0023620: Follow up of 0022939 - make Bezier curve/surface evaluation thread-safe
[occt.git] / src / BSplCLib / BSplCLib_Cache.hxx
CommitLineData
94f71cad 1// Copyright (c) 2014 OPEN CASCADE SAS
2//
3// This file is part of Open CASCADE Technology software library.
4//
5// This library is free software; you can redistribute it and/or modify it under
6// the terms of the GNU Lesser General Public License version 2.1 as published
7// by the Free Software Foundation, with special exception defined in the file
8// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
9// distribution for complete text of the license and disclaimer of any warranty.
10//
11// Alternatively, this file may be used under the terms of Open CASCADE
12// commercial license or contractual agreement.
13
14#ifndef _BSplCLib_Cache_Headerfile
15#define _BSplCLib_Cache_Headerfile
16
17#include <Standard.hxx>
18#include <Standard_Macro.hxx>
ec357c5c 19#include <Standard_Type.hxx>
94f71cad 20#include <Standard_Transient.hxx>
21
94f71cad 22
23#include <gp_Pnt2d.hxx>
24#include <gp_Pnt.hxx>
25#include <gp_Vec2d.hxx>
26#include <gp_Vec.hxx>
27
b7c077b9 28#include <TColStd_HArray2OfReal.hxx>
29#include <TColStd_HArray1OfReal.hxx>
30#include <TColStd_Array1OfReal.hxx>
31#include <TColgp_Array1OfPnt.hxx>
32#include <TColgp_Array1OfPnt2d.hxx>
94f71cad 33
c8b5b3d8 34//! \brief A cache class for Bezier and B-spline curves.
94f71cad 35//!
c8b5b3d8 36//! Defines all data, that can be cached on a span of a curve.
94f71cad 37//! The data should be recalculated in going from span to span.
38class BSplCLib_Cache : public Standard_Transient
39{
40public:
41 //! Default constructor
42 Standard_EXPORT BSplCLib_Cache();
43 //! Constructor for caching of 2D curves
c8b5b3d8 44 //! \param theDegree degree of the curve
45 //! \param thePeriodic identify the curve is periodic
46 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
47 //! \param thePoles2d array of poles of 2D curve
94f71cad 48 //! \param theWeights array of weights of corresponding poles
49 Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree,
50 const Standard_Boolean& thePeriodic,
51 const TColStd_Array1OfReal& theFlatKnots,
52 const TColgp_Array1OfPnt2d& thePoles2d,
0e14656b 53 const TColStd_Array1OfReal* theWeights = NULL);
94f71cad 54 //! Constructor for caching of 3D curves
c8b5b3d8 55 //! \param theDegree degree of the curve
56 //! \param thePeriodic identify the curve is periodic
57 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
58 //! \param thePoles array of poles of 3D curve
94f71cad 59 //! \param theWeights array of weights of corresponding poles
60 Standard_EXPORT BSplCLib_Cache(const Standard_Integer& theDegree,
61 const Standard_Boolean& thePeriodic,
62 const TColStd_Array1OfReal& theFlatKnots,
63 const TColgp_Array1OfPnt& thePoles,
0e14656b 64 const TColStd_Array1OfReal* theWeights = NULL);
94f71cad 65
66 //! Verifies validity of the cache using flat parameter of the point
67 //! \param theParameter parameter of the point placed in the span
68 Standard_EXPORT Standard_Boolean IsCacheValid(Standard_Real theParameter) const;
69
70 //! Recomputes the cache data for 2D curves. Does not verify validity of the cache
71 //! \param theParameter the value on the knot's axis to identify the span
c8b5b3d8 72 //! \param theDegree degree of the curve
73 //! \param thePeriodic identify the curve is periodic
74 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
75 //! \param thePoles2d array of poles of 2D curve
94f71cad 76 //! \param theWeights array of weights of corresponding poles
77 Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
78 const Standard_Integer& theDegree,
79 const Standard_Boolean& thePeriodic,
80 const TColStd_Array1OfReal& theFlatKnots,
81 const TColgp_Array1OfPnt2d& thePoles2d,
0e14656b 82 const TColStd_Array1OfReal* theWeights = NULL);
94f71cad 83 //! Recomputes the cache data for 3D curves. Does not verify validity of the cache
84 //! \param theParameter the value on the knot's axis to identify the span
c8b5b3d8 85 //! \param theDegree degree of the curve
86 //! \param thePeriodic identify the curve is periodic
87 //! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
88 //! \param thePoles array of poles of 3D curve
94f71cad 89 //! \param theWeights array of weights of corresponding poles
90 Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
91 const Standard_Integer& theDegree,
92 const Standard_Boolean& thePeriodic,
93 const TColStd_Array1OfReal& theFlatKnots,
94 const TColgp_Array1OfPnt& thePoles,
0e14656b 95 const TColStd_Array1OfReal* theWeights = NULL);
94f71cad 96
c8b5b3d8 97 //! Calculates the point on the curve in the specified parameter
94f71cad 98 //! \param[in] theParameter parameter of calculation of the value
c8b5b3d8 99 //! \param[out] thePoint the result of calculation (the point on the curve)
94f71cad 100 Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const;
101 Standard_EXPORT void D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const;
102
c8b5b3d8 103 //! Calculates the point on the curve and its first derivative in the specified parameter
94f71cad 104 //! \param[in] theParameter parameter of calculation of the value
c8b5b3d8 105 //! \param[out] thePoint the result of calculation (the point on the curve)
106 //! \param[out] theTangent tangent vector (first derivatives) for the curve in the calculated point
94f71cad 107 Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt2d& thePoint, gp_Vec2d& theTangent) const;
108 Standard_EXPORT void D1(const Standard_Real& theParameter, gp_Pnt& thePoint, gp_Vec& theTangent) const;
109
c8b5b3d8 110 //! Calculates the point on the curve and two derivatives in the specified parameter
94f71cad 111 //! \param[in] theParameter parameter of calculation of the value
c8b5b3d8 112 //! \param[out] thePoint the result of calculation (the point on the curve)
113 //! \param[out] theTangent tangent vector (1st derivatives) for the curve in the calculated point
114 //! \param[out] theCurvature curvature vector (2nd derivatives) for the curve in the calculated point
94f71cad 115 Standard_EXPORT void D2(const Standard_Real& theParameter,
116 gp_Pnt2d& thePoint,
117 gp_Vec2d& theTangent,
118 gp_Vec2d& theCurvature) const;
119 Standard_EXPORT void D2(const Standard_Real& theParameter,
120 gp_Pnt& thePoint,
121 gp_Vec& theTangent,
122 gp_Vec& theCurvature) const;
123
c8b5b3d8 124 //! Calculates the point on the curve and three derivatives in the specified parameter
94f71cad 125 //! \param[in] theParameter parameter of calculation of the value
c8b5b3d8 126 //! \param[out] thePoint the result of calculation (the point on the curve)
127 //! \param[out] theTangent tangent vector (1st derivatives) for the curve in the calculated point
128 //! \param[out] theCurvature curvature vector (2nd derivatives) for the curve in the calculated point
129 //! \param[out] theTorsion second curvature vector (3rd derivatives) for the curve in the calculated point
94f71cad 130 Standard_EXPORT void D3(const Standard_Real& theParameter,
131 gp_Pnt2d& thePoint,
132 gp_Vec2d& theTangent,
133 gp_Vec2d& theCurvature,
134 gp_Vec2d& theTorsion) const;
135 Standard_EXPORT void D3(const Standard_Real& theParameter,
136 gp_Pnt& thePoint,
137 gp_Vec& theTangent,
138 gp_Vec& theCurvature,
139 gp_Vec& theTorsion) const;
140
141
ec357c5c 142 DEFINE_STANDARD_RTTI(BSplCLib_Cache, Standard_Transient)
94f71cad 143
144protected:
c8b5b3d8 145 //! Normalizes the parameter for periodical curves
94f71cad 146 //! \param theFlatKnots knots with repetitions
147 //! \param theParameter the value to be normalized into the knots array
148 void PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots, Standard_Real& theParameter) const;
149
c8b5b3d8 150 //! Fills array of derivatives in the selected point of the curve
94f71cad 151 //! \param[in] theParameter parameter of the calculation
152 //! \param[in] theDerivative maximal derivative to be calculated (computes all derivatives lesser than specified)
153 //! \param[out] theDerivArray result array of derivatives (with size (theDerivative+1)*(PntDim+1),
c8b5b3d8 154 //! where PntDim = 2 or 3 is a dimension of the curve)
94f71cad 155 void CalculateDerivative(const Standard_Real& theParameter,
156 const Standard_Integer& theDerivative,
157 Standard_Real& theDerivArray) const;
158
159private:
160 Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
161 // the array has following structure:
162 // x1 y1 [z1] [w1]
163 // x2 y2 [z2] [w2] etc
164 // for 2D-curves there is no z conponent, for non-rational curves there is no weight
165
c8b5b3d8 166 Standard_Boolean myIsRational; ///< identifies the rationality of Bezier/B-spline curve
94f71cad 167 Standard_Real mySpanStart; ///< parameter for the first point of the span
168 Standard_Real mySpanLength; ///< length of the span
c8b5b3d8 169 Standard_Integer mySpanIndex; ///< index of the span on Bezier/B-spline curve
170 Standard_Integer mySpanIndexMax; ///< maximal number of spans on Bezier/B-spline curve
171 Standard_Integer myDegree; ///< degree of Bezier/B-spline
172 Handle(TColStd_HArray1OfReal) myFlatKnots; ///< knots of Bezier/B-spline (used for periodic normalization of parameters, exists only for periodical splines)
94f71cad 173};
174
175DEFINE_STANDARD_HANDLE(BSplCLib_Cache, Standard_Transient)
176
177#endif