0024510: Remove unused local variables
[occt.git] / src / GccAna / GccAna_Circ2d2TanOn_1.cxx
CommitLineData
b311480e 1// Created on: 1992-01-02
2// Created by: Remi GILET
3// Copyright (c) 1992-1999 Matra Datavision
973c2be1 4// Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 5//
973c2be1 6// This file is part of Open CASCADE Technology software library.
b311480e 7//
973c2be1 8// This library is free software; you can redistribute it and / or modify it
9// under the terms of the GNU Lesser General Public version 2.1 as published
10// by the Free Software Foundation, with special exception defined in the file
11// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12// distribution for complete text of the license and disclaimer of any warranty.
b311480e 13//
973c2be1 14// Alternatively, this file may be used under the terms of Open CASCADE
15// commercial license or contractual agreement.
7fd59977 16
17#include <GccAna_Circ2d2TanOn.jxx>
18
19#include <ElCLib.hxx>
20#include <gp_Dir2d.hxx>
21#include <gp_Ax2d.hxx>
22#include <IntAna2d_AnaIntersection.hxx>
23#include <IntAna2d_IntPoint.hxx>
24#include <GccAna_CircLin2dBisec.hxx>
25#include <GccInt_IType.hxx>
26#include <GccInt_BCirc.hxx>
27#include <IntAna2d_Conic.hxx>
28#include <GccEnt_BadQualifier.hxx>
29
30//=========================================================================
0d969553
Y
31// Creation of a circle tangent to Circle C1 and a straight line L2. +
32// centered on a straight line. +
33// We start by making difference between cases that we are going to +
34// proceess separately. +
35// In general case: +
7fd59977 36// ==================== +
0d969553
Y
37// We calculate bissectrices to C1 and L2 that give us +
38// all possibles locations of centers of all circles tangent to C1 and L2+ +
39// We intersect these bissectrices with straight line OnLine which gives +
40// us points among which we'll choose the solutions. +
41// The choices are made basing on Qualifiers of C1 and L2. +
7fd59977 42//=========================================================================
43
44GccAna_Circ2d2TanOn::
45 GccAna_Circ2d2TanOn (const GccEnt_QualifiedCirc& Qualified1 ,
46 const GccEnt_QualifiedLin& Qualified2 ,
47 const gp_Lin2d& OnLine ,
48 const Standard_Real Tolerance ):
49 cirsol(1,4) ,
50 qualifier1(1,4) ,
51 qualifier2(1,4),
52 TheSame1(1,4) ,
53 TheSame2(1,4) ,
54 pnttg1sol(1,4) ,
55 pnttg2sol(1,4) ,
56 pntcen(1,4) ,
57 par1sol(1,4) ,
58 par2sol(1,4) ,
59 pararg1(1,4) ,
60 pararg2(1,4) ,
61 parcen3(1,4)
62{
63
64 TheSame1.Init(0);
65 TheSame2.Init(0);
66 WellDone = Standard_False;
67 NbrSol = 0;
68 if (!(Qualified1.IsEnclosed() || Qualified1.IsEnclosing() ||
69 Qualified1.IsOutside() || Qualified1.IsUnqualified()) ||
70 !(Qualified2.IsEnclosed() ||
71 Qualified2.IsOutside() || Qualified2.IsUnqualified())) {
72 GccEnt_BadQualifier::Raise();
73 return;
74 }
75 Standard_Real Tol = Abs(Tolerance);
76 Standard_Real Radius=0;
77 Standard_Boolean ok = Standard_False;
78 gp_Dir2d dirx(1.,0.);
79 gp_Circ2d C1 = Qualified1.Qualified();
80 gp_Lin2d L2 = Qualified2.Qualified();
81 Standard_Real R1 = C1.Radius();
82 gp_Pnt2d center1(C1.Location());
83 gp_Pnt2d origin2(L2.Location());
84 gp_Dir2d dirL2(L2.Direction());
85 gp_Dir2d normL2(-dirL2.Y(),dirL2.X());
86
87//=========================================================================
0d969553 88// Processing of limit cases. +
7fd59977 89//=========================================================================
90
91 Standard_Real distcl = OnLine.Distance(center1);
92 gp_Pnt2d pinterm(center1.XY()+distcl*
93 gp_XY(-OnLine.Direction().Y(),OnLine.Direction().X()));
94 if (OnLine.Distance(pinterm) > Tolerance) {
95 pinterm = gp_Pnt2d(center1.XY()+distcl*
96 gp_XY(-OnLine.Direction().Y(),OnLine.Direction().X()));
97 }
98 Standard_Real dist2 = L2.Distance(pinterm);
99 if (Qualified1.IsEnclosed() || Qualified1.IsOutside()) {
100 if (Abs(distcl-R1-dist2) <= Tol) { ok = Standard_True; }
101 }
102 else if (Qualified1.IsEnclosing()) {
103 if (Abs(dist2-distcl-R1) <= Tol) { ok = Standard_True; }
104 }
105 else if (Qualified1.IsUnqualified()) { ok = Standard_True; }
106 else {
107 GccEnt_BadQualifier::Raise();
108 return;
109 }
110 if (ok) {
111 if (Qualified2.IsOutside()) {
112 gp_Pnt2d pbid(pinterm.XY()+dist2*gp_XY(-dirL2.Y(),dirL2.X()));
113 if (L2.Distance(pbid) <= Tol) { WellDone = Standard_True; }
114 }
115 else if (Qualified2.IsEnclosed()) {
116 gp_Pnt2d pbid(pinterm.XY()-dist2*gp_XY(-dirL2.Y(),dirL2.X()));
117 if (L2.Distance(pbid) <= Tol) { WellDone = Standard_True; }
118 }
119 else if (Qualified2.IsUnqualified()) { WellDone = Standard_False; }
120 else {
121 GccEnt_BadQualifier::Raise();
122 return;
123 }
124 }
125 if (WellDone) {
126 NbrSol++;
127 cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),dist2);
128// =======================================================
129 gp_Dir2d dc1(center1.XY()-pinterm.XY());
130 gp_Dir2d dc2(origin2.XY()-pinterm.XY());
131 Standard_Real distcc1 = pinterm.Distance(center1);
132 if (!Qualified1.IsUnqualified()) {
133 qualifier1(NbrSol) = Qualified1.Qualifier();
134 }
135 else if (Abs(distcc1+dist2-R1) < Tol) {
136 qualifier1(NbrSol) = GccEnt_enclosed;
137 }
138 else if (Abs(distcc1-R1-dist2) < Tol) {
139 qualifier1(NbrSol) = GccEnt_outside;
140 }
141 else { qualifier1(NbrSol) = GccEnt_enclosing; }
142 if (!Qualified2.IsUnqualified()) {
143 qualifier2(NbrSol) = Qualified2.Qualifier();
144 }
145 else if (dc2.Dot(normL2) > 0.0) {
146 qualifier2(NbrSol) = GccEnt_outside;
147 }
148 else { qualifier2(NbrSol) = GccEnt_enclosed; }
149
150 Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL2.Y(),dirL2.X()));
151 dc2 = gp_Dir2d(sign*gp_XY(-dirL2.Y(),dirL2.X()));
152 pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dist2*dc1.XY());
153 pnttg2sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dist2*dc2.XY());
154 par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
155 pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
156 par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
157 pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
158 pntcen(NbrSol) = cirsol(NbrSol).Location();
159 parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
160 return;
161 }
162
163//=========================================================================
0d969553 164// General case. +
7fd59977 165//=========================================================================
166
167 GccAna_CircLin2dBisec Bis(C1,L2);
168 if (Bis.IsDone()) {
169 Standard_Integer nbsolution = Bis.NbSolutions();
170 for (Standard_Integer i = 1 ; i <= nbsolution; i++) {
171 Handle(GccInt_Bisec) Sol = Bis.ThisSolution(i);
172 GccInt_IType type = Sol->ArcType();
173 IntAna2d_AnaIntersection Intp;
174 if (type == GccInt_Lin) {
175 Intp.Perform(OnLine,Sol->Line());
176 }
177 else if (type == GccInt_Par) {
178 Intp.Perform(OnLine,IntAna2d_Conic(Sol->Parabola()));
179 }
180 if (Intp.IsDone()) {
181 if (!Intp.IsEmpty()) {
182 for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
183 gp_Pnt2d Center(Intp.Point(j).Value());
184 Standard_Real dist1 = Center.Distance(center1);
185 dist2 = L2.Distance(Center);
186// Standard_Integer nbsol = 1;
187 ok = Standard_False;
188 if (Qualified1.IsEnclosed()) {
189 if (dist1-R1 < Tolerance) {
190 if (Abs(Abs(R1-dist1)-dist2)<Tolerance) { ok=Standard_True; }
191 }
192 }
193 else if (Qualified1.IsOutside()) {
194 if (R1-dist1 < Tolerance) {
195 if (Abs(Abs(R1-dist1)-dist2)<Tolerance) { ok=Standard_True; }
196 }
197 }
198 else if (Qualified1.IsEnclosing() || Qualified1.IsUnqualified()) {
199 ok = Standard_True;
200 }
201 if (Qualified2.IsEnclosed() && ok) {
202 if ((((origin2.X()-Center.X())*(-dirL2.Y()))+
203 ((origin2.Y()-Center.Y())*(dirL2.X())))<=0){
204 ok = Standard_True;
205 Radius = dist2;
206 }
207 }
208 else if (Qualified2.IsOutside() && ok) {
209 if ((((origin2.X()-Center.X())*(-dirL2.Y()))+
210 ((origin2.Y()-Center.Y())*(dirL2.X())))>=0){
211 ok = Standard_True;
212 Radius = dist2;
213 }
214 }
215 else if (Qualified2.IsUnqualified() && ok) {
216 ok = Standard_True;
217 Radius = dist2;
218 }
219 if (ok) {
220 NbrSol++;
221 cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
222// =======================================================
223 gp_Dir2d dc1(center1.XY()-Center.XY());
224 gp_Dir2d dc2(origin2.XY()-Center.XY());
225 Standard_Real distcc1 = Center.Distance(center1);
226 if (!Qualified1.IsUnqualified()) {
227 qualifier1(NbrSol) = Qualified1.Qualifier();
228 }
229 else if (Abs(distcc1+Radius-R1) < Tol) {
230 qualifier1(NbrSol) = GccEnt_enclosed;
231 }
232 else if (Abs(distcc1-R1-Radius) < Tol) {
233 qualifier1(NbrSol) = GccEnt_outside;
234 }
235 else { qualifier1(NbrSol) = GccEnt_enclosing; }
236 if (!Qualified2.IsUnqualified()) {
237 qualifier2(NbrSol) = Qualified2.Qualifier();
238 }
239 else if (dc2.Dot(normL2) > 0.0) {
240 qualifier2(NbrSol) = GccEnt_outside;
241 }
242 else { qualifier2(NbrSol) = GccEnt_enclosed; }
243 if (Center.Distance(center1) <= Tolerance &&
244 Abs(Radius-C1.Radius()) <= Tolerance) {
245 TheSame1(NbrSol) = 1;
246 }
247 else {
248 TheSame1(NbrSol) = 0;
249 pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
250 par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
251 pnttg1sol(NbrSol));
252 pararg1(NbrSol)=ElCLib::Parameter(C1,pnttg1sol(NbrSol));
253 }
254 TheSame2(NbrSol) = 0;
255 Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL2.Y(),dirL2.X()));
256 dc2 = gp_Dir2d(sign*gp_XY(-dirL2.Y(),dirL2.X()));
257 pnttg2sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc2.XY());
258 par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
259 pnttg2sol(NbrSol));
260 pararg2(NbrSol)=ElCLib::Parameter(L2,pnttg2sol(NbrSol));
261 pntcen(NbrSol) = Center;
262 parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
263 }
264 }
265 }
266 WellDone = Standard_True;
267 }
268 }
269 }
270 }
271
272
273
274
275
276