0026936: Drawbacks of inlining in new type system in OCCT 7.0 -- automatic
[occt.git] / src / Geom / Geom_BezierCurve.hxx
CommitLineData
42cf5bc1 1// Created on: 1993-03-09
2// Created by: Philippe DAUTRY
3// Copyright (c) 1993-1999 Matra Datavision
4// Copyright (c) 1999-2014 OPEN CASCADE SAS
5//
6// This file is part of Open CASCADE Technology software library.
7//
8// This library is free software; you can redistribute it and/or modify it under
9// the terms of the GNU Lesser General Public License version 2.1 as published
10// by the Free Software Foundation, with special exception defined in the file
11// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12// distribution for complete text of the license and disclaimer of any warranty.
13//
14// Alternatively, this file may be used under the terms of Open CASCADE
15// commercial license or contractual agreement.
16
17#ifndef _Geom_BezierCurve_HeaderFile
18#define _Geom_BezierCurve_HeaderFile
19
20#include <Standard.hxx>
21#include <Standard_Type.hxx>
22
23#include <Standard_Boolean.hxx>
24#include <TColgp_HArray1OfPnt.hxx>
25#include <TColStd_HArray1OfReal.hxx>
26#include <Standard_Integer.hxx>
27#include <Standard_Real.hxx>
28#include <Geom_BoundedCurve.hxx>
29#include <TColgp_Array1OfPnt.hxx>
30#include <TColStd_Array1OfReal.hxx>
31#include <GeomAbs_Shape.hxx>
c8b5b3d8 32#include <BSplCLib.hxx>
33
42cf5bc1 34class Standard_ConstructionError;
35class Standard_DimensionError;
36class Standard_RangeError;
37class Standard_OutOfRange;
38class gp_Pnt;
39class gp_Vec;
40class gp_Trsf;
41class Geom_Geometry;
42
43
44class Geom_BezierCurve;
45DEFINE_STANDARD_HANDLE(Geom_BezierCurve, Geom_BoundedCurve)
46
47//! Describes a rational or non-rational Bezier curve
48//! - a non-rational Bezier curve is defined by a table of
49//! poles (also called control points),
50//! - a rational Bezier curve is defined by a table of
51//! poles with varying weights.
52//! These data are manipulated by two parallel arrays:
53//! - the poles table, which is an array of gp_Pnt points, and
54//! - the weights table, which is an array of reals.
55//! The bounds of these arrays are 1 and "the number of "poles" of the curve.
56//! The poles of the curve are "control points" used to deform the curve.
57//! The first pole is the start point of the curve, and the
58//! last pole is the end point of the curve. The segment
59//! that joins the first pole to the second pole is the
60//! tangent to the curve at its start point, and the
61//! segment that joins the last pole to the
62//! second-from-last pole is the tangent to the curve at its end point.
63//! It is more difficult to give a geometric signification to
64//! the weights but they are useful for providing the exact
65//! representations of arcs of a circle or ellipse.
66//! Moreover, if the weights of all poles are equal, the
67//! curve is polynomial; it is therefore a non-rational
68//! curve. The non-rational curve is a special and
69//! frequently used case. The weights are defined and
70//! used only in the case of a rational curve.
71//! The degree of a Bezier curve is equal to the number
72//! of poles, minus 1. It must be greater than or equal to
73//! 1. However, the degree of a Geom_BezierCurve
74//! curve is limited to a value (25) which is defined and
75//! controlled by the system. This value is returned by the function MaxDegree.
76//! The parameter range for a Bezier curve is [ 0, 1 ].
77//! If the first and last control points of the Bezier curve
78//! are the same point then the curve is closed. For
79//! example, to create a closed Bezier curve with four
80//! control points, you have to give the set of control
81//! points P1, P2, P3 and P1.
82//! The continuity of a Bezier curve is infinite.
83//! It is not possible to build a Bezier curve with negative
84//! weights. We consider that a weight value is zero if it
85//! is less than or equal to gp::Resolution(). We
86//! also consider that two weight values W1 and W2 are equal if:
87//! |W2 - W1| <= gp::Resolution().
88//! Warning
89//! - When considering the continuity of a closed Bezier
90//! curve at the junction point, remember that a curve
91//! of this type is never periodic. This means that the
92//! derivatives for the parameter u = 0 have no
93//! reason to be the same as the derivatives for the
94//! parameter u = 1 even if the curve is closed.
95//! - The length of a Bezier curve can be null.
96class Geom_BezierCurve : public Geom_BoundedCurve
97{
98
99public:
100
101
102 //! Creates a non rational Bezier curve with a set of poles
103 //! CurvePoles. The weights are defaulted to all being 1.
104 //! Raises ConstructionError if the number of poles is greater than MaxDegree + 1
105 //! or lower than 2.
106 Standard_EXPORT Geom_BezierCurve(const TColgp_Array1OfPnt& CurvePoles);
107
108 //! Creates a rational Bezier curve with the set of poles
109 //! CurvePoles and the set of weights PoleWeights .
110 //! If all the weights are identical the curve is considered
111 //! as non rational. Raises ConstructionError if
112 //! the number of poles is greater than MaxDegree + 1 or lower
113 //! than 2 or CurvePoles and CurveWeights have not the same length
114 //! or one weight value is lower or equal to Resolution from package gp.
115 Standard_EXPORT Geom_BezierCurve(const TColgp_Array1OfPnt& CurvePoles, const TColStd_Array1OfReal& PoleWeights);
116
117 //! Increases the degree of a bezier curve. Degree is the new
118 //! degree of <me>. Raises ConstructionError
119 //! if Degree is greater than MaxDegree or lower than 2
120 //! or lower than the initial degree of <me>.
121 Standard_EXPORT void Increase (const Standard_Integer Degree);
122
123 //! Inserts a pole P after the pole of range Index.
124 //! If the curve <me> is rational the weight value for the new
125 //! pole of range Index is 1.0.
126 //! raised if Index is not in the range [1, NbPoles]
127 //!
128 //! raised if the resulting number of poles is greater than
129 //! MaxDegree + 1.
130 Standard_EXPORT void InsertPoleAfter (const Standard_Integer Index, const gp_Pnt& P);
131
132
133 //! Inserts a pole with its weight in the set of poles after the
134 //! pole of range Index. If the curve was non rational it can
135 //! become rational if all the weights are not identical.
136 //! Raised if Index is not in the range [1, NbPoles]
137 //!
138 //! Raised if the resulting number of poles is greater than
139 //! MaxDegree + 1.
140 //! Raised if Weight is lower or equal to Resolution from package gp.
141 Standard_EXPORT void InsertPoleAfter (const Standard_Integer Index, const gp_Pnt& P, const Standard_Real Weight);
142
143 //! Inserts a pole P before the pole of range Index.
144 //! If the curve <me> is rational the weight value for the new
145 //! pole of range Index is 1.0.
146 //! Raised if Index is not in the range [1, NbPoles]
147 //!
148 //! Raised if the resulting number of poles is greater than
149 //! MaxDegree + 1.
150 Standard_EXPORT void InsertPoleBefore (const Standard_Integer Index, const gp_Pnt& P);
151
152
153 //! Inserts a pole with its weight in the set of poles after
154 //! the pole of range Index. If the curve was non rational it
155 //! can become rational if all the weights are not identical.
156 //! Raised if Index is not in the range [1, NbPoles]
157 //!
158 //! Raised if the resulting number of poles is greater than
159 //! MaxDegree + 1.
160 //! Raised if Weight is lower or equal to Resolution from
161 //! package gp.
162 Standard_EXPORT void InsertPoleBefore (const Standard_Integer Index, const gp_Pnt& P, const Standard_Real Weight);
163
164 //! Removes the pole of range Index.
165 //! If the curve was rational it can become non rational.
166 //! Raised if Index is not in the range [1, NbPoles]
167 //! Raised if Degree is lower than 2.
168 Standard_EXPORT void RemovePole (const Standard_Integer Index);
169
170
171 //! Reverses the direction of parametrization of <me>
172 //! Value (NewU) = Value (1 - OldU)
79104795 173 Standard_EXPORT void Reverse() Standard_OVERRIDE;
42cf5bc1 174
175 //! Returns the parameter on the reversed curve for
176 //! the point of parameter U on <me>.
177 //!
178 //! returns 1-U
79104795 179 Standard_EXPORT Standard_Real ReversedParameter (const Standard_Real U) const Standard_OVERRIDE;
42cf5bc1 180
181
182 //! Segments the curve between U1 and U2 which can be out
183 //! of the bounds of the curve. The curve is oriented from U1
184 //! to U2.
185 //! The control points are modified, the first and the last point
186 //! are not the same but the parametrization range is [0, 1]
187 //! else it could not be a Bezier curve.
188 //! Warnings :
189 //! Even if <me> is not closed it can become closed after the
190 //! segmentation for example if U1 or U2 are out of the bounds
191 //! of the curve <me> or if the curve makes loop.
192 //! After the segmentation the length of a curve can be null.
193 Standard_EXPORT void Segment (const Standard_Real U1, const Standard_Real U2);
194
195
196 //! Substitutes the pole of range index with P.
197 //! If the curve <me> is rational the weight of range Index
198 //! is not modified.
199 //! raiseD if Index is not in the range [1, NbPoles]
200 Standard_EXPORT void SetPole (const Standard_Integer Index, const gp_Pnt& P);
201
202
203 //! Substitutes the pole and the weights of range Index.
204 //! If the curve <me> is not rational it can become rational
205 //! if all the weights are not identical.
206 //! If the curve was rational it can become non rational if
207 //! all the weights are identical.
208 //! Raised if Index is not in the range [1, NbPoles]
209 //! Raised if Weight <= Resolution from package gp
210 Standard_EXPORT void SetPole (const Standard_Integer Index, const gp_Pnt& P, const Standard_Real Weight);
211
212
213 //! Changes the weight of the pole of range Index.
214 //! If the curve <me> is not rational it can become rational
215 //! if all the weights are not identical.
216 //! If the curve was rational it can become non rational if
217 //! all the weights are identical.
218 //! Raised if Index is not in the range [1, NbPoles]
219 //! Raised if Weight <= Resolution from package gp
220 Standard_EXPORT void SetWeight (const Standard_Integer Index, const Standard_Real Weight);
221
222
223 //! Returns True if the distance between the first point
224 //! and the last point of the curve is lower or equal to
225 //! the Resolution from package gp.
79104795 226 Standard_EXPORT Standard_Boolean IsClosed() const Standard_OVERRIDE;
42cf5bc1 227
228 //! Continuity of the curve, returns True.
79104795 229 Standard_EXPORT Standard_Boolean IsCN (const Standard_Integer N) const Standard_OVERRIDE;
42cf5bc1 230
231
232 //! Returns True if the parametrization of a curve is periodic.
233 //! (P(u) = P(u + T) T = constante)
79104795 234 Standard_EXPORT Standard_Boolean IsPeriodic() const Standard_OVERRIDE;
42cf5bc1 235
236
237 //! Returns false if all the weights are identical. The tolerance
238 //! criterion is Resolution from package gp.
239 Standard_EXPORT Standard_Boolean IsRational() const;
240
241 //! a Bezier curve is CN
79104795 242 Standard_EXPORT GeomAbs_Shape Continuity() const Standard_OVERRIDE;
42cf5bc1 243
244 //! Returns the polynomial degree of the curve.
245 //! it is the number of poles - 1
246 //! point P and derivatives (V1, V2, V3) computation
247 //! The Bezier Curve has a Polynomial representation so the
248 //! parameter U can be out of the bounds of the curve.
249 Standard_EXPORT Standard_Integer Degree() const;
250
79104795 251 Standard_EXPORT void D0 (const Standard_Real U, gp_Pnt& P) const Standard_OVERRIDE;
42cf5bc1 252
79104795 253 Standard_EXPORT void D1 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1) const Standard_OVERRIDE;
42cf5bc1 254
79104795 255 Standard_EXPORT void D2 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const Standard_OVERRIDE;
42cf5bc1 256
257 //! For this Bezier curve, computes
258 //! - the point P of parameter U, or
259 //! - the point P and one or more of the following values:
260 //! - V1, the first derivative vector,
261 //! - V2, the second derivative vector,
262 //! - V3, the third derivative vector.
263 //! Note: the parameter U can be outside the bounds of the curve.
79104795 264 Standard_EXPORT void D3 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3) const Standard_OVERRIDE;
42cf5bc1 265
266 //! For the point of parameter U of this Bezier curve,
267 //! computes the vector corresponding to the Nth derivative.
268 //! Note: the parameter U can be outside the bounds of the curve.
269 //! Exceptions Standard_RangeError if N is less than 1.
79104795 270 Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Integer N) const Standard_OVERRIDE;
42cf5bc1 271
272 //! Returns Value (U=0.), it is the first control point of the curve.
79104795 273 Standard_EXPORT gp_Pnt StartPoint() const Standard_OVERRIDE;
42cf5bc1 274
275 //! Returns Value (U=1.), it is the last control point of the Bezier curve.
79104795 276 Standard_EXPORT gp_Pnt EndPoint() const Standard_OVERRIDE;
42cf5bc1 277
278 //! Returns the value of the first parameter of this
279 //! Bezier curve. This is 0.0, which gives the start point of this Bezier curve
79104795 280 Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
42cf5bc1 281
282 //! Returns the value of the last parameter of this
283 //! Bezier curve. This is 1.0, which gives the end point of this Bezier curve.
79104795 284 Standard_EXPORT Standard_Real LastParameter() const Standard_OVERRIDE;
42cf5bc1 285
286 //! Returns the number of poles of this Bezier curve.
287 Standard_EXPORT Standard_Integer NbPoles() const;
288
289 //! Returns the pole of range Index.
290 //! Raised if Index is not in the range [1, NbPoles]
291 Standard_EXPORT gp_Pnt Pole (const Standard_Integer Index) const;
292
293 //! Returns all the poles of the curve.
294 //!
295 //! Raised if the length of P is not equal to the number of poles.
296 Standard_EXPORT void Poles (TColgp_Array1OfPnt& P) const;
bcd19756 297
298 //! Returns all the poles of the curve.
299 Standard_EXPORT const TColgp_Array1OfPnt& Poles () const;
42cf5bc1 300
301 //! Returns the weight of range Index.
302 //! Raised if Index is not in the range [1, NbPoles]
303 Standard_EXPORT Standard_Real Weight (const Standard_Integer Index) const;
304
305 //! Returns all the weights of the curve.
306 //!
307 //! Raised if the length of W is not equal to the number of poles.
308 Standard_EXPORT void Weights (TColStd_Array1OfReal& W) const;
c8b5b3d8 309
310 //! Returns all the weights of the curve.
311 const TColStd_Array1OfReal* Weights() const
312 {
313 if (!weights.IsNull())
314 return &weights->Array1();
315 return BSplCLib::NoWeights();
316 }
317
42cf5bc1 318 //! Applies the transformation T to this Bezier curve.
79104795 319 Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE;
42cf5bc1 320
321
322 //! Returns the value of the maximum polynomial degree
323 //! of any Geom_BezierCurve curve. This value is 25.
324 Standard_EXPORT static Standard_Integer MaxDegree();
325
326 //! Computes for this Bezier curve the parametric
327 //! tolerance UTolerance for a given 3D tolerance Tolerance3D.
328 //! If f(t) is the equation of this Bezier curve,
329 //! UTolerance ensures that:
330 //! |t1-t0| < UTolerance ===> |f(t1)-f(t0)| < Tolerance3D
331 Standard_EXPORT void Resolution (const Standard_Real Tolerance3D, Standard_Real& UTolerance);
332
333 //! Creates a new object which is a copy of this Bezier curve.
79104795 334 Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE;
42cf5bc1 335
336
337
338
92efcf78 339 DEFINE_STANDARD_RTTIEXT(Geom_BezierCurve,Geom_BoundedCurve)
42cf5bc1 340
341protected:
342
343
344
345
346private:
347
348
349 //! Set poles to Poles, weights to Weights (not
350 //! copied). If Weights is null the curve is non
351 //! rational. Create the arrays of coefficients. Poles
352 //! and Weights are assumed to have the first
353 //! coefficient 1.
354 //! Update rational and closed.
355 //!
356 //! if nbpoles < 2 or nbboles > MaDegree + 1
c8b5b3d8 357 void Init (const Handle(TColgp_HArray1OfPnt)& Poles, const Handle(TColStd_HArray1OfReal)& Weights);
42cf5bc1 358
359 Standard_Boolean rational;
360 Standard_Boolean closed;
361 Handle(TColgp_HArray1OfPnt) poles;
362 Handle(TColStd_HArray1OfReal) weights;
42cf5bc1 363 Standard_Real maxderivinv;
364 Standard_Boolean maxderivinvok;
365
366
367};
368
369
370
371
372
373
374
375#endif // _Geom_BezierCurve_HeaderFile