0022627: Change OCCT memory management defaults
[occt.git] / src / GccAna / GccAna_Circ2d2TanOn_1.cxx
CommitLineData
7fd59977 1// File: GccAna_Circ2d2TanOn_1.cxx
2// Created: Thu Jan 2 15:50:43 1992
3// Author: Remi GILET
4// <reg@topsn3>
5
6#include <GccAna_Circ2d2TanOn.jxx>
7
8#include <ElCLib.hxx>
9#include <gp_Dir2d.hxx>
10#include <gp_Ax2d.hxx>
11#include <IntAna2d_AnaIntersection.hxx>
12#include <IntAna2d_IntPoint.hxx>
13#include <GccAna_CircLin2dBisec.hxx>
14#include <GccInt_IType.hxx>
15#include <GccInt_BCirc.hxx>
16#include <IntAna2d_Conic.hxx>
17#include <GccEnt_BadQualifier.hxx>
18
19//=========================================================================
0d969553
Y
20// Creation of a circle tangent to Circle C1 and a straight line L2. +
21// centered on a straight line. +
22// We start by making difference between cases that we are going to +
23// proceess separately. +
24// In general case: +
7fd59977 25// ==================== +
0d969553
Y
26// We calculate bissectrices to C1 and L2 that give us +
27// all possibles locations of centers of all circles tangent to C1 and L2+ +
28// We intersect these bissectrices with straight line OnLine which gives +
29// us points among which we'll choose the solutions. +
30// The choices are made basing on Qualifiers of C1 and L2. +
7fd59977 31//=========================================================================
32
33GccAna_Circ2d2TanOn::
34 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
35 const GccEnt_QualifiedLin& Qualified2 ,
36 const gp_Lin2d& OnLine ,
37 const Standard_Real Tolerance ):
38 cirsol(1,4) ,
39 qualifier1(1,4) ,
40 qualifier2(1,4),
41 TheSame1(1,4) ,
42 TheSame2(1,4) ,
43 pnttg1sol(1,4) ,
44 pnttg2sol(1,4) ,
45 pntcen(1,4) ,
46 par1sol(1,4) ,
47 par2sol(1,4) ,
48 pararg1(1,4) ,
49 pararg2(1,4) ,
50 parcen3(1,4)
51{
52
53 TheSame1.Init(0);
54 TheSame2.Init(0);
55 WellDone = Standard_False;
56 NbrSol = 0;
57 if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
58 Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
59 !(Qualified2.IsEnclosed() ||
60 Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
61 GccEnt_BadQualifier::Raise();
62 return;
63 }
64 Standard_Real Tol = Abs(Tolerance);
65 Standard_Real Radius=0;
66 Standard_Boolean ok = Standard_False;
67 gp_Dir2d dirx(1.,0.);
68 gp_Circ2d C1 = Qualified1.Qualified();
69 gp_Lin2d L2 = Qualified2.Qualified();
70 Standard_Real R1 = C1.Radius();
71 gp_Pnt2d center1(C1.Location());
72 gp_Pnt2d origin2(L2.Location());
73 gp_Dir2d dirL2(L2.Direction());
74 gp_Dir2d normL2(-dirL2.Y(),dirL2.X());
75
76//=========================================================================
0d969553 77// Processing of limit cases. +
7fd59977 78//=========================================================================
79
80 Standard_Real distcl = OnLine.Distance(center1);
81 gp_Pnt2d pinterm(center1.XY()+distcl*
82 gp_XY(-OnLine.Direction().Y(),OnLine.Direction().X()));
83 if (OnLine.Distance(pinterm) > Tolerance) {
84 pinterm = gp_Pnt2d(center1.XY()+distcl*
85 gp_XY(-OnLine.Direction().Y(),OnLine.Direction().X()));
86 }
87 Standard_Real dist2 = L2.Distance(pinterm);
88 if (Qualified1.IsEnclosed() || Qualified1.IsOutside()) {
89 if (Abs(distcl-R1-dist2) <= Tol) { ok = Standard_True; }
90 }
91 else if (Qualified1.IsEnclosing()) {
92 if (Abs(dist2-distcl-R1) <= Tol) { ok = Standard_True; }
93 }
94 else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
95 else {
96 GccEnt_BadQualifier::Raise();
97 return;
98 }
99 if (ok) {
100 if (Qualified2.IsOutside()) {
101 gp_Pnt2d pbid(pinterm.XY()+dist2*gp_XY(-dirL2.Y(),dirL2.X()));
102 if (L2.Distance(pbid) <= Tol) { WellDone = Standard_True; }
103 }
104 else if (Qualified2.IsEnclosed()) {
105 gp_Pnt2d pbid(pinterm.XY()-dist2*gp_XY(-dirL2.Y(),dirL2.X()));
106 if (L2.Distance(pbid) <= Tol) { WellDone = Standard_True; }
107 }
108 else if (Qualified2.IsUnqualified()) { WellDone = Standard_False; }
109 else {
110 GccEnt_BadQualifier::Raise();
111 return;
112 }
113 }
114 if (WellDone) {
115 NbrSol++;
116 cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),dist2);
117// =======================================================
118 gp_Dir2d dc1(center1.XY()-pinterm.XY());
119 gp_Dir2d dc2(origin2.XY()-pinterm.XY());
120 Standard_Real distcc1 = pinterm.Distance(center1);
121 if (!Qualified1.IsUnqualified()) {
122 qualifier1(NbrSol) = Qualified1.Qualifier();
123 }
124 else if (Abs(distcc1+dist2-R1) < Tol) {
125 qualifier1(NbrSol) = GccEnt_enclosed;
126 }
127 else if (Abs(distcc1-R1-dist2) < Tol) {
128 qualifier1(NbrSol) = GccEnt_outside;
129 }
130 else { qualifier1(NbrSol) = GccEnt_enclosing; }
131 if (!Qualified2.IsUnqualified()) {
132 qualifier2(NbrSol) = Qualified2.Qualifier();
133 }
134 else if (dc2.Dot(normL2) > 0.0) {
135 qualifier2(NbrSol) = GccEnt_outside;
136 }
137 else { qualifier2(NbrSol) = GccEnt_enclosed; }
138
139 Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL2.Y(),dirL2.X()));
140 dc2 = gp_Dir2d(sign*gp_XY(-dirL2.Y(),dirL2.X()));
141 pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dist2*dc1.XY());
142 pnttg2sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dist2*dc2.XY());
143 par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
144 pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
145 par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
146 pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
147 pntcen(NbrSol) = cirsol(NbrSol).Location();
148 parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
149 return;
150 }
151
152//=========================================================================
0d969553 153// General case. +
7fd59977 154//=========================================================================
155
156 GccAna_CircLin2dBisec Bis(C1,L2);
157 if (Bis.IsDone()) {
158 Standard_Integer nbsolution = Bis.NbSolutions();
159 for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
160 Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
161 GccInt_IType type = Sol->ArcType();
162 IntAna2d_AnaIntersection Intp;
163 if (type == GccInt_Lin) {
164 Intp.Perform(OnLine,Sol->Line());
165 }
166 else if (type == GccInt_Par) {
167 Intp.Perform(OnLine,IntAna2d_Conic(Sol->Parabola()));
168 }
169 if (Intp.IsDone()) {
170 if (!Intp.IsEmpty()) {
171 for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
172 gp_Pnt2d Center(Intp.Point(j).Value());
173 Standard_Real dist1 = Center.Distance(center1);
174 dist2 = L2.Distance(Center);
175// Standard_Integer nbsol = 1;
176 ok = Standard_False;
177 if (Qualified1.IsEnclosed()) {
178 if (dist1-R1 < Tolerance) {
179 if (Abs(Abs(R1-dist1)-dist2)<Tolerance) { ok=Standard_True; }
180 }
181 }
182 else if (Qualified1.IsOutside()) {
183 if (R1-dist1 < Tolerance) {
184 if (Abs(Abs(R1-dist1)-dist2)<Tolerance) { ok=Standard_True; }
185 }
186 }
187 else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
188 ok = Standard_True;
189 }
190 if (Qualified2.IsEnclosed() && ok) {
191 if ((((origin2.X()-Center.X())*(-dirL2.Y()))+
192 ((origin2.Y()-Center.Y())*(dirL2.X())))<=0){
193 ok = Standard_True;
194 Radius = dist2;
195 }
196 }
197 else if (Qualified2.IsOutside() && ok) {
198 if ((((origin2.X()-Center.X())*(-dirL2.Y()))+
199 ((origin2.Y()-Center.Y())*(dirL2.X())))>=0){
200 ok = Standard_True;
201 Radius = dist2;
202 }
203 }
204 else if (Qualified2.IsUnqualified() && ok) {
205 ok = Standard_True;
206 Radius = dist2;
207 }
208 if (ok) {
209 NbrSol++;
210 cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
211// =======================================================
212 gp_Dir2d dc1(center1.XY()-Center.XY());
213 gp_Dir2d dc2(origin2.XY()-Center.XY());
214 Standard_Real distcc1 = Center.Distance(center1);
215 if (!Qualified1.IsUnqualified()) {
216 qualifier1(NbrSol) = Qualified1.Qualifier();
217 }
218 else if (Abs(distcc1+Radius-R1) < Tol) {
219 qualifier1(NbrSol) = GccEnt_enclosed;
220 }
221 else if (Abs(distcc1-R1-Radius) < Tol) {
222 qualifier1(NbrSol) = GccEnt_outside;
223 }
224 else { qualifier1(NbrSol) = GccEnt_enclosing; }
225 if (!Qualified2.IsUnqualified()) {
226 qualifier2(NbrSol) = Qualified2.Qualifier();
227 }
228 else if (dc2.Dot(normL2) > 0.0) {
229 qualifier2(NbrSol) = GccEnt_outside;
230 }
231 else { qualifier2(NbrSol) = GccEnt_enclosed; }
232 if (Center.Distance(center1) <= Tolerance &&
233 Abs(Radius-C1.Radius()) <= Tolerance) {
234 TheSame1(NbrSol) = 1;
235 }
236 else {
237 TheSame1(NbrSol) = 0;
238 pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
239 par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
240 pnttg1sol(NbrSol));
241 pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
242 }
243 TheSame2(NbrSol) = 0;
244 Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL2.Y(),dirL2.X()));
245 dc2 = gp_Dir2d(sign*gp_XY(-dirL2.Y(),dirL2.X()));
246 pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
247 par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
248 pnttg2sol(NbrSol));
249 pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
250 pntcen(NbrSol) = Center;
251 parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
252 }
253 }
254 }
255 WellDone = Standard_True;
256 }
257 }
258 }
259 }
260
261
262
263
264
265