue(Standard_True,IntSurf_Undecided);
1567 TArc.SetValue(Standard_True,IntSurf_Undecided);
1568 }
1569 else {
1570 IntSurf::MakeTransition(tgline,tgarc,norm1,TRest,TArc);
1571 }
1572 newptvtx.SetArc(Standard_True,thearc,ptvtx.ParameterOnArc1(),
1573 TRest,TArc);
1574 }
1575 if (ptvtx.IsOnDomS2()) {
1576 const Handle(Adaptor2d_HCurve2d)& thearc = ptvtx.ArcOnS2();
1577 thearc->D1(ptvtx.ParameterOnArc2(),p2d,d2d);
1578 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1579 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1580 norm2 = d1u.Crossed(d1v);
1581 if(norm2.SquareMagnitude()<1e-16) {
1582 TRest.SetValue(Standard_True,IntSurf_Undecided);
1583 TArc.SetValue(Standard_True,IntSurf_Undecided);
1584 }
1585 else {
1586 IntSurf::MakeTransition(tgline,tgarc,norm2,TRest,TArc);
1587 }
1588 newptvtx.SetArc(Standard_False,thearc,ptvtx.ParameterOnArc2(),
1589 TRest,TArc);
1590 }
1591
1592 rline->AddVertex(newptvtx);
1593 if (!procl){
1594 procl=Standard_True;
1595 rline->SetLastPoint(rline->NbVertex());
1596 }
1597 }
1598 }
1599 }
1600// Si on a traite le pt debut et/ou fin, on ne doit pas recommencer si
1601// il (ils) correspond(ent) a un point multiple.
1602
1603 if (procf) {
1604 dofirst = Standard_False;
1605 }
1606 if (procl) {
1607 dolast = Standard_False;
1608 }
1609 }
1610 }
1611// Si on n a pas trouve le point debut et./ou fin sur une des lignes
1612// d intersection, il faut quand-meme le placer sur la restriction solution
1613
1614 if (dofirst) {
1615 ptvtx.SetValue(PStartf.Value(),PStartf.Tolerance(),Standard_False);
1616 Quad1.Parameters(PStartf.Value(),U1,V1);
1617 Quad2.Parameters(PStartf.Value(),U2,V2);
1618 ptvtx.SetParameters(U1,V1,U2,V2);
1619 ptvtx.SetParameter(paramf);
1620 if (! PStartf.IsNew()) {
1621 IntSurf_Transition Transline;
1622 IntSurf_Transition Transarc;
1623 ptvtx.SetVertex(OnFirst,PStartf.Vertex());
1624 ptvtx.SetArc(OnFirst,PStartf.Arc(),PStartf.Parameter(),
1625 Transline,Transarc);
1626 }
1627
1628 rline->AddVertex(ptvtx);
1629 rline->SetFirstPoint(rline->NbVertex());
1630 }
1631 if (dolast) {
1632 ptvtx.SetValue(PStartl.Value(),PStartl.Tolerance(),Standard_False);
1633 Quad1.Parameters(PStartl.Value(),U1,V1);
1634 Quad2.Parameters(PStartl.Value(),U2,V2);
1635 ptvtx.SetParameters(U1,V1,U2,V2);
1636 ptvtx.SetParameter(paraml);
1637 if (! PStartl.IsNew()) {
1638 IntSurf_Transition Transline;
1639 IntSurf_Transition Transarc;
1640
1641 ptvtx.SetVertex(OnFirst,PStartl.Vertex());
1642 ptvtx.SetArc(OnFirst,PStartl.Arc(),PStartl.Parameter(),
1643 Transline,Transarc);
1644 }
1645
1646 rline->AddVertex(ptvtx);
1647 rline->SetLastPoint(rline->NbVertex());
1648 }
1649 slin.Append(rline);
1650 }
1651}
1652
1653
1654void ProcessRLine (IntPatch_SequenceOfLine& slin,
1655// const Handle(Adaptor3d_HSurface)& Surf1,
1656// const Handle(Adaptor3d_HSurface)& Surf2,
1657 const IntSurf_Quadric& Quad1,
1658 const IntSurf_Quadric& Quad2,
1659 const Standard_Real _TolArc) {
1660
1661// On cherche a placer sur les restrictions solutions les points "multiples"
1662// des autres lignes d intersection
1663// Pas forcemment le plus efficace : on rique de projeter plusieurs fois
1664// le meme point sur la meme restriction...
1665
1666 Standard_Real TolArc=100.0*_TolArc;
1667 if(TolArc>0.1) TolArc=0.1;
1668
1669 Standard_Integer i,j,k;
1670 Standard_Integer Nblin,Nbvtx, Nbpt;
1671#ifndef DEB
1672 Standard_Boolean OnFirst = Standard_False,project = Standard_False,keeppoint = Standard_False;
1673#else
1674 Standard_Boolean OnFirst,project,keeppoint;
1675#endif
1676 Handle(Adaptor2d_HCurve2d) arcref;
1677 Standard_Real paramproj,paramf,paraml;
1678
1679 TColgp_SequenceOfPnt seq_Pnt3d;
1680 TColStd_SequenceOfReal seq_Real;
1681
1682 gp_Pnt ptproj,toproj,valpt;
1683
1684 gp_Pnt2d p2d;
1685 gp_Vec2d d2d;
1686 gp_Vec d1u,d1v,tgrest,tgarc,norm;
1687 IntSurf_Transition TRest,TArc;
1688#ifndef DEB
1689 Standard_Real U =0.,V =0.;
1690#else
1691 Standard_Real U,V;
1692#endif
1693 IntPatch_Point Ptvtx,newptvtx;
1694
1695 IntPatch_IType typ1,typ2;
1696
1697
1698 Nblin = slin.Length();
1699 for (i=1; i<=Nblin; i++) {
1700 const Handle(IntPatch_Line)& slini = slin(i);
1701 typ1 = slini->ArcType();
1702 if (typ1 == IntPatch_Restriction) {
1703 seq_Pnt3d.Clear();
1704 seq_Real.Clear();
1705 for (j=1; j<=Nblin; j++) {
1706 const Handle(IntPatch_Line)& slinj = slin(j);
1707 Nbpt = seq_Pnt3d.Length(); // important que ce soit ici
1708 typ2 = slinj->ArcType();
1709 if (typ2 != IntPatch_Restriction) {
1710
1711 //-- arcref = (*((Handle(IntPatch_RLine)*)&slini))->Arc();
1712 //-- OnFirst = (*((Handle(IntPatch_RLine)*)&slini))->IsOnFirstSurface();
1713
1714 //-- DES CHOSES A FAIRE ICI
1715 if((*((Handle(IntPatch_RLine)*)&slini))->IsArcOnS1()) {
1716 OnFirst=Standard_True;
1717 arcref= (*((Handle(IntPatch_RLine)*)&slini))->ArcOnS1();
1718 }
1719 else if((*((Handle(IntPatch_RLine)*)&slini))->IsArcOnS2()) {
1720 arcref= (*((Handle(IntPatch_RLine)*)&slini))->ArcOnS2();
1721 OnFirst=Standard_False;
1722 }
1723 if ((*((Handle(IntPatch_RLine)*)&slini))->HasFirstPoint()) {
1724 paramf = (*((Handle(IntPatch_RLine)*)&slini))->FirstPoint().ParameterOnLine();
1725 }
1726 else {
1727 // cout << "Pas de param debut sur rst solution" << endl;
1728 paramf = RealFirst();
1729 }
1730 if ((*((Handle(IntPatch_RLine)*)&slini))->HasLastPoint()) {
1731 paraml = (*((Handle(IntPatch_RLine)*)&slini))->LastPoint().ParameterOnLine();
1732 }
1733 else {
1734 // cout << "Pas de param debut sur rst solution" << endl;
1735 paraml = RealLast();
1736 }
1737
1738 if (typ2 == IntPatch_Analytic) {
1739 Nbvtx = (*((Handle(IntPatch_ALine)*)&slinj))->NbVertex();
1740 }
1741 else {
1742 Nbvtx = (*((Handle(IntPatch_GLine)*)&slinj))->NbVertex();
1743 }
1744
1745
1746 Standard_Boolean EdgeDegenere=Standard_True;
1747 for(Standard_Integer edg=0;EdgeDegenere && edg<=10;edg++) {
1748 arcref->D1(paramf+(paraml-paramf)*edg*0.1,p2d,d2d);
1749 if (OnFirst) {
1750 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1751 }
1752 else {
1753 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1754 }
1755 if(d1u.Magnitude()>1e-7) {
1756 EdgeDegenere=Standard_False;
1757 }
1758 }
1759
1760 for (k=1; EdgeDegenere==Standard_False && k<=Nbvtx; k++) {
1761 if (typ2 == IntPatch_Analytic) {
1762 Ptvtx = (*((Handle(IntPatch_ALine)*)&slinj))->Vertex(k);
1763 }
1764 else {
1765 Ptvtx = (*((Handle(IntPatch_GLine)*)&slinj))->Vertex(k);
1766 }
1767 if ((OnFirst && !Ptvtx.IsOnDomS1()) ||
1768 (!OnFirst && !Ptvtx.IsOnDomS2())) {
1769 // Si OnFirst && OnDomS1, c est qu on est a une extremite
1770 // ca doit etre traite par Process Segment...
1771 project = Standard_True;
1772 keeppoint = Standard_False;
1773 toproj = Ptvtx.Value();
1774
1775 Standard_Integer jj;
1776 for (jj = 1; jj <= Nbpt; jj++) {
1777 //for (Standard_Integer jj = 1; jj <= Nbpt; jj++) {
1778 if (toproj.Distance(seq_Pnt3d(jj)) < _TolArc) {
1779 project = Standard_False;
1780 break;
1781 }
1782 }
1783 if (project) { //-- il faut projeter pour trouver le point sur la rline.
1784 if (OnFirst) {
1785 Ptvtx.ParametersOnS1(U,V);
1786 }
1787 else {
1788 Ptvtx.ParametersOnS2(U,V);
1789 }
1790
1791 project = IntPatch_HInterTool::Project(arcref,gp_Pnt2d(U,V),
1792 paramproj,p2d);
1793
1794 if (project) {
1795 if (OnFirst) {
1796 ptproj = Quad1.Value(p2d.X(),p2d.Y());
1797 }
1798 else {
1799 ptproj = Quad2.Value(p2d.X(),p2d.Y());
1800 }
1801 if ((toproj.Distance(ptproj) <=100*TolArc) &&
1802 (paramproj >= paramf) && (paramproj <= paraml)){
1803 newptvtx = Ptvtx;
1804 newptvtx.SetParameter(paramproj);
1805 keeppoint = Standard_True;
1806 seq_Pnt3d.Append(toproj);
1807 seq_Real.Append(paramproj);
1808
1809 //-- verifier que si la restriction arcref est trouvee, elle porte ce vertex
1810 for (int ri=1; ri<=Nblin; ri++) {
1811 const Handle(IntPatch_Line)& slinri = slin(ri);
1812 if (slinri->ArcType() == IntPatch_Restriction) {
1813 if(OnFirst && (*((Handle(IntPatch_RLine)*)&slinri))->IsArcOnS1()) {
1814 if(arcref == (*((Handle(IntPatch_RLine)*)&slinri))->ArcOnS1()) {
1815 (*((Handle(IntPatch_RLine)*)&slinri))->AddVertex(newptvtx);
1816 //printf("\n ImpImpIntersection_0.gxx CAS1 \n");
1817 }
1818 }
1819 else if(OnFirst==Standard_False && (*((Handle(IntPatch_RLine)*)&slinri))->IsArcOnS2()) {
1820 if(arcref == (*((Handle(IntPatch_RLine)*)&slinri))->ArcOnS2()) {
1821 (*((Handle(IntPatch_RLine)*)&slinri))->AddVertex(newptvtx);
1822 //printf("\n ImpImpIntersection_0.gxx CAS2 \n");
1823 }
1824 }
1825 }
1826 }
1827 // -- --------------------------------------------------
1828 }
1829 }
1830 }
1831 else {
1832 keeppoint = Standard_True;
1833 newptvtx = Ptvtx;
1834 newptvtx.SetParameter(seq_Real(jj));
1835 }
1836 if (keeppoint) {
1837 Ptvtx.SetMultiple(Standard_True);
1838 newptvtx.SetMultiple(Standard_True);
1839
1840 if (typ2 == IntPatch_Analytic) {
1841 (*((Handle(IntPatch_ALine)*)&slinj))->Replace(k,Ptvtx);
1842 }
1843 else {
1844 (*((Handle(IntPatch_GLine)*)&slinj))->Replace(k,Ptvtx);
1845 }
1846
1847 if (Ptvtx.IsOnDomS1() || Ptvtx.IsOnDomS2()) {
1848
1849 arcref->D1(newptvtx.ParameterOnLine(),p2d,d2d);
1850
1851 if (OnFirst) { // donc OnDomS2
1852 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1853 tgrest.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1854
1855 const Handle(Adaptor2d_HCurve2d)& thearc = Ptvtx.ArcOnS2();
1856 thearc->D1(Ptvtx.ParameterOnArc2(),p2d,d2d);
1857 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1858 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1859 norm = d1u.Crossed(d1v); //Quad2.Normale(valpt);
1860 if(norm.SquareMagnitude()<1e-16) {
1861 TRest.SetValue(Standard_True,IntSurf_Undecided);
1862 TArc.SetValue(Standard_True,IntSurf_Undecided);
1863 }
1864 else {
1865 IntSurf::MakeTransition(tgrest,tgarc,norm,TRest,TArc);
1866 }
1867 newptvtx.SetArc(Standard_False,thearc,
1868 Ptvtx.ParameterOnArc2(),TRest,TArc);
1869
1870 }
1871 else { // donc OnDomS1
1872 Quad2.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1873 tgrest.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1874
1875 const Handle(Adaptor2d_HCurve2d)& thearc = Ptvtx.ArcOnS1();
1876 thearc->D1(Ptvtx.ParameterOnArc1(),p2d,d2d);
1877 Quad1.D1(p2d.X(),p2d.Y(),valpt,d1u,d1v);
1878 tgarc.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
1879 norm = d1u.Crossed(d1v); //Quad1.Normale(valpt);
1880 if(norm.SquareMagnitude()<1e-16) {
1881 TRest.SetValue(Standard_True,IntSurf_Undecided);
1882 TArc.SetValue(Standard_True,IntSurf_Undecided);
1883 }
1884 else {
1885 IntSurf::MakeTransition(tgrest,tgarc,norm,TRest,TArc);
1886 }
1887 newptvtx.SetArc(Standard_True,thearc,
1888 Ptvtx.ParameterOnArc1(),TRest,TArc);
1889 }
1890 } //-- if (Ptvtx.IsOnDomS1() || Ptvtx.IsOnDomS2())
1891
1892 (*((Handle(IntPatch_RLine)*)&slini))->AddVertex(newptvtx);
1893
1894 } //-- if (keeppoint)
1895 } //-- if ((OnFirst && !Ptvtx.IsOnDomS1())||(!OnFirst && !Ptvtx.IsOnDomS2()))
1896 } //-- boucle sur les vertex
1897 } //-- if (typ2 != IntPatch_Restriction)
1898 } //-- for (j=1; j<=Nblin; j++)
1899 } //-- if (typ1 == IntPatch_Restriction)
1900 } //-- for (i=1; i<=Nblin; i++)
1901}