0023948: Wrong intersection between a surface of revolution and a plane.
[occt.git] / src / GeomLib / GeomLib.cxx
CommitLineData
b311480e 1// Created on: 1993-07-07
2// Created by: Jean Claude VAUTHIER
3// Copyright (c) 1993-1999 Matra Datavision
973c2be1 4// Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 5//
973c2be1 6// This file is part of Open CASCADE Technology software library.
b311480e 7//
d5f74e42 8// This library is free software; you can redistribute it and/or modify it under
9// the terms of the GNU Lesser General Public License version 2.1 as published
973c2be1 10// by the Free Software Foundation, with special exception defined in the file
11// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12// distribution for complete text of the license and disclaimer of any warranty.
b311480e 13//
973c2be1 14// Alternatively, this file may be used under the terms of Open CASCADE
15// commercial license or contractual agreement.
7fd59977 16
7fd59977 17// Version:
b311480e 18//pmn 24/09/96 Ajout du prolongement de courbe.
7fd59977 19// jct 15/04/97 Ajout du prolongement de surface.
20// jct 24/04/97 simplification ou suppression de calculs
21// inutiles dans ExtendSurfByLength
22// correction de Tbord et Continuity=0 accepte
23// correction du calcul de lambda et appel a
24// TangExtendToConstraint avec lambmin au lieu de 1.
25// correction du passage Sr rat --> BSp nD
26// xab 26/06/97 treatement partiel anulation des derivees
27// partiels du denonimateur des Surfaces BSplines Rationnelles
28// dans le cas de valeurs proportionnelles des denominateurs
29// en umin umax et/ou vmin vmax.
30// pmn 4/07/97 Gestion de la continuite dans BuildCurve3d (PRO9097)
31
32// xab 10/07/97 on revient en arriere sur l'ajout du 26/06/97
33// pmn 26/09/97 Ajout des parametres d'approx dans BuildCurve3d
34// xab 29/09/97 on reintegre l'ajout du 26/06/97
35// pmn 31/10/97 Ajoute AdjustExtremity
36// jct 26/11/98 blindage dans ExtendSurf qd NTgte = 0 (CTS21288)
37// jct 19/01/99 traitement de la periodicite dans ExtendSurf
38// Design:
39// Warning: None
40// References: None
41// Language: C++2.0
42// Purpose:
43
44// Declarations:
45
46#include <GeomLib.ixx>
47
48#include <Precision.hxx>
49#include <GeomConvert.hxx>
50#include <Hermit.hxx>
51#include <Standard_NotImplemented.hxx>
52#include <GeomLib_MakeCurvefromApprox.hxx>
53#include <GeomLib_DenominatorMultiplier.hxx>
54#include <GeomLib_DenominatorMultiplierPtr.hxx>
55#include <GeomLib_PolyFunc.hxx>
56#include <GeomLib_LogSample.hxx>
57
58#include <AdvApprox_ApproxAFunction.hxx>
59#include <AdvApprox_PrefAndRec.hxx>
60
61#include <Adaptor2d_HCurve2d.hxx>
62#include <Adaptor3d_HCurve.hxx>
63#include <Adaptor3d_HSurface.hxx>
64#include <Adaptor3d_CurveOnSurface.hxx>
65#include <Geom2dAdaptor_Curve.hxx>
66#include <GeomAdaptor_Surface.hxx>
67#include <GeomAdaptor_HSurface.hxx>
68#include <Geom2dAdaptor_HCurve.hxx>
69#include <Geom2dAdaptor_GHCurve.hxx>
70
71#include <Geom2d_BSplineCurve.hxx>
72#include <Geom_BSplineCurve.hxx>
73#include <Geom2d_BezierCurve.hxx>
74#include <Geom_BezierCurve.hxx>
75#include <Geom_RectangularTrimmedSurface.hxx>
76#include <Geom_Plane.hxx>
77#include <Geom_Line.hxx>
78#include <Geom2d_Line.hxx>
79#include <Geom_Circle.hxx>
80#include <Geom2d_Circle.hxx>
81#include <Geom_Ellipse.hxx>
82#include <Geom2d_Ellipse.hxx>
83#include <Geom_Parabola.hxx>
84#include <Geom2d_Parabola.hxx>
85#include <Geom_Hyperbola.hxx>
86#include <Geom2d_Hyperbola.hxx>
87#include <Geom_TrimmedCurve.hxx>
88#include <Geom2d_TrimmedCurve.hxx>
89#include <Geom_OffsetCurve.hxx>
90#include <Geom2d_OffsetCurve.hxx>
91#include <Geom_BezierSurface.hxx>
92#include <Geom_BSplineSurface.hxx>
93
94#include <BSplCLib.hxx>
95#include <BSplSLib.hxx>
96#include <PLib.hxx>
97#include <math_Matrix.hxx>
98#include <math_Vector.hxx>
99#include <math_Jacobi.hxx>
100#include <math.hxx>
101#include <math_FunctionAllRoots.hxx>
102#include <math_FunctionSample.hxx>
103
104#include <TColStd_HArray1OfReal.hxx>
105#include <TColgp_Array1OfPnt.hxx>
106#include <TColgp_Array1OfVec.hxx>
107#include <TColgp_Array2OfPnt.hxx>
108#include <TColgp_HArray2OfPnt.hxx>
109#include <TColgp_Array1OfPnt2d.hxx>
110#include <TColgp_Array1OfXYZ.hxx>
111#include <TColStd_Array1OfReal.hxx>
112#include <TColStd_Array2OfReal.hxx>
113#include <TColStd_HArray2OfReal.hxx>
114#include <TColStd_Array1OfInteger.hxx>
115
116#include <gp_TrsfForm.hxx>
117#include <gp_Lin.hxx>
118#include <gp_Lin2d.hxx>
119#include <gp_Circ.hxx>
120#include <gp_Circ2d.hxx>
121#include <gp_Elips.hxx>
122#include <gp_Elips2d.hxx>
123#include <gp_Hypr.hxx>
124#include <gp_Hypr2d.hxx>
125#include <gp_Parab.hxx>
126#include <gp_Parab2d.hxx>
127#include <gp_GTrsf2d.hxx>
128#include <gp_Trsf2d.hxx>
129
130#include <ElCLib.hxx>
131#include <Geom2dConvert.hxx>
132#include <GeomConvert_CompCurveToBSplineCurve.hxx>
133#include <GeomConvert_ApproxSurface.hxx>
134
2b21c641 135#include <CSLib.hxx>
136#include <CSLib_NormalStatus.hxx>
137
7fd59977 138
139#include <Standard_ConstructionError.hxx>
140
141//=======================================================================
142//function : ComputeLambda
143//purpose : Calcul le facteur lambda qui minimise la variation de vittesse
144// sur une interpolation d'hermite d'ordre (i,0)
145//=======================================================================
146static void ComputeLambda(const math_Matrix& Constraint,
147 const math_Matrix& Hermit,
148 const Standard_Real Length,
149 Standard_Real& Lambda )
150{
151 Standard_Integer size = Hermit.RowNumber();
152 Standard_Integer Continuity = size-2;
153 Standard_Integer ii, jj, ip, pp;
154
155 //Minimization
156 math_Matrix HDer(1, size-1, 1, size);
157 for (jj=1; jj<=size; jj++) {
158 for (ii=1; ii<size;ii++) {
159 HDer(ii, jj) = ii*Hermit(jj, ii+1);
160 }
161 }
162
163 math_Vector V(1, size);
164 math_Vector Vec1(1, Constraint.RowNumber());
165 math_Vector Vec2(1, Constraint.RowNumber());
166 math_Vector Vec3(1, Constraint.RowNumber());
167 math_Vector Vec4(1, Constraint.RowNumber());
168
169 Standard_Real * polynome = &HDer(1,1);
170 Standard_Real * valhder = &V(1);
171 Vec2 = Constraint.Col(2);
172 Vec2 /= Length;
173 Standard_Real t, squared1 = Vec2.Norm2(), GW;
174// math_Matrix Vec(1, Constraint.RowNumber(), 1, size-1);
175// gp_Vec Vfirst(p0.XYZ()), Vlast(Point.XYZ());
176// TColgp_Array1OfVec Der(2, 4);
177// Der(2) = d1; Der(3) = d2; Der(4) = d3;
178
179 Standard_Integer GOrdre = 4 + 4*Continuity,
180 DDim=Continuity*(Continuity+2);
181 math_Vector GaussP(1, GOrdre), GaussW(1, GOrdre),
182 pol2(1, 2*Continuity+1),
183 pol4(1, 4*Continuity+1);
184 math::GaussPoints(GOrdre, GaussP);
185 math::GaussWeights (GOrdre, GaussW);
186 pol4.Init(0.);
187
188 for (ip=1; ip<=GOrdre; ip++) {
189 t = (GaussP(ip)+1.)/2;
190 GW = GaussW(ip);
191 PLib::NoDerivativeEvalPolynomial(t , Continuity, Continuity+2, DDim,
192 polynome[0], valhder[0]);
193 V /= Length; //Normalisation
194
195 // i
196 // C'(t) = SUM Vi*Lambda
197 Vec1 = Constraint.Col(1);
198 Vec1 *= V(1);
199 Vec1 += V(size)*Constraint.Col(size);
200 Vec2 = Constraint.Col(2);
201 Vec2 *= V(2);
202 if (Continuity > 1) {
203 Vec3 = Constraint.Col(3);
204 Vec3 *= V(3);
205 if (Continuity > 2) {
206 Vec4 = Constraint.Col(4);
207 Vec4 *= V(4);
208 }
209 }
210
211
212 // 2 2
213 // C'(t) - C'(0)
214
215 pol2(1) = Vec1.Norm2();
216 pol2(2) = 2*(Vec1.Multiplied(Vec2));
217 pol2(3) = Vec2.Norm2() - squared1;
218 if (Continuity>1) {
219 pol2(3) += 2*(Vec1.Multiplied(Vec3));
220 pol2(4) = 2*(Vec2.Multiplied(Vec3));
221 pol2(5) = Vec3.Norm2();
222 if (Continuity>2) {
223 pol2(4)+= 2*(Vec1.Multiplied(Vec4));
224 pol2(5)+= 2*(Vec2.Multiplied(Vec4));
225 pol2(6) = 2*(Vec3.Multiplied(Vec4));
226 pol2(7) = Vec4.Norm2();
227 }
228 }
229
230 // 2 2 2
231 // Integrale de ( C'(t) - C'(0) )
232 for (ii=1; ii<=pol2.Length(); ii++) {
233 pp = ii;
234 for(jj=1; jj<ii; jj++, pp++) {
235 pol4(pp) += 2*GW*pol2(ii)*pol2(jj);
236 }
237 pol4(2*ii-1) += GW*Pow(pol2(ii), 2);
238 }
239 }
240
241 Standard_Real EMin, E;
242 PLib::NoDerivativeEvalPolynomial(Lambda , pol4.Length()-1, 1,
243 pol4.Length()-1,
244 pol4(1), EMin);
245
246 if (EMin > Precision::Confusion()) {
247 // Recheche des extrema de la fonction
248 GeomLib_PolyFunc FF(pol4);
249 GeomLib_LogSample S(Lambda/1000, 50*Lambda, 100);
250 math_FunctionAllRoots Solve(FF, S, Precision::Confusion(),
251 Precision::Confusion()*(Length+1),
252 1.e-15);
253 if (Solve.IsDone()) {
254 for (ii=1; ii<=Solve.NbPoints(); ii++) {
255 t = Solve.GetPoint(ii);
256 PLib::NoDerivativeEvalPolynomial(t , pol4.Length()-1, 1,
257 pol4.Length()-1,
258 pol4(1), E);
259 if (E < EMin) {
260 Lambda = t;
261 EMin = E;
262 }
263 }
264 }
265 }
266}
267
268#include <Extrema_LocateExtPC.hxx>
269//=======================================================================
270//function : RemovePointsFromArray
271//purpose :
272//=======================================================================
273
274void GeomLib::RemovePointsFromArray(const Standard_Integer NumPoints,
275 const TColStd_Array1OfReal& InParameters,
276 Handle(TColStd_HArray1OfReal)& OutParameters)
277{
278 Standard_Integer ii,
279 jj,
280 add_one_point,
281 loc_num_points,
282 num_points,
283 index ;
284 Standard_Real delta,
285 current_parameter ;
286
287 loc_num_points = Max(0,NumPoints-2) ;
288 delta = InParameters(InParameters.Upper()) - InParameters(InParameters.Lower()) ;
289 delta /= (Standard_Real) (loc_num_points + 1) ;
290 num_points = 1 ;
291 current_parameter = InParameters(InParameters.Lower()) + delta * 0.5e0 ;
292 ii = InParameters.Lower() + 1 ;
293 for (jj = 0 ; ii < InParameters.Upper() && jj < NumPoints ; jj++) {
294 add_one_point = 0 ;
295 while ( ii < InParameters.Upper() && InParameters(ii) < current_parameter) {
296 ii += 1 ;
297 add_one_point = 1 ;
298 }
299 num_points += add_one_point ;
300 current_parameter += delta ;
301 }
302 if (NumPoints <= 2) {
303 num_points = 2 ;
304 }
305 index = 2 ;
306 current_parameter = InParameters(InParameters.Lower()) + delta * 0.5e0 ;
307 OutParameters =
308 new TColStd_HArray1OfReal(1,num_points) ;
309 OutParameters->ChangeArray1()(1) = InParameters(InParameters.Lower()) ;
310 ii = InParameters.Lower() + 1 ;
311 for (jj = 0 ; ii < InParameters.Upper() && jj < NumPoints ; jj++) {
312 add_one_point = 0 ;
313 while (ii < InParameters.Upper() && InParameters(ii) < current_parameter) {
314 ii += 1 ;
315 add_one_point = 1 ;
316 }
317 if (add_one_point && index <= num_points) {
318 OutParameters->ChangeArray1()(index) = InParameters(ii-1) ;
319 index += 1 ;
320 }
321 current_parameter += delta ;
322 }
323 OutParameters->ChangeArray1()(num_points) = InParameters(InParameters.Upper()) ;
324}
325//=======================================================================
326//function : DensifyArray1OfReal
327//purpose :
328//=======================================================================
329
330void GeomLib::DensifyArray1OfReal(const Standard_Integer MinNumPoints,
331 const TColStd_Array1OfReal& InParameters,
332 Handle(TColStd_HArray1OfReal)& OutParameters)
333{
334 Standard_Integer ii,
335 in_order,
336 num_points,
337 num_parameters_to_add,
338 index ;
339 Standard_Real delta,
340 current_parameter ;
341
342 in_order = 1 ;
343 if (MinNumPoints > InParameters.Length()) {
344
345 //
346 // checks the paramaters are in increasing order
347 //
348 for (ii = InParameters.Lower() ; ii < InParameters.Upper() ; ii++) {
349 if (InParameters(ii) > InParameters(ii+1)) {
350 in_order = 0 ;
351 break ;
352 }
353 }
354 if (in_order) {
355 num_parameters_to_add = MinNumPoints - InParameters.Length() ;
356 delta = InParameters(InParameters.Upper()) - InParameters(InParameters.Lower()) ;
357 delta /= (Standard_Real) (num_parameters_to_add + 1) ;
358 num_points = MinNumPoints ;
359 OutParameters =
360 new TColStd_HArray1OfReal(1,num_points) ;
361 index = 1 ;
362 current_parameter = InParameters(InParameters.Lower()) ;
363 OutParameters->ChangeArray1()(index) = current_parameter ;
364 index += 1 ;
365 current_parameter += delta ;
366 for (ii = InParameters.Lower() + 1 ; index <= num_points && ii <= InParameters.Upper() ; ii++) {
367 while (current_parameter < InParameters(ii) && index <= num_points) {
368 OutParameters->ChangeArray1()(index) = current_parameter ;
369 index += 1 ;
370 current_parameter += delta ;
371 }
372 if (index <= num_points) {
373 OutParameters->ChangeArray1()(index) = InParameters(ii) ;
374 }
375 index += 1 ;
376 }
377 //
378 // beware of roundoff !
379 //
380 OutParameters->ChangeArray1()(num_points) = InParameters(InParameters.Upper()) ;
381 }
382 else {
383 index = 1 ;
384 num_points = InParameters.Length() ;
385 OutParameters =
386 new TColStd_HArray1OfReal(1,num_points) ;
387 for (ii = InParameters.Lower() ; ii <= InParameters.Upper() ; ii++) {
388 OutParameters->ChangeArray1()(index) = InParameters(ii) ;
389 index += 1 ;
390 }
391 }
392 }
393 else {
394 index = 1 ;
395 num_points = InParameters.Length() ;
396 OutParameters =
397 new TColStd_HArray1OfReal(1,num_points) ;
398 for (ii = InParameters.Lower() ; ii <= InParameters.Upper() ; ii++) {
399 OutParameters->ChangeArray1()(index) = InParameters(ii) ;
400 index += 1 ;
401 }
402 }
403}
404
405//=======================================================================
406//function : FuseIntervals
407//purpose :
408//=======================================================================
409void GeomLib::FuseIntervals(const TColStd_Array1OfReal& I1,
410 const TColStd_Array1OfReal& I2,
411 TColStd_SequenceOfReal& Seq,
412 const Standard_Real Epspar)
413{
414 Standard_Integer ind1=1, ind2=1;
415 Standard_Real v1, v2;
416// Initialisations : les IND1 et IND2 pointent sur le 1er element
417// de chacune des 2 tables a traiter.INDS pointe sur le dernier
418// element cree de TABSOR
419
420
421//--- On remplit TABSOR en parcourant TABLE1 et TABLE2 simultanement ---
422//------------------ en eliminant les occurrences multiples ------------
423
424 while ((ind1<=I1.Upper()) && (ind2<=I2.Upper())) {
425 v1 = I1(ind1);
426 v2 = I2(ind2);
427 if (Abs(v1-v2)<= Epspar) {
428// Ici les elements de I1 et I2 conviennent .
429 Seq.Append((v1+v2)/2);
430 ind1++;
431 ind2++;
432 }
433 else if (v1 < v2) {
434 // Ici l' element de I1 convient.
435 Seq.Append(v1);
436 ind1++;
437 }
438 else {
439// Ici l' element de TABLE2 convient.
440 Seq.Append(v2);
441 ind2++;
442 }
443 }
444
445 if (ind1>I1.Upper()) {
446//----- Ici I1 est epuise, on complete avec la fin de TABLE2 -------
447
448 for (; ind2<=I2.Upper(); ind2++) {
449 Seq.Append(I2(ind2));
450 }
451 }
452
453 if (ind2>I2.Upper()) {
454//----- Ici I2 est epuise, on complete avec la fin de I1 -------
455 for (; ind1<=I1.Upper(); ind1++) {
456 Seq.Append(I1(ind1));
457 }
458 }
459}
460
461
462//=======================================================================
463//function : EvalMaxParametricDistance
464//purpose :
465//=======================================================================
466
467void GeomLib::EvalMaxParametricDistance(const Adaptor3d_Curve& ACurve,
468 const Adaptor3d_Curve& AReferenceCurve,
469// const Standard_Real Tolerance,
470 const Standard_Real ,
471 const TColStd_Array1OfReal& Parameters,
472 Standard_Real& MaxDistance)
473{
474 Standard_Integer ii ;
475
476 Standard_Real max_squared = 0.0e0,
477// tolerance_squared,
478 local_distance_squared ;
479
480// tolerance_squared = Tolerance * Tolerance ;
481 gp_Pnt Point1 ;
482 gp_Pnt Point2 ;
483 for (ii = Parameters.Lower() ; ii <= Parameters.Upper() ; ii++) {
484 ACurve.D0(Parameters(ii),
485 Point1) ;
486 AReferenceCurve.D0(Parameters(ii),
487 Point2) ;
488 local_distance_squared =
489 Point1.SquareDistance (Point2) ;
490 max_squared = Max(max_squared,local_distance_squared) ;
491 }
492 if (max_squared > 0.0e0) {
493 MaxDistance = sqrt(max_squared) ;
494 }
495 else {
496 MaxDistance = 0.0e0 ;
497 }
498
499}
500//=======================================================================
501//function : EvalMaxDistanceAlongParameter
502//purpose :
503//=======================================================================
504
505void GeomLib::EvalMaxDistanceAlongParameter(const Adaptor3d_Curve& ACurve,
506 const Adaptor3d_Curve& AReferenceCurve,
507 const Standard_Real Tolerance,
508 const TColStd_Array1OfReal& Parameters,
509 Standard_Real& MaxDistance)
510{
511 Standard_Integer ii ;
512 Standard_Real max_squared = 0.0e0,
513 tolerance_squared = Tolerance * Tolerance,
514 other_parameter,
515 para_tolerance,
516 local_distance_squared ;
517 gp_Pnt Point1 ;
518 gp_Pnt Point2 ;
519
520
521
522 para_tolerance =
523 AReferenceCurve.Resolution(Tolerance) ;
524 other_parameter = Parameters(Parameters.Lower()) ;
525 ACurve.D0(other_parameter,
526 Point1) ;
527 Extrema_LocateExtPC a_projector(Point1,
528 AReferenceCurve,
529 other_parameter,
530 para_tolerance) ;
531 for (ii = Parameters.Lower() ; ii <= Parameters.Upper() ; ii++) {
532 ACurve.D0(Parameters(ii),
533 Point1) ;
534 AReferenceCurve.D0(Parameters(ii),
535 Point2) ;
536 local_distance_squared =
537 Point1.SquareDistance (Point2) ;
538
539 local_distance_squared =
540 Point1.SquareDistance (Point2) ;
541
542
543 if (local_distance_squared > tolerance_squared) {
544
545
546 a_projector.Perform(Point1,
547 other_parameter) ;
548 if (a_projector.IsDone()) {
549 other_parameter =
550 a_projector.Point().Parameter() ;
551 AReferenceCurve.D0(other_parameter,
552 Point2) ;
553 local_distance_squared =
554 Point1.SquareDistance (Point2) ;
555 }
556 else {
557 local_distance_squared = 0.0e0 ;
558 other_parameter = Parameters(ii) ;
559 }
560 }
561 else {
562 other_parameter = Parameters(ii) ;
563 }
564
565
566 max_squared = Max(max_squared,local_distance_squared) ;
567 }
568 if (max_squared > tolerance_squared) {
569 MaxDistance = sqrt(max_squared) ;
570 }
571 else {
572 MaxDistance = Tolerance ;
573 }
574}
575
576
577
578// Aliases:
579
580// Global data definitions:
581
582// Methods :
583
584
585//=======================================================================
586//function : To3d
587//purpose :
588//=======================================================================
589
590Handle(Geom_Curve) GeomLib::To3d (const gp_Ax2& Position,
591 const Handle(Geom2d_Curve)& Curve2d ) {
592 Handle(Geom_Curve) Curve3d;
593 Handle(Standard_Type) KindOfCurve = Curve2d->DynamicType();
594
595 if (KindOfCurve == STANDARD_TYPE (Geom2d_TrimmedCurve)) {
596 Handle(Geom2d_TrimmedCurve) Ct =
597 Handle(Geom2d_TrimmedCurve)::DownCast(Curve2d);
598 Standard_Real U1 = Ct->FirstParameter ();
599 Standard_Real U2 = Ct->LastParameter ();
600 Handle(Geom2d_Curve) CBasis2d = Ct->BasisCurve();
601 Handle(Geom_Curve) CC = GeomLib::To3d(Position, CBasis2d);
602 Curve3d = new Geom_TrimmedCurve (CC, U1, U2);
603 }
604 else if (KindOfCurve == STANDARD_TYPE (Geom2d_OffsetCurve)) {
605 Handle(Geom2d_OffsetCurve) Co =
606 Handle(Geom2d_OffsetCurve)::DownCast(Curve2d);
607 Standard_Real Offset = Co->Offset();
608 Handle(Geom2d_Curve) CBasis2d = Co->BasisCurve();
609 Handle(Geom_Curve) CC = GeomLib::To3d(Position, CBasis2d);
610 Curve3d = new Geom_OffsetCurve (CC, Offset, Position.Direction());
611 }
612 else if (KindOfCurve == STANDARD_TYPE (Geom2d_BezierCurve)) {
613 Handle(Geom2d_BezierCurve) CBez2d =
614 Handle(Geom2d_BezierCurve)::DownCast (Curve2d);
615 Standard_Integer Nbpoles = CBez2d->NbPoles ();
616 TColgp_Array1OfPnt2d Poles2d (1, Nbpoles);
617 CBez2d->Poles (Poles2d);
618 TColgp_Array1OfPnt Poles3d (1, Nbpoles);
619 for (Standard_Integer i = 1; i <= Nbpoles; i++) {
620 Poles3d (i) = ElCLib::To3d (Position, Poles2d (i));
621 }
622 Handle(Geom_BezierCurve) CBez3d;
623 if (CBez2d->IsRational()) {
624 TColStd_Array1OfReal TheWeights (1, Nbpoles);
625 CBez2d->Weights (TheWeights);
626 CBez3d = new Geom_BezierCurve (Poles3d, TheWeights);
627 }
628 else {
629 CBez3d = new Geom_BezierCurve (Poles3d);
630 }
631 Curve3d = CBez3d;
632 }
633 else if (KindOfCurve == STANDARD_TYPE (Geom2d_BSplineCurve)) {
634 Handle(Geom2d_BSplineCurve) CBSpl2d =
635 Handle(Geom2d_BSplineCurve)::DownCast (Curve2d);
636 Standard_Integer Nbpoles = CBSpl2d->NbPoles ();
637 Standard_Integer Nbknots = CBSpl2d->NbKnots ();
638 Standard_Integer TheDegree = CBSpl2d->Degree ();
639 Standard_Boolean IsPeriodic = CBSpl2d->IsPeriodic();
640 TColgp_Array1OfPnt2d Poles2d (1, Nbpoles);
641 CBSpl2d->Poles (Poles2d);
642 TColgp_Array1OfPnt Poles3d (1, Nbpoles);
643 for (Standard_Integer i = 1; i <= Nbpoles; i++) {
644 Poles3d (i) = ElCLib::To3d (Position, Poles2d (i));
645 }
646 TColStd_Array1OfReal TheKnots (1, Nbknots);
647 TColStd_Array1OfInteger TheMults (1, Nbknots);
648 CBSpl2d->Knots (TheKnots);
649 CBSpl2d->Multiplicities (TheMults);
650 Handle(Geom_BSplineCurve) CBSpl3d;
651 if (CBSpl2d->IsRational()) {
652 TColStd_Array1OfReal TheWeights (1, Nbpoles);
653 CBSpl2d->Weights (TheWeights);
654 CBSpl3d = new Geom_BSplineCurve (Poles3d, TheWeights, TheKnots, TheMults, TheDegree, IsPeriodic);
655 }
656 else {
657 CBSpl3d = new Geom_BSplineCurve (Poles3d, TheKnots, TheMults, TheDegree, IsPeriodic);
658 }
659 Curve3d = CBSpl3d;
660 }
661 else if (KindOfCurve == STANDARD_TYPE (Geom2d_Line)) {
662 Handle(Geom2d_Line) Line2d = Handle(Geom2d_Line)::DownCast (Curve2d);
663 gp_Lin2d L2d = Line2d->Lin2d();
664 gp_Lin L3d = ElCLib::To3d (Position, L2d);
665 Handle(Geom_Line) GeomL3d = new Geom_Line (L3d);
666 Curve3d = GeomL3d;
667 }
668 else if (KindOfCurve == STANDARD_TYPE (Geom2d_Circle)) {
669 Handle(Geom2d_Circle) Circle2d =
670 Handle(Geom2d_Circle)::DownCast (Curve2d);
671 gp_Circ2d C2d = Circle2d->Circ2d();
672 gp_Circ C3d = ElCLib::To3d (Position, C2d);
673 Handle(Geom_Circle) GeomC3d = new Geom_Circle (C3d);
674 Curve3d = GeomC3d;
675 }
676 else if (KindOfCurve == STANDARD_TYPE (Geom2d_Ellipse)) {
677 Handle(Geom2d_Ellipse) Ellipse2d =
678 Handle(Geom2d_Ellipse)::DownCast (Curve2d);
679 gp_Elips2d E2d = Ellipse2d->Elips2d ();
680 gp_Elips E3d = ElCLib::To3d (Position, E2d);
681 Handle(Geom_Ellipse) GeomE3d = new Geom_Ellipse (E3d);
682 Curve3d = GeomE3d;
683 }
684 else if (KindOfCurve == STANDARD_TYPE (Geom2d_Parabola)) {
685 Handle(Geom2d_Parabola) Parabola2d =
686 Handle(Geom2d_Parabola)::DownCast (Curve2d);
687 gp_Parab2d Prb2d = Parabola2d->Parab2d ();
688 gp_Parab Prb3d = ElCLib::To3d (Position, Prb2d);
689 Handle(Geom_Parabola) GeomPrb3d = new Geom_Parabola (Prb3d);
690 Curve3d = GeomPrb3d;
691 }
692 else if (KindOfCurve == STANDARD_TYPE (Geom2d_Hyperbola)) {
693 Handle(Geom2d_Hyperbola) Hyperbola2d =
694 Handle(Geom2d_Hyperbola)::DownCast (Curve2d);
695 gp_Hypr2d H2d = Hyperbola2d->Hypr2d ();
696 gp_Hypr H3d = ElCLib::To3d (Position, H2d);
697 Handle(Geom_Hyperbola) GeomH3d = new Geom_Hyperbola (H3d);
698 Curve3d = GeomH3d;
699 }
700 else {
701 Standard_NotImplemented::Raise();
702 }
703
704 return Curve3d;
705}
706
707
708
709//=======================================================================
710//function : GTransform
711//purpose :
712//=======================================================================
713
714Handle(Geom2d_Curve) GeomLib::GTransform(const Handle(Geom2d_Curve)& Curve,
715 const gp_GTrsf2d& GTrsf)
716{
717 gp_TrsfForm Form = GTrsf.Form();
718
719 if ( Form != gp_Other) {
720
721 // Alors, la GTrsf est en fait une Trsf.
722 // La geometrie des courbes sera alors inchangee.
723
724 Handle(Geom2d_Curve) C =
725 Handle(Geom2d_Curve)::DownCast(Curve->Transformed(GTrsf.Trsf2d()));
726 return C;
727 }
728 else {
729
730 // Alors, la GTrsf est une other Transformation.
731 // La geometrie des courbes est alors changee, et les conics devront
732 // etre converties en BSplines.
733
734 Handle(Standard_Type) TheType = Curve->DynamicType();
735
736 if ( TheType == STANDARD_TYPE(Geom2d_TrimmedCurve)) {
737
738 // On va recurer sur la BasisCurve
739
740 Handle(Geom2d_TrimmedCurve) C =
741 Handle(Geom2d_TrimmedCurve)::DownCast(Curve->Copy());
742
743 Handle(Standard_Type) TheBasisType = (C->BasisCurve())->DynamicType();
744
745 if (TheBasisType == STANDARD_TYPE(Geom2d_BSplineCurve) ||
746 TheBasisType == STANDARD_TYPE(Geom2d_BezierCurve) ) {
747
748 // Dans ces cas le parametrage est conserve sur la courbe transformee
749 // on peut donc la trimmer avec les parametres de la courbe de base.
750
751 Standard_Real U1 = C->FirstParameter();
752 Standard_Real U2 = C->LastParameter();
753
754 Handle(Geom2d_TrimmedCurve) result =
755 new Geom2d_TrimmedCurve(GTransform(C->BasisCurve(), GTrsf), U1,U2);
756 return result;
757 }
758 else if ( TheBasisType == STANDARD_TYPE(Geom2d_Line)) {
759
760 // Dans ce cas, le parametrage n`est plus conserve.
761 // Il faut recalculer les parametres de Trimming sur la courbe
762 // resultante. ( Calcul par projection ( ElCLib) des points debut
763 // et fin transformes)
764
765 Handle(Geom2d_Line) L =
766 Handle(Geom2d_Line)::DownCast(GTransform(C->BasisCurve(), GTrsf));
767 gp_Lin2d Lin = L->Lin2d();
768
769 gp_Pnt2d P1 = C->StartPoint();
770 gp_Pnt2d P2 = C->EndPoint();
771 P1.SetXY(GTrsf.Transformed(P1.XY()));
772 P2.SetXY(GTrsf.Transformed(P2.XY()));
773 Standard_Real U1 = ElCLib::Parameter(Lin,P1);
774 Standard_Real U2 = ElCLib::Parameter(Lin,P2);
775
776 Handle(Geom2d_TrimmedCurve) result =
777 new Geom2d_TrimmedCurve(L,U1,U2);
778 return result;
779 }
780 else if (TheBasisType == STANDARD_TYPE(Geom2d_Circle) ||
781 TheBasisType == STANDARD_TYPE(Geom2d_Ellipse) ||
782 TheBasisType == STANDARD_TYPE(Geom2d_Parabola) ||
783 TheBasisType == STANDARD_TYPE(Geom2d_Hyperbola) ) {
784
785 // Dans ces cas, la geometrie de la courbe n`est pas conservee
786 // on la convertir en BSpline avant de lui appliquer la Trsf.
787
788 Handle(Geom2d_BSplineCurve) BS =
789 Geom2dConvert::CurveToBSplineCurve(C);
790 return GTransform(BS,GTrsf);
791 }
792 else {
793
794 // La transformee d`une OffsetCurve vaut ????? Sais pas faire !!
795
796 Handle(Geom2d_Curve) dummy;
797 return dummy;
798 }
799 }
800 else if ( TheType == STANDARD_TYPE(Geom2d_Line)) {
801
802 Handle(Geom2d_Line) L =
803 Handle(Geom2d_Line)::DownCast(Curve->Copy());
804 gp_Lin2d Lin = L->Lin2d();
805 gp_Pnt2d P = Lin.Location();
806 gp_Pnt2d PP = L->Value(10.); // pourquoi pas !!
807 P.SetXY(GTrsf.Transformed(P.XY()));
808 PP.SetXY(GTrsf.Transformed(PP.XY()));
809 L->SetLocation(P);
810 gp_Vec2d V(P,PP);
811 L->SetDirection(gp_Dir2d(V));
812 return L;
813 }
814 else if ( TheType == STANDARD_TYPE(Geom2d_BezierCurve)) {
815
816 // Les GTrsf etant des operation lineaires, la transformee d`une courbe
817 // a poles est la courbe dont les poles sont la transformee des poles
818 // de la courbe de base.
819
820 Handle(Geom2d_BezierCurve) C =
821 Handle(Geom2d_BezierCurve)::DownCast(Curve->Copy());
822 Standard_Integer NbPoles = C->NbPoles();
823 TColgp_Array1OfPnt2d Poles(1,NbPoles);
824 C->Poles(Poles);
825 for ( Standard_Integer i = 1; i <= NbPoles; i++) {
826 Poles(i).SetXY(GTrsf.Transformed(Poles(i).XY()));
827 C->SetPole(i,Poles(i));
828 }
829 return C;
830 }
831 else if ( TheType == STANDARD_TYPE(Geom2d_BSplineCurve)) {
832
833 // Voir commentaire pour les Bezier.
834
835 Handle(Geom2d_BSplineCurve) C =
836 Handle(Geom2d_BSplineCurve)::DownCast(Curve->Copy());
837 Standard_Integer NbPoles = C->NbPoles();
838 TColgp_Array1OfPnt2d Poles(1,NbPoles);
839 C->Poles(Poles);
840 for ( Standard_Integer i = 1; i <= NbPoles; i++) {
841 Poles(i).SetXY(GTrsf.Transformed(Poles(i).XY()));
842 C->SetPole(i,Poles(i));
843 }
844 return C;
845 }
846 else if ( TheType == STANDARD_TYPE(Geom2d_Circle) ||
847 TheType == STANDARD_TYPE(Geom2d_Ellipse) ) {
848
849 // Dans ces cas, la geometrie de la courbe n`est pas conservee
850 // on la convertir en BSpline avant de lui appliquer la Trsf.
851
852 Handle(Geom2d_BSplineCurve) C =
853 Geom2dConvert::CurveToBSplineCurve(Curve);
854 return GTransform(C, GTrsf);
855 }
856 else if ( TheType == STANDARD_TYPE(Geom2d_Parabola) ||
857 TheType == STANDARD_TYPE(Geom2d_Hyperbola) ||
858 TheType == STANDARD_TYPE(Geom2d_OffsetCurve) ) {
859
860 // On ne sait pas faire : return a null Handle;
861
862 Handle(Geom2d_Curve) dummy;
863 return dummy;
864 }
865 }
866
867 Handle(Geom2d_Curve) WNT__; // portage Windows.
868 return WNT__;
869}
870
871
872//=======================================================================
873//function : SameRange
874//purpose :
875//=======================================================================
876void GeomLib::SameRange(const Standard_Real Tolerance,
877 const Handle(Geom2d_Curve)& CurvePtr,
878 const Standard_Real FirstOnCurve,
879 const Standard_Real LastOnCurve,
880 const Standard_Real RequestedFirst,
881 const Standard_Real RequestedLast,
882 Handle(Geom2d_Curve)& NewCurvePtr)
883{
884 if(CurvePtr.IsNull()) Standard_Failure::Raise();
885 if (Abs(LastOnCurve - RequestedLast) <= Tolerance &&
886 Abs(FirstOnCurve - RequestedFirst) <= Tolerance) {
887 NewCurvePtr = CurvePtr;
888 return;
889 }
890
891 // the parametrisation lentgh must at least be the same.
892 if (Abs(LastOnCurve - FirstOnCurve - RequestedLast + RequestedFirst)
893 <= Tolerance) {
894 if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_Line))) {
895 Handle(Geom2d_Line) Line =
896 Handle(Geom2d_Line)::DownCast(CurvePtr->Copy());
897 Standard_Real dU = FirstOnCurve - RequestedFirst;
898 gp_Dir2d D = Line->Direction() ;
899 Line->Translate(dU * gp_Vec2d(D));
900 NewCurvePtr = Line;
901 }
902 else if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_Circle))) {
903 gp_Trsf2d Trsf;
904 NewCurvePtr = Handle(Geom2d_Curve)::DownCast(CurvePtr->Copy());
905 Handle(Geom2d_Circle) Circ =
906 Handle(Geom2d_Circle)::DownCast(NewCurvePtr);
907 gp_Pnt2d P = Circ->Location();
908 Standard_Real dU;
909 if (Circ->Circ2d().IsDirect()) {
910 dU = FirstOnCurve - RequestedFirst;
911 }
912 else {
913 dU = RequestedFirst - FirstOnCurve;
914 }
915 Trsf.SetRotation(P,dU);
916 NewCurvePtr->Transform(Trsf) ;
917 }
918 else if (CurvePtr->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve))) {
919 Handle(Geom2d_TrimmedCurve) TC =
920 Handle(Geom2d_TrimmedCurve)::DownCast(CurvePtr);
921 GeomLib::SameRange(Tolerance,
922 TC->BasisCurve(),
923 FirstOnCurve , LastOnCurve,
924 RequestedFirst, RequestedLast,
925 NewCurvePtr);
926 NewCurvePtr = new Geom2d_TrimmedCurve( NewCurvePtr, RequestedFirst, RequestedLast );
927 }
928//
929// attention a des problemes de limitation : utiliser le MEME test que dans
930// Geom2d_TrimmedCurve::SetTrim car sinon comme on risque de relimite sur
931// RequestedFirst et RequestedLast on aura un probleme
932//
933//
934 else if (Abs(LastOnCurve - FirstOnCurve) > Precision::PConfusion() ||
935 Abs(RequestedLast + RequestedFirst) > Precision::PConfusion()) {
936
937 Handle(Geom2d_TrimmedCurve) TC =
938 new Geom2d_TrimmedCurve(CurvePtr,FirstOnCurve,LastOnCurve);
939
940 Handle(Geom2d_BSplineCurve) BS =
941 Geom2dConvert::CurveToBSplineCurve(TC);
942 TColStd_Array1OfReal Knots(1,BS->NbKnots());
943 BS->Knots(Knots);
944
945 BSplCLib::Reparametrize(RequestedFirst,RequestedLast,Knots);
946
947 BS->SetKnots(Knots);
948 NewCurvePtr = BS;
949 }
950
951 }
952 else { // On segmente le resultat
953 Handle(Geom2d_TrimmedCurve) TC =
954 new Geom2d_TrimmedCurve( CurvePtr, FirstOnCurve, LastOnCurve );
955
956 Standard_Real newFirstOnCurve = TC->FirstParameter(), newLastOnCurve = TC->LastParameter();
957
958 Handle(Geom2d_BSplineCurve) BS =
959 Geom2dConvert::CurveToBSplineCurve(TC);
960
961 if (BS->IsPeriodic())
962 BS->Segment( newFirstOnCurve, newLastOnCurve) ;
963 else
964 BS->Segment( Max(newFirstOnCurve, BS->FirstParameter()),
965 Min(newLastOnCurve, BS->LastParameter()) );
966
967 TColStd_Array1OfReal Knots(1,BS->NbKnots());
968 BS->Knots(Knots);
969
970 BSplCLib::Reparametrize(RequestedFirst,RequestedLast,Knots);
971
972 BS->SetKnots(Knots);
973 NewCurvePtr = BS;
974 }
975}
976
977//=======================================================================
978//class : GeomLib_CurveOnSurfaceEvaluator
979//purpose: The evaluator for the Curve 3D building
980//=======================================================================
981
982class GeomLib_CurveOnSurfaceEvaluator : public AdvApprox_EvaluatorFunction
983{
984 public:
985 GeomLib_CurveOnSurfaceEvaluator (Adaptor3d_CurveOnSurface& theCurveOnSurface,
986 Standard_Real theFirst, Standard_Real theLast)
987 : CurveOnSurface(theCurveOnSurface), FirstParam(theFirst), LastParam(theLast) {}
988
989 virtual void Evaluate (Standard_Integer *Dimension,
990 Standard_Real StartEnd[2],
991 Standard_Real *Parameter,
992 Standard_Integer *DerivativeRequest,
993 Standard_Real *Result, // [Dimension]
994 Standard_Integer *ErrorCode);
995
996 private:
997 Adaptor3d_CurveOnSurface& CurveOnSurface;
998 Standard_Real FirstParam;
999 Standard_Real LastParam;
1000
1001 Handle(Adaptor3d_HCurve) TrimCurve;
1002};
1003
1004void GeomLib_CurveOnSurfaceEvaluator::Evaluate (Standard_Integer *,/*Dimension*/
1005 Standard_Real DebutFin[2],
1006 Standard_Real *Parameter,
1007 Standard_Integer *DerivativeRequest,
1008 Standard_Real *Result,// [Dimension]
1009 Standard_Integer *ReturnCode)
1010{
1011 register Standard_Integer ii ;
1012 gp_Pnt Point ;
1013
1014 //Gestion des positionnements gauche / droite
1015 if ((DebutFin[0] != FirstParam) || (DebutFin[1] != LastParam))
1016 {
1017 TrimCurve = CurveOnSurface.Trim(DebutFin[0], DebutFin[1], Precision::PConfusion());
1018 FirstParam = DebutFin[0];
1019 LastParam = DebutFin[1];
1020 }
1021
1022 //Positionemment
1023 if (*DerivativeRequest == 0)
1024 {
1025 TrimCurve->D0((*Parameter), Point) ;
1026
1027 for (ii = 0 ; ii < 3 ; ii++)
1028 Result[ii] = Point.Coord(ii + 1);
1029 }
1030 if (*DerivativeRequest == 1)
1031 {
1032 gp_Vec Vector;
1033 TrimCurve->D1((*Parameter), Point, Vector);
1034 for (ii = 0 ; ii < 3 ; ii++)
1035 Result[ii] = Vector.Coord(ii + 1) ;
1036 }
1037 if (*DerivativeRequest == 2)
1038 {
1039 gp_Vec Vector, VecBis;
1040 TrimCurve->D2((*Parameter), Point, VecBis, Vector);
1041 for (ii = 0 ; ii < 3 ; ii++)
1042 Result[ii] = Vector.Coord(ii + 1) ;
1043 }
1044 ReturnCode[0] = 0;
1045}
1046
1047//=======================================================================
1048//function : BuildCurve3d
1049//purpose :
1050//=======================================================================
1051
1052void GeomLib::BuildCurve3d(const Standard_Real Tolerance,
1053 Adaptor3d_CurveOnSurface& Curve,
1054 const Standard_Real FirstParameter,
1055 const Standard_Real LastParameter,
857ffd5e 1056 Handle(Geom_Curve)& NewCurvePtr,
7fd59977 1057 Standard_Real& MaxDeviation,
1058 Standard_Real& AverageDeviation,
1059 const GeomAbs_Shape Continuity,
1060 const Standard_Integer MaxDegree,
1061 const Standard_Integer MaxSegment)
1062
1063{
1064
1065
1066 Standard_Integer curve_not_computed = 1 ;
1067 MaxDeviation = 0.0e0 ;
1068 AverageDeviation = 0.0e0 ;
1069 const Handle(GeomAdaptor_HSurface) & geom_adaptor_surface_ptr =
1070 Handle(GeomAdaptor_HSurface)::DownCast(Curve.GetSurface()) ;
1071 const Handle(Geom2dAdaptor_HCurve) & geom_adaptor_curve_ptr =
1072 Handle(Geom2dAdaptor_HCurve)::DownCast(Curve.GetCurve()) ;
1073
1074 if (! geom_adaptor_curve_ptr.IsNull() &&
1075 ! geom_adaptor_surface_ptr.IsNull()) {
1076 Handle(Geom_Plane) P ;
1077 const GeomAdaptor_Surface & geom_surface =
1078 * (GeomAdaptor_Surface *) &geom_adaptor_surface_ptr->Surface() ;
1079
1080 Handle(Geom_RectangularTrimmedSurface) RT =
1081 Handle(Geom_RectangularTrimmedSurface)::
1082 DownCast(geom_surface.Surface());
1083 if ( RT.IsNull()) {
1084 P = Handle(Geom_Plane)::DownCast(geom_surface.Surface());
1085 }
1086 else {
1087 P = Handle(Geom_Plane)::DownCast(RT->BasisSurface());
1088 }
1089
1090
1091 if (! P.IsNull()) {
1092 // compute the 3d curve
1093 gp_Ax2 axes = P->Position().Ax2();
1094 const Geom2dAdaptor_Curve & geom2d_curve =
1095 * (Geom2dAdaptor_Curve *) & geom_adaptor_curve_ptr->Curve2d() ;
1096 NewCurvePtr =
1097 GeomLib::To3d(axes,
1098 geom2d_curve.Curve());
1099 curve_not_computed = 0 ;
1100
1101 }
1102 }
1103 if (curve_not_computed) {
1104
1105 //
1106 // Entree
1107 //
1108 Handle(TColStd_HArray1OfReal) Tolerance1DPtr,Tolerance2DPtr;
1109 Handle(TColStd_HArray1OfReal) Tolerance3DPtr =
1110 new TColStd_HArray1OfReal(1,1) ;
1111 Tolerance3DPtr->SetValue(1,Tolerance);
1112
1113 // Recherche des discontinuitees
1114 Standard_Integer NbIntervalC2 = Curve.NbIntervals(GeomAbs_C2);
1115 TColStd_Array1OfReal Param_de_decoupeC2 (1, NbIntervalC2+1);
1116 Curve.Intervals(Param_de_decoupeC2, GeomAbs_C2);
1117
1118 Standard_Integer NbIntervalC3 = Curve.NbIntervals(GeomAbs_C3);
1119 TColStd_Array1OfReal Param_de_decoupeC3 (1, NbIntervalC3+1);
1120 Curve.Intervals(Param_de_decoupeC3, GeomAbs_C3);
1121
1122 // Note extension of the parameteric range
1123 // Pour forcer le Trim au premier appel de l'evaluateur
1124 GeomLib_CurveOnSurfaceEvaluator ev (Curve, FirstParameter - 1., LastParameter + 1.);
1125
1126 // Approximation avec decoupe preferentiel
1127 AdvApprox_PrefAndRec Preferentiel(Param_de_decoupeC2,
1128 Param_de_decoupeC3);
1129 AdvApprox_ApproxAFunction anApproximator(0,
1130 0,
1131 1,
1132 Tolerance1DPtr,
1133 Tolerance2DPtr,
1134 Tolerance3DPtr,
1135 FirstParameter,
1136 LastParameter,
1137 Continuity,
1138 MaxDegree,
1139 MaxSegment,
1140 ev,
1141// CurveOnSurfaceEvaluator,
1142 Preferentiel) ;
1143
1144 if (anApproximator.HasResult()) {
1145 GeomLib_MakeCurvefromApprox
1146 aCurveBuilder(anApproximator) ;
1147
1148 Handle(Geom_BSplineCurve) aCurvePtr =
1149 aCurveBuilder.Curve(1) ;
1150 // On rend les resultats de l'approx
1151 MaxDeviation = anApproximator.MaxError(3,1) ;
1152 AverageDeviation = anApproximator.AverageError(3,1) ;
1153 NewCurvePtr = aCurvePtr ;
1154 }
1155 }
1156 }
1157
1158//=======================================================================
1159//function : AdjustExtremity
1160//purpose :
1161//=======================================================================
1162
1163void GeomLib::AdjustExtremity(Handle(Geom_BoundedCurve)& Curve,
1164 const gp_Pnt& P1,
1165 const gp_Pnt& P2,
1166 const gp_Vec& T1,
1167 const gp_Vec& T2)
1168{
1169// il faut Convertir l'entree (en preservant si possible le parametrage)
1170 Handle(Geom_BSplineCurve) aIn, aDef;
1171 aIn = GeomConvert::CurveToBSplineCurve(Curve, Convert_QuasiAngular);
1172
1173 Standard_Integer ii, jj;
1174 gp_Pnt P;
1175 gp_Vec V, Vtan, DV;
1176 TColgp_Array1OfPnt PolesDef(1,4), Coeffs(1,4);
1177 TColStd_Array1OfReal FK(1, 8);
1178 TColStd_Array1OfReal Ti(1, 4);
1179 TColStd_Array1OfInteger Contact(1, 4);
1180
1181 Ti(1) = Ti(2) = aIn->FirstParameter();
1182 Ti(3) = Ti(4) = aIn->LastParameter();
1183 Contact(1) = Contact(3) = 0;
1184 Contact(2) = Contact(4) = 1;
1185 for (ii=1; ii<=4; ii++) {
1186 FK(ii) = aIn->FirstParameter();
1187 FK(ii) = aIn->LastParameter();
1188 }
1189
1190 // Calculs des contraintes de deformations
1191 aIn->D1(Ti(1), P, V);
1192 PolesDef(1).ChangeCoord() = P1.XYZ()-P.XYZ();
1193 Vtan = T1;
1194 Vtan.Normalize();
1195 DV = Vtan * (Vtan * V) - V;
1196 PolesDef(2).ChangeCoord() = (Ti(4)-Ti(1))*DV.XYZ();
1197
1198 aIn->D1(Ti(4), P, V);
1199 PolesDef(3).ChangeCoord() = P2.XYZ()-P.XYZ();
1200 Vtan = T2;
1201 Vtan.Normalize();
1202 DV = Vtan * (Vtan * V) - V;
1203 PolesDef(4).ChangeCoord() = (Ti(4)-Ti(1))* DV.XYZ();
1204
1205 // Interpolation des contraintes
1206 math_Matrix Mat(1, 4, 1, 4);
1207 if (!PLib::HermiteCoefficients(0., 1., 1, 1, Mat))
1208 Standard_ConstructionError::Raise();
1209
1210 for (jj=1; jj<=4; jj++) {
1211 gp_XYZ aux(0.,0.,0.);
1212 for (ii=1; ii<=4; ii++) {
1213 aux.SetLinearForm(Mat(ii,jj), PolesDef(ii).XYZ(), aux);
1214 }
1215 Coeffs(jj).SetXYZ(aux);
1216 }
1217
1218 PLib::CoefficientsPoles(Coeffs, PLib::NoWeights(),
1219 PolesDef, PLib::NoWeights());
1220
1221 // Ajout de la deformation
1222 TColStd_Array1OfReal K(1, 2);
1223 TColStd_Array1OfInteger M(1, 2);
1224 K(1) = Ti(1);
1225 K(2) = Ti(4);
1226 M.Init(4);
1227
1228 aDef = new (Geom_BSplineCurve) (PolesDef, K, M, 3);
1229 if (aIn->Degree() < 3) aIn->IncreaseDegree(3);
1230 else aDef->IncreaseDegree(aIn->Degree());
1231
1232 for (ii=2; ii<aIn->NbKnots(); ii++) {
1233 aDef->InsertKnot(aIn->Knot(ii), aIn->Multiplicity(ii));
1234 }
1235
1236 if (aDef->NbPoles() != aIn->NbPoles())
1237 Standard_ConstructionError::Raise("Inconsistent poles's number");
1238
1239 for (ii=1; ii<=aDef->NbPoles(); ii++) {
1240 P = aIn->Pole(ii);
1241 P.ChangeCoord() += aDef->Pole(ii).XYZ();
1242 aIn->SetPole(ii, P);
1243 }
1244 Curve = aIn;
1245}
1246//=======================================================================
1247//function : ExtendCurveToPoint
1248//purpose :
1249//=======================================================================
1250
1251void GeomLib::ExtendCurveToPoint(Handle(Geom_BoundedCurve)& Curve,
1252 const gp_Pnt& Point,
1253 const Standard_Integer Continuity,
1254 const Standard_Boolean After)
1255{
1256 if(Continuity < 1 || Continuity > 3) return;
1257 Standard_Integer size = Continuity + 2;
1258 Standard_Real Ubord, Tol=1.e-6;
1259 math_Matrix MatCoefs(1,size, 1,size);
1260 Standard_Real Lambda, L1;
1261 Standard_Integer ii, jj;
1262 gp_Vec d1, d2, d3;
1263 gp_Pnt p0;
1264// il faut Convertir l'entree (en preservant si possible le parametrage)
1265 GeomConvert_CompCurveToBSplineCurve Concat(Curve, Convert_QuasiAngular);
1266
1267// Les contraintes de constructions
1268 TColgp_Array1OfXYZ Cont(1,size);
1269 if (After) {
1270 Ubord = Curve->LastParameter();
1271
1272 }
1273 else {
1274 Ubord = Curve->FirstParameter();
1275 }
1276 PLib::HermiteCoefficients(0, 1, // Les Bornes
1277 Continuity, 0, // Les Ordres de contraintes
1278 MatCoefs);
1279
1280 Curve->D3(Ubord, p0, d1, d2, d3);
1281 if (!After) { // Inversion du parametrage
1282 d1 *= -1;
1283 d3 *= -1;
1284 }
1285
1286 L1 = p0.Distance(Point);
1287 if (L1 > Tol) {
1288 // Lambda est le ratio qu'il faut appliquer a la derive de la courbe
1289 // pour obtenir la derive du prolongement (fixe arbitrairement a la
1290 // longueur du segment bout de la courbe - point cible.
1291 // On essai d'avoir sur le prolongement la vitesse moyenne que l'on
1292 // a sur la courbe.
1293 gp_Vec daux;
1294 gp_Pnt pp;
1295 Standard_Real f= Curve->FirstParameter(), t, dt, norm;
1296 dt = (Curve->LastParameter()-f)/9;
1297 norm = d1.Magnitude();
1298 for (ii=1, t=f+dt; ii<=8; ii++, t+=dt) {
1299 Curve->D1(t, pp, daux);
1300 norm += daux.Magnitude();
1301 }
1302 norm /= 9;
1303 dt = d1.Magnitude() / norm;
1304 if ((dt<1.5) && (dt>0.75)) { // Le bord est dans la moyenne on le garde
1305 Lambda = ((Standard_Real)1) / Max (d1.Magnitude() / L1, Tol);
1306 }
1307 else {
1308 Lambda = ((Standard_Real)1) / Max (norm / L1, Tol);
1309 }
1310 }
1311 else {
1312 return; // Pas d'extension
1313 }
1314
1315 // Optimisation du Lambda
1316 math_Matrix Cons(1, 3, 1, size);
1317 Cons(1,1) = p0.X(); Cons(2,1) = p0.Y(); Cons(3,1) = p0.Z();
1318 Cons(1,2) = d1.X(); Cons(2,2) = d1.Y(); Cons(3,2) = d1.Z();
1319 Cons(1,size) = Point.X(); Cons(2,size) = Point.Y(); Cons(3,size) = Point.Z();
1320 if (Continuity >= 2) {
1321 Cons(1,3) = d2.X(); Cons(2,3) = d2.Y(); Cons(3,3) = d2.Z();
1322 }
1323 if (Continuity >= 3) {
1324 Cons(1,4) = d3.X(); Cons(2,4) = d3.Y(); Cons(3,4) = d3.Z();
1325 }
1326 ComputeLambda(Cons, MatCoefs, L1, Lambda);
1327
1328 // Construction dans la Base Polynomiale
1329 Cont(1) = p0.XYZ();
1330 Cont(2) = d1.XYZ() * Lambda;
1331 if(Continuity >= 2) Cont(3) = d2.XYZ() * Pow(Lambda,2);
1332 if(Continuity >= 3) Cont(4) = d3.XYZ() * Pow(Lambda,3);
1333 Cont(size) = Point.XYZ();
1334
1335
1336 TColgp_Array1OfPnt ExtrapPoles(1, size);
1337 TColgp_Array1OfPnt ExtraCoeffs(1, size);
1338
1339 gp_Pnt PNull(0.,0.,0.);
1340 ExtraCoeffs.Init(PNull);
1341 for (ii=1; ii<=size; ii++) {
1342 for (jj=1; jj<=size; jj++) {
1343 ExtraCoeffs(jj).ChangeCoord() += MatCoefs(ii,jj)*Cont(ii);
1344 }
1345 }
1346
1347 // Convertion Dans la Base de Bernstein
1348 PLib::CoefficientsPoles(ExtraCoeffs, PLib::NoWeights(),
1349 ExtrapPoles, PLib::NoWeights());
1350
1351 Handle(Geom_BezierCurve) Bezier = new (Geom_BezierCurve) (ExtrapPoles);
1352
1353 Standard_Real dist = ExtrapPoles(1).Distance(p0);
1354 Standard_Boolean Ok;
1355 Tol += dist;
1356
1357 // Concatenation
1358 Ok = Concat.Add(Bezier, Tol, After);
1359 if (!Ok) Standard_ConstructionError::Raise("ExtendCurveToPoint");
1360
1361 Curve = Concat.BSplineCurve();
1362}
1363
1364
1365//=======================================================================
1366//function : ExtendKPart
1367//purpose : Extension par longueur des surfaces cannonique
1368//=======================================================================
1369static Standard_Boolean
1370ExtendKPart(Handle(Geom_RectangularTrimmedSurface)& Surface,
1371 const Standard_Real Length,
1372 const Standard_Boolean InU,
1373 const Standard_Boolean After)
1374{
1375
1376 if (Surface.IsNull()) return Standard_False;
1377
1378 Standard_Boolean Ok=Standard_True;
1379 Standard_Real Uf, Ul, Vf, Vl;
1380 Handle(Geom_Surface) Support = Surface->BasisSurface();
1381 GeomAbs_SurfaceType Type;
1382
1383 Surface->Bounds(Uf, Ul, Vf, Vl);
1384 GeomAdaptor_Surface AS(Surface);
1385 Type = AS.GetType();
1386
1387 if (InU) {
1388 switch(Type) {
1389 case GeomAbs_Plane :
1390 {
1391 if (After) Ul+=Length;
1392 else Uf-=Length;
1393 Surface = new (Geom_RectangularTrimmedSurface)
1394 (Support, Uf, Ul, Vf, Vl);
1395 break;
1396 }
1397
1398 default:
1399 Ok = Standard_False;
1400 }
1401 }
1402 else {
1403 switch(Type) {
1404 case GeomAbs_Plane :
1405 case GeomAbs_Cylinder :
1406 case GeomAbs_SurfaceOfExtrusion :
1407 {
1408 if (After) Vl+=Length;
1409 else Vf-=Length;
1410 Surface = new (Geom_RectangularTrimmedSurface)
1411 (Support, Uf, Ul, Vf, Vl);
1412 break;
1413 }
1414 default:
1415 Ok = Standard_False;
1416 }
1417 }
1418
1419 return Ok;
1420}
1421
1422//=======================================================================
1423//function : ExtendSurfByLength
1424//purpose :
1425//=======================================================================
1426void GeomLib::ExtendSurfByLength(Handle(Geom_BoundedSurface)& Surface,
1427 const Standard_Real Length,
1428 const Standard_Integer Continuity,
1429 const Standard_Boolean InU,
1430 const Standard_Boolean After)
1431{
1432 if(Continuity < 0 || Continuity > 3) return;
1433 Standard_Integer Cont = Continuity;
1434
1435 // Kpart ?
1436 Handle(Geom_RectangularTrimmedSurface) TS =
1437 Handle(Geom_RectangularTrimmedSurface)::DownCast (Surface);
1438 if (ExtendKPart(TS,Length, InU, After) ) {
1439 Surface = TS;
1440 return;
1441 }
1442
1443// format BSplineSurface avec un degre suffisant pour la continuite voulue
1444 Handle(Geom_BSplineSurface) BS =
1445 Handle(Geom_BSplineSurface)::DownCast (Surface);
1446 if (BS.IsNull()) {
1447 //BS = GeomConvert::SurfaceToBSplineSurface(Surface);
1448 Standard_Real Tol = Precision::Confusion(); //1.e-4;
1449 GeomAbs_Shape UCont = GeomAbs_C1, VCont = GeomAbs_C1;
1450 Standard_Integer degU = 14, degV = 14;
1451 Standard_Integer nmax = 16;
1452 Standard_Integer thePrec = 1;
1453 GeomConvert_ApproxSurface theApprox(Surface,Tol,UCont,VCont,degU,degV,nmax,thePrec);
1454 if (theApprox.HasResult())
1455 BS = theApprox.Surface();
1456 else
1457 BS = GeomConvert::SurfaceToBSplineSurface(Surface);
1458 }
1459 if (InU&&(BS->UDegree()<Continuity+1))
1460 BS->IncreaseDegree(Continuity+1,BS->VDegree());
1461 if (!InU&&(BS->VDegree()<Continuity+1))
1462 BS->IncreaseDegree(BS->UDegree(),Continuity+1);
1463
1464 // si BS etait periodique dans le sens de l'extension, elle ne le sera plus
1465 if ( (InU&&(BS->IsUPeriodic())) || (!InU&&(BS->IsVPeriodic())) ) {
1466 Standard_Real U0,U1,V0,V1;
1467 BS->Bounds(U0,U1,V0,V1);
1468 BS->Segment(U0,U1,V0,V1);
1469 }
1470
1471
47c580a7
A
1472// IFV Fix OCC bug 0022694 - wrong result extrapolating rational surfaces
1473// Standard_Boolean rational = ( InU && BS->IsURational() )
1474// || ( !InU && BS->IsVRational() ) ;
1475 Standard_Boolean rational = (BS->IsURational() || BS->IsVRational());
7fd59977 1476 Standard_Boolean NullWeight;
1477 Standard_Real EpsW = 10*Precision::PConfusion();
1478 Standard_Integer gap = 3;
1479 if ( rational ) gap++;
1480
1481
1482
1d47d8d0 1483 Standard_Integer Cdeg = 0, Cdim = 0, NbP = 0, Ksize = 0, Psize = 1;
7fd59977 1484 Standard_Integer ii, jj, ipole, Kount;
1485 Standard_Real Tbord, lambmin=Length;
1d47d8d0 1486 Standard_Real * Padr = NULL;
7fd59977 1487 Standard_Boolean Ok;
1488 Handle(TColStd_HArray1OfReal) FKnots, Point, lambda, Tgte, Poles;
1489
1490
1491
1492
1493 for (Kount=0, Ok=Standard_False; Kount<=2 && !Ok; Kount++) {
1494 // transformation de la surface en une BSpline non rationnelle a une variable
1495 // de degre UDegree ou VDegree et de dimension 3 ou 4 x NbVpoles ou NbUpoles
1496 // le nombre de poles egal a NbUpoles ou NbVpoles
1497 // ATTENTION : dans le cas rationnel, un point de coordonnees (x,y,z)
1498 // et de poids w devient un point de coordonnees (wx, wy, wz, w )
1499
1500
1501 if (InU) {
1502 Cdeg = BS->UDegree();
1503 NbP = BS->NbUPoles();
1504 Cdim = BS->NbVPoles() * gap;
1505 }
1506 else {
1507 Cdeg = BS->VDegree();
1508 NbP = BS->NbVPoles();
1509 Cdim = BS->NbUPoles() * gap;
1510 }
1511
1512 // les noeuds plats
1513 Ksize = NbP + Cdeg + 1;
1514 FKnots = new (TColStd_HArray1OfReal) (1,Ksize);
1515 if (InU)
1516 BS->UKnotSequence(FKnots->ChangeArray1());
1517 else
1518 BS->VKnotSequence(FKnots->ChangeArray1());
1519
1520 // le parametre du noeud de raccord
1521 if (After)
1522 Tbord = FKnots->Value(FKnots->Upper()-Cdeg);
1523 else
1524 Tbord = FKnots->Value(FKnots->Lower()+Cdeg);
1525
1526 // les poles
1527 Psize = Cdim * NbP;
1528 Poles = new (TColStd_HArray1OfReal) (1,Psize);
1529
1530 if (InU) {
1531 for (ii=1,ipole=1; ii<=NbP; ii++) {
1532 for (jj=1;jj<=BS->NbVPoles();jj++) {
1533 Poles->SetValue(ipole, BS->Pole(ii,jj).X());
1534 Poles->SetValue(ipole+1, BS->Pole(ii,jj).Y());
1535 Poles->SetValue(ipole+2, BS->Pole(ii,jj).Z());
1536 if (rational) Poles->SetValue(ipole+3, BS->Weight(ii,jj));
1537 ipole+=gap;
1538 }
1539 }
1540 }
1541 else {
1542 for (jj=1,ipole=1; jj<=NbP; jj++) {
1543 for (ii=1;ii<=BS->NbUPoles();ii++) {
1544 Poles->SetValue(ipole, BS->Pole(ii,jj).X());
1545 Poles->SetValue(ipole+1, BS->Pole(ii,jj).Y());
1546 Poles->SetValue(ipole+2, BS->Pole(ii,jj).Z());
1547 if (rational) Poles->SetValue(ipole+3, BS->Weight(ii,jj));
1548 ipole+=gap;
1549 }
1550 }
1551 }
1552 Padr = (Standard_Real *) &Poles->ChangeValue(1);
1553
1554 // calcul du point de raccord et de la tangente
1555 Point = new (TColStd_HArray1OfReal)(1,Cdim);
1556 Tgte = new (TColStd_HArray1OfReal)(1,Cdim);
1557 lambda = new (TColStd_HArray1OfReal)(1,Cdim);
1558
1559 Standard_Boolean periodic_flag = Standard_False ;
1560 Standard_Integer extrap_mode[2], derivative_request = Max(Continuity,1);
1561 extrap_mode[0] = extrap_mode[1] = Cdeg;
1562 TColStd_Array1OfReal Result(1, Cdim * (derivative_request+1)) ;
1563
1564 TColStd_Array1OfReal& tgte = Tgte->ChangeArray1();
1565 TColStd_Array1OfReal& point = Point->ChangeArray1();
1566 TColStd_Array1OfReal& lamb = lambda->ChangeArray1();
1567
1568 Standard_Real * Radr = (Standard_Real *) &Result(1) ;
1569
1570 BSplCLib::Eval(Tbord,periodic_flag,derivative_request,extrap_mode[0],
1571 Cdeg,FKnots->Array1(),Cdim,*Padr,*Radr);
1572 Ok = Standard_True;
1573 for (ii=1;ii<=Cdim;ii++) {
1574 point(ii) = Result(ii);
1575 tgte(ii) = Result(ii+Cdim);
1576 }
1577
1578 // calcul de la contrainte a atteindre
1579
1580 gp_Vec CurT, OldT;
1581
1582 Standard_Real NTgte, val, Tgtol = 1.e-12, OldN = 0.0;
1583 if (rational) {
1584 for (ii=gap;ii<=Cdim;ii+=gap) {
1585 tgte(ii) = 0.;
1586 }
1587 for (ii=gap;ii<=Cdim;ii+=gap) {
1588 CurT.SetCoord(tgte(ii-3),tgte(ii-2), tgte(ii-1));
1589 NTgte=CurT.Magnitude();
1590 if (NTgte>Tgtol) {
1591 val = Length/NTgte;
1592 // Attentions aux Cas ou le segment donne par les poles
1593 // est oppose au sens de la derive
1594 // Exemple: Certaine portions de tore.
1595 if ( (OldN > Tgtol) && (CurT.Angle(OldT) > 2)) {
1596 Ok = Standard_False;
1597 }
1598
1599 lamb(ii-1) = lamb(ii-2) = lamb(ii-3) = val;
1600 lamb(ii) = 0.;
1601 lambmin = Min(lambmin, val);
1602 }
1603 else {
1604 lamb(ii-1) = lamb(ii-2) = lamb(ii-3) = 0.;
1605 lamb(ii) = 0.;
1606 }
1607 OldT = CurT;
1608 OldN = NTgte;
1609 }
1610 }
1611 else {
1612 for (ii=gap;ii<=Cdim;ii+=gap) {
1613 CurT.SetCoord(tgte(ii-2),tgte(ii-1), tgte(ii));
1614 NTgte=CurT.Magnitude();
1615 if (NTgte>Tgtol) {
1616 val = Length/NTgte;
1617 // Attentions aux Cas ou le segment donne par les poles
1618 // est oppose au sens de la derive
1619 // Exemple: Certaine portion de tore.
1620 if ( (OldN > Tgtol) && (CurT.Angle(OldT) > 2)) {
1621 Ok = Standard_False;
1622 }
1623 lamb(ii) = lamb(ii-1) = lamb(ii-2) = val;
1624 lambmin = Min(lambmin, val);
1625 }
1626 else {
1627 lamb(ii) =lamb(ii-1) = lamb(ii-2) = 0.;
1628 }
1629 OldT = CurT;
1630 OldN = NTgte;
1631 }
1632 }
1633 if (!Ok && Kount<2) {
1634 // On augmente le degre de l'iso bord afin de rapprocher les poles de la surface
1635 // Et on ressaye
1636 if (InU) BS->IncreaseDegree(BS->UDegree(), BS->VDegree()+2);
1637 else BS->IncreaseDegree(BS->UDegree()+2, BS->VDegree());
1638 }
1639 }
1640
1641
1642 TColStd_Array1OfReal ConstraintPoint(1,Cdim);
1643 if (After) {
1644 for (ii=1;ii<=Cdim;ii++) {
1645 ConstraintPoint(ii) = Point->Value(ii) + lambda->Value(ii)*Tgte->Value(ii);
1646 }
1647 }
1648 else {
1649 for (ii=1;ii<=Cdim;ii++) {
1650 ConstraintPoint(ii) = Point->Value(ii) - lambda->Value(ii)*Tgte->Value(ii);
1651 }
1652 }
1653
1654// cas particulier du rationnel
1655 if (rational) {
1656 for (ipole=1;ipole<=Psize;ipole+=gap) {
1657 Poles->ChangeValue(ipole) *= Poles->Value(ipole+3);
1658 Poles->ChangeValue(ipole+1) *= Poles->Value(ipole+3);
1659 Poles->ChangeValue(ipole+2) *= Poles->Value(ipole+3);
1660 }
1661 for (ii=1;ii<=Cdim;ii+=gap) {
1662 ConstraintPoint(ii) *= ConstraintPoint(ii+3);
1663 ConstraintPoint(ii+1) *= ConstraintPoint(ii+3);
1664 ConstraintPoint(ii+2) *= ConstraintPoint(ii+3);
1665 }
1666 }
1667
1668// tableaux necessaires pour l'extension
1d47d8d0 1669 Standard_Integer Ksize2 = Ksize+Cdeg, NbPoles, NbKnots = 0;
7fd59977 1670 TColStd_Array1OfReal FK(1, Ksize2) ;
1671 Standard_Real * FKRadr = &FK(1);
1672
1673 Standard_Integer Psize2 = Psize+Cdeg*Cdim;
1674 TColStd_Array1OfReal PRes(1, Psize2) ;
1675 Standard_Real * PRadr = &PRes(1);
1676 Standard_Real ww;
1677 Standard_Boolean ExtOk = Standard_False;
1678 Handle(TColgp_HArray2OfPnt) NewPoles;
1679 Handle(TColStd_HArray2OfReal) NewWeights;
1680
1681
1682 for (Kount=1; Kount<=5 && !ExtOk; Kount++) {
1683 // extension
1684 BSplCLib::TangExtendToConstraint(FKnots->Array1(),
1685 lambmin,NbP,*Padr,
1686 Cdim,Cdeg,
1687 ConstraintPoint, Cont, After,
1688 NbPoles, NbKnots,*FKRadr, *PRadr);
1689
1690 // recopie des poles du resultat sous forme de points 3D et de poids
1691 Standard_Integer NU, NV, indice ;
1692 if (InU) {
1693 NU = NbPoles;
1694 NV = BS->NbVPoles();
1695 }
1696 else {
1697 NU = BS->NbUPoles();
1698 NV = NbPoles;
1699 }
1700
1701 NewPoles = new (TColgp_HArray2OfPnt)(1,NU,1,NV);
1702 TColgp_Array2OfPnt& NewP = NewPoles->ChangeArray2();
1703 NewWeights = new (TColStd_HArray2OfReal) (1,NU,1,NV);
1704 TColStd_Array2OfReal& NewW = NewWeights->ChangeArray2();
1705
1706 if (!rational) NewW.Init(1.);
1707 NullWeight= Standard_False;
1708
1709 if (InU) {
1710 for (ii=1; ii<=NU && !NullWeight; ii++) {
1711 for (jj=1; jj<=NV && !NullWeight; jj++) {
1712 indice = 1+(ii-1)*Cdim+(jj-1)*gap;
1713 NewP(ii,jj).SetCoord(1,PRes(indice));
1714 NewP(ii,jj).SetCoord(2,PRes(indice+1));
1715 NewP(ii,jj).SetCoord(3,PRes(indice+2));
1716 if (rational) {
1717 ww = PRes(indice+3);
1718 if (ww < EpsW) {
1719 NullWeight = Standard_True;
1720 }
1721 else {
1722 NewW(ii,jj) = ww;
1723 NewP(ii,jj).ChangeCoord() /= ww;
1724 }
1725 }
1726 }
1727 }
1728 }
1729 else {
1730 for (jj=1; jj<=NV && !NullWeight; jj++) {
1731 for (ii=1; ii<=NU && !NullWeight; ii++) {
1732 indice = 1+(ii-1)*gap+(jj-1)*Cdim;
1733 NewP(ii,jj).SetCoord(1,PRes(indice));
1734 NewP(ii,jj).SetCoord(2,PRes(indice+1));
1735 NewP(ii,jj).SetCoord(3,PRes(indice+2));
1736 if (rational) {
1737 ww = PRes(indice+3);
1738 if (ww < EpsW) {
1739 NullWeight = Standard_True;
1740 }
1741 else {
1742 NewW(ii,jj) = ww;
1743 NewP(ii,jj).ChangeCoord() /= ww;
1744 }
1745 }
1746 }
1747 }
1748 }
1749
1750 if (NullWeight) {
1751#if DEB
1752 cout << "Echec de l'Extension rationnelle" << endl;
1753#endif
1754 lambmin /= 3.;
1755 NullWeight = Standard_False;
1756 }
1757 else {
1758 ExtOk = Standard_True;
1759 }
1760 }
1761
1762
1763// recopie des noeuds plats sous forme de noeuds avec leurs multiplicites
1764// calcul des degres du resultat
1765 Standard_Integer Usize = BS->NbUKnots(), Vsize = BS->NbVKnots(), UDeg, VDeg;
1766 if (InU)
1767 Usize++;
1768 else
1769 Vsize++;
1770 TColStd_Array1OfReal UKnots(1,Usize);
1771 TColStd_Array1OfReal VKnots(1,Vsize);
1772 TColStd_Array1OfInteger UMults(1,Usize);
1773 TColStd_Array1OfInteger VMults(1,Vsize);
1774 TColStd_Array1OfReal FKRes(1, NbKnots);
1775
1776 for (ii=1; ii<=NbKnots; ii++)
1777 FKRes(ii) = FK(ii);
1778
1779 if (InU) {
1780 BSplCLib::Knots(FKRes, UKnots, UMults);
1781 UDeg = Cdeg;
1782 UMults(Usize) = UDeg+1; // Petite verrue utile quand la continuite
1783 // n'est pas ok.
1784 BS->VKnots(VKnots);
1785 BS->VMultiplicities(VMults);
1786 VDeg = BS->VDegree();
1787 }
1788 else {
1789 BSplCLib::Knots(FKRes, VKnots, VMults);
1790 VDeg = Cdeg;
1791 VMults(Vsize) = VDeg+1;
1792 BS->UKnots(UKnots);
1793 BS->UMultiplicities(UMults);
1794 UDeg = BS->UDegree();
1795 }
1796
1797// construction de la surface BSpline resultat
1798 Handle(Geom_BSplineSurface) Res =
1799 new (Geom_BSplineSurface) (NewPoles->Array2(),
1800 NewWeights->Array2(),
1801 UKnots,VKnots,
1802 UMults,VMults,
1803 UDeg,VDeg,
1804 BS->IsUPeriodic(),
1805 BS->IsVPeriodic());
1806 Surface = Res;
1807}
1808
1809//=======================================================================
1810//function : Inertia
1811//purpose :
1812//=======================================================================
1813void GeomLib::Inertia(const TColgp_Array1OfPnt& Points,
1814 gp_Pnt& Bary,
1815 gp_Dir& XDir,
1816 gp_Dir& YDir,
1817 Standard_Real& Xgap,
1818 Standard_Real& Ygap,
1819 Standard_Real& Zgap)
1820{
1821 gp_XYZ GB(0., 0., 0.), Diff;
1822// gp_Vec A,B,C,D;
1823
1824 Standard_Integer i,nb=Points.Length();
1825 GB.SetCoord(0.,0.,0.);
1826 for (i=1; i<=nb; i++)
1827 GB += Points(i).XYZ();
1828
1829 GB /= nb;
1830
1831 math_Matrix M (1, 3, 1, 3);
1832 M.Init(0.);
1833 for (i=1; i<=nb; i++) {
1834 Diff.SetLinearForm(-1, Points(i).XYZ(), GB);
1835 M(1,1) += Diff.X() * Diff.X();
1836 M(2,2) += Diff.Y() * Diff.Y();
1837 M(3,3) += Diff.Z() * Diff.Z();
1838 M(1,2) += Diff.X() * Diff.Y();
1839 M(1,3) += Diff.X() * Diff.Z();
1840 M(2,3) += Diff.Y() * Diff.Z();
1841 }
1842
1843 M(2,1)=M(1,2) ;
1844 M(3,1)=M(1,3) ;
1845 M(3,2)=M(2,3) ;
1846
1847 M /= nb;
1848
1849 math_Jacobi J(M);
1850 if (!J.IsDone()) {
1851#if DEB
1852 cout << "Erreur dans Jacobbi" << endl;
1853 M.Dump(cout);
1854#endif
1855 }
1856
1857 Standard_Real n1,n2,n3;
1858
1859 n1=J.Value(1);
1860 n2=J.Value(2);
1861 n3=J.Value(3);
1862
1863 Standard_Real r1 = Min(Min(n1,n2),n3), r2;
1864 Standard_Integer m1, m2, m3;
1865 if (r1==n1) {
1866 m1 = 1;
1867 r2 = Min(n2,n3);
1868 if (r2==n2) {
1869 m2 = 2;
1870 m3 = 3;
1871 }
1872 else {
1873 m2 = 3;
1874 m3 = 2;
1875 }
1876 }
1877 else {
1878 if (r1==n2) {
1879 m1 = 2 ;
1880 r2 = Min(n1,n3);
1881 if (r2==n1) {
1882 m2 = 1;
1883 m3 = 3;
1884 }
1885 else {
1886 m2 = 3;
1887 m3 = 1;
1888 }
1889 }
1890 else {
1891 m1 = 3 ;
1892 r2 = Min(n1,n2);
1893 if (r2==n1) {
1894 m2 = 1;
1895 m3 = 2;
1896 }
1897 else {
1898 m2 = 2;
1899 m3 = 1;
1900 }
1901 }
1902 }
1903
1904 math_Vector V2(1,3),V3(1,3);
1905 J.Vector(m2,V2);
1906 J.Vector(m3,V3);
1907
1908 Bary.SetXYZ(GB);
1909 XDir.SetCoord(V3(1),V3(2),V3(3));
1910 YDir.SetCoord(V2(1),V2(2),V2(3));
1911
1912 Zgap = sqrt(Abs(J.Value(m1)));
1913 Ygap = sqrt(Abs(J.Value(m2)));
1914 Xgap = sqrt(Abs(J.Value(m3)));
1915}
1916//=======================================================================
1917//function : AxeOfInertia
1918//purpose :
1919//=======================================================================
1920void GeomLib::AxeOfInertia(const TColgp_Array1OfPnt& Points,
1921 gp_Ax2& Axe,
1922 Standard_Boolean& IsSingular,
1923 const Standard_Real Tol)
1924{
1925 gp_Pnt Bary;
1926 gp_Dir OX,OY,OZ;
1927 Standard_Real gx, gy, gz;
1928
1929 GeomLib::Inertia(Points, Bary, OX, OY, gx, gy, gz);
1930
1931 if (gy*Points.Length()<=Tol) {
1932 gp_Ax2 axe (Bary, OX);
1933 OY = axe.XDirection();
1934 IsSingular = Standard_True;
1935 }
1936 else {
1937 IsSingular = Standard_False;
1938 }
1939
1940 OZ = OX^OY;
1941 gp_Ax2 TheAxe(Bary, OZ, OX);
1942 Axe = TheAxe;
1943}
1944
1945//=======================================================================
1946//function : CanBeTreated
1947//purpose : indicates if the surface can be treated(if the conditions are
1948// filled) and need to be treated(if the surface hasn't been yet
1949// treated or if the surface is rationnal and non periodic)
1950//=======================================================================
1951
1952static Standard_Boolean CanBeTreated(Handle(Geom_BSplineSurface)& BSurf)
1953
1954{Standard_Integer i;
1955 Standard_Real lambda; //proportionnality coefficient
1956 Standard_Boolean AlreadyTreated=Standard_True;
1957
1958 if (!BSurf->IsURational()||(BSurf->IsUPeriodic()))
1959 return Standard_False;
1960 else {
1961 lambda=(BSurf->Weight(1,1)/BSurf->Weight(BSurf->NbUPoles(),1));
1962 for (i=1;i<=BSurf->NbVPoles();i++) //test of the proportionnality of the denominator on the boundaries
1963 if ((BSurf->Weight(1,i)/(lambda*BSurf->Weight(BSurf->NbUPoles(),i))<(1-Precision::Confusion()))||
1964 (BSurf->Weight(1,i)/(lambda*BSurf->Weight(BSurf->NbUPoles(),i))>(1+Precision::Confusion())))
1965 return Standard_False;
1966 i=1;
1967 while ((AlreadyTreated) && (i<=BSurf->NbVPoles())){ //tests if the surface has already been treated
1968 if (((BSurf->Weight(1,i)/(BSurf->Weight(2,i)))<(1-Precision::Confusion()))||
1969 ((BSurf->Weight(1,i)/(BSurf->Weight(2,i)))>(1+Precision::Confusion()))||
1970 ((BSurf->Weight(BSurf->NbUPoles()-1,i)/(BSurf->Weight(BSurf->NbUPoles(),i)))<(1-Precision::Confusion()))||
1971 ((BSurf->Weight(BSurf->NbUPoles()-1,i)/(BSurf->Weight(BSurf->NbUPoles(),i)))>(1+Precision::Confusion())))
1972 AlreadyTreated=Standard_False;
1973 i++;
1974 }
1975 if (AlreadyTreated)
1976 return Standard_False;
1977 }
1978 return Standard_True;
1979}
1980
1981//=======================================================================
41194117
K
1982//class : law_evaluator
1983//purpose : usefull to estimate the value of a function of 2 variables
7fd59977 1984//=======================================================================
1985
41194117
K
1986class law_evaluator : public BSplSLib_EvaluatorFunction
1987{
7fd59977 1988
41194117 1989public:
7fd59977 1990
41194117
K
1991 law_evaluator (const GeomLib_DenominatorMultiplierPtr theDenominatorPtr)
1992 : myDenominator (theDenominatorPtr) {}
1993
1994 virtual void Evaluate (const Standard_Integer theDerivativeRequest,
1995 const Standard_Real theUParameter,
1996 const Standard_Real theVParameter,
1997 Standard_Real& theResult,
1998 Standard_Integer& theErrorCode) const
1999 {
2000 if ((myDenominator != NULL) && (theDerivativeRequest == 0))
2001 {
2002 theResult = myDenominator->Value (theUParameter, theVParameter);
2003 theErrorCode = 0;
2004 }
2005 else
2006 {
2007 theErrorCode = 1;
2008 }
7fd59977 2009 }
41194117
K
2010
2011private:
2012
2013 GeomLib_DenominatorMultiplierPtr myDenominator;
2014
2015};
2016
7fd59977 2017//=======================================================================
2018//function : CheckIfKnotExists
2019//purpose : true if the knot already exists in the knot sequence
2020//=======================================================================
2021
2022static Standard_Boolean CheckIfKnotExists(const TColStd_Array1OfReal& surface_knots,
2023 const Standard_Real knot)
2024
2025{Standard_Integer i;
2026 for (i=1;i<=surface_knots.Length();i++)
2027 if ((surface_knots(i)-Precision::Confusion()<=knot)&&(surface_knots(i)+Precision::Confusion()>=knot))
2028 return Standard_True;
2029 return Standard_False;
2030}
2031
2032//=======================================================================
2033//function : AddAKnot
2034//purpose : add a knot and its multiplicity to the knot sequence. This knot
2035// will be C2 and the degree is increased of deltasurface_degree
2036//=======================================================================
2037
2038static void AddAKnot(const TColStd_Array1OfReal& knots,
2039 const TColStd_Array1OfInteger& mults,
2040 const Standard_Real knotinserted,
2041 const Standard_Integer deltasurface_degree,
2042 const Standard_Integer finalsurfacedegree,
2043 Handle(TColStd_HArray1OfReal) & newknots,
2044 Handle(TColStd_HArray1OfInteger) & newmults)
2045
2046{Standard_Integer i;
2047
2048 newknots=new TColStd_HArray1OfReal(1,knots.Length()+1);
2049 newmults=new TColStd_HArray1OfInteger(1,knots.Length()+1);
2050 i=1;
2051 while (knots(i)<knotinserted){
2052 newknots->SetValue(i,knots(i));
2053 newmults->SetValue(i,mults(i)+deltasurface_degree);
2054 i++;
2055 }
2056 newknots->SetValue(i,knotinserted); //insertion of the new knot
2057 newmults->SetValue(i,finalsurfacedegree-2);
2058 i++;
2059 while (i<=newknots->Length()){
2060 newknots->SetValue(i,knots(i-1));
2061 newmults->SetValue(i,mults(i-1)+deltasurface_degree);
2062 i++;
2063 }
2064}
2065
2066//=======================================================================
2067//function : Sort
2068//purpose : give the new flat knots(u or v) of the surface
2069//=======================================================================
2070
2071static void BuildFlatKnot(const TColStd_Array1OfReal& surface_knots,
2072 const TColStd_Array1OfInteger& surface_mults,
2073 const Standard_Integer deltasurface_degree,
2074 const Standard_Integer finalsurface_degree,
2075 const Standard_Real knotmin,
2076 const Standard_Real knotmax,
2077 Handle(TColStd_HArray1OfReal)& ResultKnots,
2078 Handle(TColStd_HArray1OfInteger)& ResultMults)
2079
2080{
2081 Standard_Integer i;
2082
2083 if (CheckIfKnotExists(surface_knots,knotmin) &&
2084 CheckIfKnotExists(surface_knots,knotmax)){
2085 ResultKnots=new TColStd_HArray1OfReal(1,surface_knots.Length());
2086 ResultMults=new TColStd_HArray1OfInteger(1,surface_knots.Length());
2087 for (i=1;i<=surface_knots.Length();i++){
2088 ResultKnots->SetValue(i,surface_knots(i));
2089 ResultMults->SetValue(i,surface_mults(i)+deltasurface_degree);
2090 }
2091 }
2092 else{
2093 if ((CheckIfKnotExists(surface_knots,knotmin))&&(!CheckIfKnotExists(surface_knots,knotmax)))
2094 AddAKnot(surface_knots,surface_mults,knotmax,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
2095 else{
2096 if ((!CheckIfKnotExists(surface_knots,knotmin))&&(CheckIfKnotExists(surface_knots,knotmax)))
2097 AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
2098 else{
2099 if ((!CheckIfKnotExists(surface_knots,knotmin))&&(!CheckIfKnotExists(surface_knots,knotmax))&&
2100 (knotmin==knotmax)){
2101 AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,ResultKnots,ResultMults);
2102 }
2103 else{
2104 Handle(TColStd_HArray1OfReal) IntermedKnots;
2105 Handle(TColStd_HArray1OfInteger) IntermedMults;
2106 AddAKnot(surface_knots,surface_mults,knotmin,deltasurface_degree,finalsurface_degree,IntermedKnots,IntermedMults);
2107 AddAKnot(IntermedKnots->ChangeArray1(),IntermedMults->ChangeArray1(),knotmax,0,finalsurface_degree,ResultKnots,ResultMults);
2108 }
2109 }
2110 }
2111 }
2112}
2113
2114//=======================================================================
2115//function : FunctionMultiply
2116//purpose : multiply the surface BSurf by a(u,v) (law_evaluator) on its
2117// numerator and denominator
2118//=======================================================================
2119
2120static void FunctionMultiply(Handle(Geom_BSplineSurface)& BSurf,
2121 const Standard_Real knotmin,
2122 const Standard_Real knotmax)
2123
2124{TColStd_Array1OfReal surface_u_knots(1,BSurf->NbUKnots()) ;
2125 TColStd_Array1OfInteger surface_u_mults(1,BSurf->NbUKnots()) ;
2126 TColStd_Array1OfReal surface_v_knots(1,BSurf->NbVKnots()) ;
2127 TColStd_Array1OfInteger surface_v_mults(1,BSurf->NbVKnots()) ;
2128 TColgp_Array2OfPnt surface_poles(1,BSurf->NbUPoles(),
2129 1,BSurf->NbVPoles()) ;
2130 TColStd_Array2OfReal surface_weights(1,BSurf->NbUPoles(),
2131 1,BSurf->NbVPoles()) ;
2132 Standard_Integer i,j,k,status,new_num_u_poles,new_num_v_poles,length=0;
2133 Handle(TColStd_HArray1OfReal) newuknots,newvknots;
2134 Handle(TColStd_HArray1OfInteger) newumults,newvmults;
2135
2136 BSurf->UKnots(surface_u_knots) ;
2137 BSurf->UMultiplicities(surface_u_mults) ;
2138 BSurf->VKnots(surface_v_knots) ;
2139 BSurf->VMultiplicities(surface_v_mults) ;
2140 BSurf->Poles(surface_poles) ;
2141 BSurf->Weights(surface_weights) ;
2142
2143 TColStd_Array1OfReal Knots(1,2);
2144 TColStd_Array1OfInteger Mults(1,2);
2145 Handle(TColStd_HArray1OfReal) NewKnots;
2146 Handle(TColStd_HArray1OfInteger) NewMults;
2147
2148 Knots(1)=0;
2149 Knots(2)=1;
2150 Mults(1)=4;
2151 Mults(2)=4;
2152 BuildFlatKnot(Knots,Mults,0,3,knotmin,knotmax,NewKnots,NewMults);
2153
2154 for (i=1;i<=NewMults->Length();i++)
2155 length+=NewMults->Value(i);
2156 TColStd_Array1OfReal FlatKnots(1,length);
2157 BSplCLib::KnotSequence(NewKnots->ChangeArray1(),NewMults->ChangeArray1(),FlatKnots);
2158
41194117 2159 GeomLib_DenominatorMultiplier aDenominator (BSurf, FlatKnots);
7fd59977 2160
2161 BuildFlatKnot(surface_u_knots,
2162 surface_u_mults,
2163 3,
2164 BSurf->UDegree()+3,
2165 knotmin,
2166 knotmax,
2167 newuknots,
2168 newumults);
2169 BuildFlatKnot(surface_v_knots,
2170 surface_v_mults,
2171 BSurf->VDegree(),
2172 2*(BSurf->VDegree()),
2173 1.0,
2174 0.0,
2175 newvknots,
2176 newvmults);
2177 length=0;
2178 for (i=1;i<=newumults->Length();i++)
2179 length+=newumults->Value(i);
2180 new_num_u_poles=(length-BSurf->UDegree()-3-1);
2181 TColStd_Array1OfReal newuflatknots(1,length);
2182 length=0;
2183 for (i=1;i<=newvmults->Length();i++)
2184 length+=newvmults->Value(i);
2185 new_num_v_poles=(length-2*BSurf->VDegree()-1);
2186 TColStd_Array1OfReal newvflatknots(1,length);
2187
2188 TColgp_Array2OfPnt NewNumerator(1,new_num_u_poles,1,new_num_v_poles);
2189 TColStd_Array2OfReal NewDenominator(1,new_num_u_poles,1,new_num_v_poles);
2190
2191 BSplCLib::KnotSequence(newuknots->ChangeArray1(),newumults->ChangeArray1(),newuflatknots);
2192 BSplCLib::KnotSequence(newvknots->ChangeArray1(),newvmults->ChangeArray1(),newvflatknots);
2193//POP pour WNT
41194117 2194 law_evaluator ev (&aDenominator);
7fd59977 2195// BSplSLib::FunctionMultiply(law_evaluator, //multiplication
2196 BSplSLib::FunctionMultiply(ev, //multiplication
2197 BSurf->UDegree(),
2198 BSurf->VDegree(),
2199 surface_u_knots,
2200 surface_v_knots,
2201 surface_u_mults,
2202 surface_v_mults,
2203 surface_poles,
2204 surface_weights,
2205 newuflatknots,
2206 newvflatknots,
2207 BSurf->UDegree()+3,
2208 2*(BSurf->VDegree()),
2209 NewNumerator,
2210 NewDenominator,
2211 status);
2212 if (status!=0)
2213 Standard_ConstructionError::Raise("GeomLib Multiplication Error") ;
2214 for (i = 1 ; i <= new_num_u_poles ; i++) {
2215 for (j = 1 ; j <= new_num_v_poles ; j++) {
2216 for (k = 1 ; k <= 3 ; k++) {
2217 NewNumerator(i,j).SetCoord(k,NewNumerator(i,j).Coord(k)/NewDenominator(i,j)) ;
2218 }
2219 }
2220 }
2221 BSurf= new Geom_BSplineSurface(NewNumerator,
2222 NewDenominator,
2223 newuknots->ChangeArray1(),
2224 newvknots->ChangeArray1(),
2225 newumults->ChangeArray1(),
2226 newvmults->ChangeArray1(),
2227 BSurf->UDegree()+3,
2228 2*(BSurf->VDegree()) );
2229}
2230
2231//=======================================================================
2232//function : CancelDenominatorDerivative1D
2233//purpose : cancel the denominator derivative in one direction
2234//=======================================================================
2235
2236static void CancelDenominatorDerivative1D(Handle(Geom_BSplineSurface) & BSurf)
2237
2238{Standard_Integer i,j;
2239 Standard_Real uknotmin=1.0,uknotmax=0.0,
2240 x,y,
2241 startu_value,
2242 endu_value;
2243 TColStd_Array1OfReal BSurf_u_knots(1,BSurf->NbUKnots()) ;
2244
2245 startu_value=BSurf->UKnot(1);
2246 endu_value=BSurf->UKnot(BSurf->NbUKnots());
2247 BSurf->UKnots(BSurf_u_knots) ;
2248 BSplCLib::Reparametrize(0.0,1.0,BSurf_u_knots);
2249 BSurf->SetUKnots(BSurf_u_knots); //reparametrisation of the surface
2250 Handle(Geom_BSplineCurve) BCurve;
2251 TColStd_Array1OfReal BCurveWeights(1,BSurf->NbUPoles());
2252 TColgp_Array1OfPnt BCurvePoles(1,BSurf->NbUPoles());
2253 TColStd_Array1OfReal BCurveKnots(1,BSurf->NbUKnots());
2254 TColStd_Array1OfInteger BCurveMults(1,BSurf->NbUKnots());
2255
2256 if (CanBeTreated(BSurf)){
2257 for (i=1;i<=BSurf->NbVPoles();i++){ //loop on each pole function
2258 x=1.0;y=0.0;
2259 for (j=1;j<=BSurf->NbUPoles();j++){
2260 BCurveWeights(j)=BSurf->Weight(j,i);
2261 BCurvePoles(j)=BSurf->Pole(j,i);
2262 }
2263 BSurf->UKnots(BCurveKnots);
2264 BSurf->UMultiplicities(BCurveMults);
2265 BCurve = new Geom_BSplineCurve(BCurvePoles, //building of a pole function
2266 BCurveWeights,
2267 BCurveKnots,
2268 BCurveMults,
2269 BSurf->UDegree());
2270 Hermit::Solutionbis(BCurve,x,y,Precision::Confusion(),Precision::Confusion());
2271 if (x<uknotmin)
2272 uknotmin=x; //uknotmin,uknotmax:extremal knots
2273 if ((x!=1.0)&&(x>uknotmax))
2274 uknotmax=x;
2275 if ((y!=0.0)&&(y<uknotmin))
2276 uknotmin=y;
2277 if (y>uknotmax)
2278 uknotmax=y;
2279 }
2280
2281 FunctionMultiply(BSurf,uknotmin,uknotmax); //multiplication
2282
2283 BSurf->UKnots(BSurf_u_knots) ;
2284 BSplCLib::Reparametrize(startu_value,endu_value,BSurf_u_knots);
2285 BSurf->SetUKnots(BSurf_u_knots);
2286 }
2287}
2288
2289//=======================================================================
2290//function : CancelDenominatorDerivative
2291//purpose :
2292//=======================================================================
2293
2294void GeomLib::CancelDenominatorDerivative(Handle(Geom_BSplineSurface) & BSurf,
2295 const Standard_Boolean udirection,
2296 const Standard_Boolean vdirection)
2297
2298{if (udirection && !vdirection)
2299 CancelDenominatorDerivative1D(BSurf);
2300 else{
2301 if (!udirection && vdirection) {
2302 BSurf->ExchangeUV();
2303 CancelDenominatorDerivative1D(BSurf);
2304 BSurf->ExchangeUV();
2305 }
2306 else{
2307 if (udirection && vdirection){ //optimize the treatment
2308 if (BSurf->UDegree()<=BSurf->VDegree()){
2309 CancelDenominatorDerivative1D(BSurf);
2310 BSurf->ExchangeUV();
2311 CancelDenominatorDerivative1D(BSurf);
2312 BSurf->ExchangeUV();
2313 }
2314 else{
2315 BSurf->ExchangeUV();
2316 CancelDenominatorDerivative1D(BSurf);
2317 BSurf->ExchangeUV();
2318 CancelDenominatorDerivative1D(BSurf);
2319 }
2320 }
2321 }
2322 }
2323}
2324
2325//=======================================================================
2326//function : NormEstim
2327//purpose :
2328//=======================================================================
2329
2330Standard_Integer GeomLib::NormEstim(const Handle(Geom_Surface)& S,
2331 const gp_Pnt2d& UV,
2332 const Standard_Real Tol, gp_Dir& N)
2333{
2334 gp_Vec DU, DV;
2335 gp_Pnt DummyPnt;
2336 Standard_Real aTol2 = Square(Tol);
2337
2338 S->D1(UV.X(), UV.Y(), DummyPnt, DU, DV);
2339
2340 Standard_Real MDU = DU.SquareMagnitude(), MDV = DV.SquareMagnitude();
2341
7fd59977 2342 if(MDU >= aTol2 && MDV >= aTol2) {
2343 gp_Vec Norm = DU^DV;
2344 Standard_Real Magn = Norm.SquareMagnitude();
2345 if(Magn < aTol2) return 3;
2346
2347 //Magn = sqrt(Magn);
2348 N.SetXYZ(Norm.XYZ());
2349
2350 return 0;
2351 }
7fd59977 2352 else {
2b21c641 2353 gp_Vec D2U, D2V, D2UV;
2354 Standard_Boolean isDone;
2355 CSLib_NormalStatus aStatus;
2356 gp_Dir aNormal;
2357
2358 S->D2(UV.X(), UV.Y(), DummyPnt, DU, DV, D2U, D2V, D2UV);
2359 CSLib::Normal(DU, DV, D2U, D2V, D2UV, Tol, isDone, aStatus, aNormal);
2360
2361 if (isDone) {
2362 Standard_Real Umin, Umax, Vmin, Vmax;
2363 Standard_Real step = 1.0e-5;
2364 Standard_Real eps = 1.0e-16;
23b894f7 2365 Standard_Real sign = -1.0;
2b21c641 2366
2367 S->Bounds(Umin, Umax, Vmin, Vmax);
23b894f7 2368
2369 // check for cone apex singularity point
2370 if ((UV.Y() > Vmin + step) && (UV.Y() < Vmax - step))
2371 {
2372 gp_Dir aNormal1, aNormal2;
2373 Standard_Real aConeSingularityAngleEps = 1.0e-4;
2374 S->D1(UV.X(), UV.Y() - sign * step, DummyPnt, DU, DV);
2375 if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
2376 aNormal1 = DU^DV;
2377 S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
2378 if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
2379 aNormal2 = DU^DV;
2380 if (aNormal1.IsOpposite(aNormal2, aConeSingularityAngleEps))
2381 return 2;
2382 }
2383 }
2384 }
2385
2b21c641 2386 // Along V
2387 if(MDU < aTol2 && MDV >= aTol2) {
23b894f7 2388 if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
2389 sign = 1.0;
2b21c641 2390 S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
2391 gp_Vec Norm = DU^DV;
23b894f7 2392 if (Norm.SquareMagnitude() < eps) {
2393 Standard_Real sign1 = -1.0;
2394 if ((Umax - UV.X()) > (UV.X() - Umin))
2395 sign1 = 1.0;
2396 S->D1(UV.X() + sign1 * step, UV.Y() + sign * step, DummyPnt, DU, DV);
2397 Norm = DU^DV;
2398 }
2b21c641 2399 if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
23b894f7 2400 aNormal.Reverse();
2b21c641 2401 }
23b894f7 2402
2b21c641 2403 // Along U
2404 if(MDV < aTol2 && MDU >= aTol2) {
23b894f7 2405 if ((Umax - UV.X()) > (UV.X() - Umin))
2406 sign = 1.0;
2b21c641 2407 S->D1(UV.X() + sign * step, UV.Y(), DummyPnt, DU, DV);
2408 gp_Vec Norm = DU^DV;
23b894f7 2409 if (Norm.SquareMagnitude() < eps) {
2410 Standard_Real sign1 = -1.0;
2411 if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
2412 sign1 = 1.0;
2413 S->D1(UV.X() + sign * step, UV.Y() + sign1 * step, DummyPnt, DU, DV);
2414 Norm = DU^DV;
2415 }
2b21c641 2416 if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
2417 aNormal.Reverse();
2418 }
7fd59977 2419
2b21c641 2420 // quasysingular
2421 if ((aStatus == CSLib_D1NuIsNull) || (aStatus == CSLib_D1NvIsNull) ||
2422 (aStatus == CSLib_D1NuIsParallelD1Nv)) {
2423 N.SetXYZ(aNormal.XYZ());
2424 return 1;
2425 }
2426 // conical
2427 if (aStatus == CSLib_InfinityOfSolutions)
2428 return 2;
7fd59977 2429 }
2b21c641 2430 // computation is impossible
7fd59977 2431 else {
2b21c641 2432 // conical
2433 if (aStatus == CSLib_D1NIsNull) {
2434 return 2;
2435 }
2436 return 3;
7fd59977 2437 }
7fd59977 2438 }
2b21c641 2439 return 3;
7fd59977 2440}
2441
2442