0024428: Implementation of LGPL license
[occt.git] / src / Approx / Approx_CurveOnSurface.cxx
CommitLineData
b311480e 1// Created on: 1997-10-06
2// Created by: Roman BORISOV
3// Copyright (c) 1997-1999 Matra Datavision
973c2be1 4// Copyright (c) 1999-2014 OPEN CASCADE SAS
b311480e 5//
973c2be1 6// This file is part of Open CASCADE Technology software library.
b311480e 7//
973c2be1 8// This library is free software; you can redistribute it and / or modify it
9// under the terms of the GNU Lesser General Public version 2.1 as published
10// by the Free Software Foundation, with special exception defined in the file
11// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
12// distribution for complete text of the license and disclaimer of any warranty.
b311480e 13//
973c2be1 14// Alternatively, this file may be used under the terms of Open CASCADE
15// commercial license or contractual agreement.
7fd59977 16
17#include <Precision.hxx>
18#include <Approx_CurveOnSurface.ixx>
19#include <gp_Pnt.hxx>
20#include <gp_Vec.hxx>
21#include <GeomAdaptor_HSurface.hxx>
22#include <Adaptor3d_CurveOnSurface.hxx>
23#include <TColStd_HArray1OfReal.hxx>
24#include <AdvApprox_ApproxAFunction.hxx>
25#include <Adaptor3d_HCurve.hxx>
26#include <TColgp_Array1OfPnt.hxx>
27#include <GeomAdaptor_HCurve.hxx>
28#include <Geom2dAdaptor_HCurve.hxx>
29#include <Adaptor3d_HCurveOnSurface.hxx>
30#include <TColgp_Array1OfPnt2d.hxx>
31#include <TColStd_Array1OfReal.hxx>
32#include <AdvApprox_PrefAndRec.hxx>
33#include <AdvApprox_DichoCutting.hxx>
34
35//=======================================================================
36//class : Approx_CurveOnSurface_Eval
37//purpose: evaluator class for approximation of both 2d and 3d curves
38//=======================================================================
39
40class Approx_CurveOnSurface_Eval : public AdvApprox_EvaluatorFunction
41{
42 public:
43 Approx_CurveOnSurface_Eval (const Handle(Adaptor3d_HCurve)& theFunc,
44 const Handle(Adaptor2d_HCurve2d)& theFunc2d,
45 Standard_Real First, Standard_Real Last)
46 : fonct(theFunc), fonct2d(theFunc2d)
47 { StartEndSav[0] = First; StartEndSav[1] = Last; }
48
49 virtual void Evaluate (Standard_Integer *Dimension,
50 Standard_Real StartEnd[2],
51 Standard_Real *Parameter,
52 Standard_Integer *DerivativeRequest,
53 Standard_Real *Result, // [Dimension]
54 Standard_Integer *ErrorCode);
55
56 private:
57 Handle(Adaptor3d_HCurve) fonct;
58 Handle(Adaptor2d_HCurve2d) fonct2d;
59 Standard_Real StartEndSav[2];
60};
61
62void Approx_CurveOnSurface_Eval::Evaluate (Standard_Integer *Dimension,
63 Standard_Real StartEnd[2],
64 Standard_Real *Param, // Parameter at which evaluation
65 Standard_Integer *Order, // Derivative Request
66 Standard_Real *Result,// [Dimension]
67 Standard_Integer *ErrorCode)
68{
69 *ErrorCode = 0;
70 Standard_Real par = *Param;
71
72// Dimension is incorrect
73 if (*Dimension != 5) {
74 *ErrorCode = 1;
75 }
76
77// Parameter is incorrect
78 if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
79 {
80 fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
81 fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],
82 Precision::PConfusion());
83 StartEndSav[0]=StartEnd[0];
84 StartEndSav[1]=StartEnd[1];
85 }
86 gp_Pnt pnt;
87
88
89 gp_Pnt2d pnt2d;
90
91 switch (*Order) {
92 case 0:
93 {
94 fonct2d->D0(par, pnt2d);
95 fonct->D0(par, pnt);
96 Result[0] = pnt2d.X();
97 Result[1] = pnt2d.Y();
98 Result[2] = pnt.X();
99 Result[3] = pnt.Y();
100 Result[4] = pnt.Z();
101 break;
102 }
103 case 1:
104 {
105 gp_Vec v1;
106 gp_Vec2d v21;
107 fonct2d->D1(par, pnt2d, v21);
108 fonct->D1(par,pnt, v1);
109 Result[0] = v21.X();
110 Result[1] = v21.Y();
111 Result[2] = v1.X();
112 Result[3] = v1.Y();
113 Result[4] = v1.Z();
114 break;
115 }
116 case 2:
117 {
118 gp_Vec v1, v2;
119 gp_Vec2d v21, v22;
120 fonct2d->D2(par, pnt2d, v21, v22);
121 fonct->D2(par, pnt, v1, v2);
122 Result[0] = v22.X();
123 Result[1] = v22.Y();
124 Result[2] = v2.X();
125 Result[3] = v2.Y();
126 Result[4] = v2.Z();
127 break;
128 }
129 default:
130 Result[0] = Result[1] = Result[2] = Result[3] = Result[4] = 0.;
131 *ErrorCode = 3;
132 break;
133 }
134}
135
136//=======================================================================
137//class : Approx_CurveOnSurface_Eval3d
138//purpose: evaluator class for approximation of 3d curve
139//=======================================================================
140
141class Approx_CurveOnSurface_Eval3d : public AdvApprox_EvaluatorFunction
142{
143 public:
144 Approx_CurveOnSurface_Eval3d (const Handle(Adaptor3d_HCurve)& theFunc,
145 Standard_Real First, Standard_Real Last)
146 : fonct(theFunc) { StartEndSav[0] = First; StartEndSav[1] = Last; }
147
148 virtual void Evaluate (Standard_Integer *Dimension,
149 Standard_Real StartEnd[2],
150 Standard_Real *Parameter,
151 Standard_Integer *DerivativeRequest,
152 Standard_Real *Result, // [Dimension]
153 Standard_Integer *ErrorCode);
154
155 private:
156 Handle(Adaptor3d_HCurve) fonct;
157 Standard_Real StartEndSav[2];
158};
159
160void Approx_CurveOnSurface_Eval3d::Evaluate (Standard_Integer *Dimension,
161 Standard_Real StartEnd[2],
162 Standard_Real *Param, // Parameter at which evaluation
163 Standard_Integer *Order, // Derivative Request
164 Standard_Real *Result,// [Dimension]
165 Standard_Integer *ErrorCode)
166{
167 *ErrorCode = 0;
168 Standard_Real par = *Param;
169
170// Dimension is incorrect
171 if (*Dimension != 3) {
172 *ErrorCode = 1;
173 }
174
175// Parameter is incorrect
176 if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
177 {
178 fonct = fonct->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
179 StartEndSav[0]=StartEnd[0];
180 StartEndSav[1]=StartEnd[1];
181 }
182
183 gp_Pnt pnt;
184
185 switch (*Order) {
186 case 0:
187 pnt = fonct->Value(par);
188 Result[0] = pnt.X();
189 Result[1] = pnt.Y();
190 Result[2] = pnt.Z();
191 break;
192 case 1:
193 {
194 gp_Vec v1;
195 fonct->D1(par, pnt, v1);
196 Result[0] = v1.X();
197 Result[1] = v1.Y();
198 Result[2] = v1.Z();
199 break;
200 }
201 case 2:
202 {
203 gp_Vec v1, v2;
204 fonct->D2(par, pnt, v1, v2);
205 Result[0] = v2.X();
206 Result[1] = v2.Y();
207 Result[2] = v2.Z();
208 break;
209 }
210 default:
211 Result[0] = Result[1] = Result[2] = 0.;
212 *ErrorCode = 3;
213 break;
214 }
215}
216
217//=======================================================================
218//class : Approx_CurveOnSurface_Eval2d
219//purpose: evaluator class for approximation of 2d curve
220//=======================================================================
221
222class Approx_CurveOnSurface_Eval2d : public AdvApprox_EvaluatorFunction
223{
224 public:
225 Approx_CurveOnSurface_Eval2d (const Handle(Adaptor2d_HCurve2d)& theFunc2d,
226 Standard_Real First, Standard_Real Last)
227 : fonct2d(theFunc2d) { StartEndSav[0] = First; StartEndSav[1] = Last; }
228
229 virtual void Evaluate (Standard_Integer *Dimension,
230 Standard_Real StartEnd[2],
231 Standard_Real *Parameter,
232 Standard_Integer *DerivativeRequest,
233 Standard_Real *Result, // [Dimension]
234 Standard_Integer *ErrorCode);
235
236 private:
237 Handle(Adaptor2d_HCurve2d) fonct2d;
238 Standard_Real StartEndSav[2];
239};
240
241void Approx_CurveOnSurface_Eval2d::Evaluate (Standard_Integer *Dimension,
242 Standard_Real StartEnd[2],
243 Standard_Real *Param, // Parameter at which evaluation
244 Standard_Integer *Order, // Derivative Request
245 Standard_Real *Result,// [Dimension]
246 Standard_Integer *ErrorCode)
247{
248 *ErrorCode = 0;
249 Standard_Real par = *Param;
250
251// Dimension is incorrect
252 if (*Dimension != 2) {
253 *ErrorCode = 1;
254 }
255
256// Parameter is incorrect
257 if(StartEnd[0] != StartEndSav[0] || StartEnd[1]!= StartEndSav[1])
258 {
259 fonct2d = fonct2d->Trim(StartEnd[0],StartEnd[1],Precision::PConfusion());
260 StartEndSav[0]=StartEnd[0];
261 StartEndSav[1]=StartEnd[1];
262 }
263
264 gp_Pnt2d pnt;
265
266 switch (*Order) {
267 case 0:
268 {
269 pnt = fonct2d->Value(par);
270 Result[0] = pnt.X();
271 Result[1] = pnt.Y();
272 break;
273 }
274 case 1:
275 {
276 gp_Vec2d v1;
277 fonct2d->D1(par, pnt, v1);
278 Result[0] = v1.X();
279 Result[1] = v1.Y();
280 break;
281 }
282 case 2:
283 {
284 gp_Vec2d v1, v2;
285 fonct2d->D2(par, pnt, v1, v2);
286 Result[0] = v2.X();
287 Result[1] = v2.Y();
288 break;
289 }
290 default:
291 Result[0] = Result[1] = 0.;
292 *ErrorCode = 3;
293 break;
294 }
295}
296
297 Approx_CurveOnSurface::Approx_CurveOnSurface(const Handle(Adaptor2d_HCurve2d)& C2D,
298 const Handle(Adaptor3d_HSurface)& Surf,
299 const Standard_Real First,
300 const Standard_Real Last,
301 const Standard_Real Tol,
302 const GeomAbs_Shape S,
303 const Standard_Integer MaxDegree,
304 const Standard_Integer MaxSegments,
305 const Standard_Boolean only3d,
306 const Standard_Boolean only2d)
307{
308 myIsDone = Standard_False;
309 if(only3d && only2d) Standard_ConstructionError::Raise();
310 GeomAbs_Shape Order = S;
311
312 Handle( Adaptor2d_HCurve2d ) TrimmedC2D = C2D->Trim( First, Last, Precision::PConfusion() );
313
314 Adaptor3d_CurveOnSurface COnS( TrimmedC2D, Surf );
315 Handle(Adaptor3d_HCurveOnSurface) HCOnS = new Adaptor3d_HCurveOnSurface();
316 HCOnS->Set(COnS);
317
318 Standard_Integer Num1DSS = 0, Num2DSS=0, Num3DSS=0;
319 Handle(TColStd_HArray1OfReal) OneDTol;
320 Handle(TColStd_HArray1OfReal) TwoDTolNul;
321 Handle(TColStd_HArray1OfReal) ThreeDTol;
322
323 // create evaluators and choose appropriate one
324 Approx_CurveOnSurface_Eval3d Eval3dCvOnSurf (HCOnS, First, Last);
325 Approx_CurveOnSurface_Eval2d Eval2dCvOnSurf ( TrimmedC2D, First, Last);
326 Approx_CurveOnSurface_Eval EvalCvOnSurf (HCOnS, TrimmedC2D, First, Last);
327 AdvApprox_EvaluatorFunction* EvalPtr;
328 if ( only3d ) EvalPtr = &Eval3dCvOnSurf;
329 else if ( only2d ) EvalPtr = &Eval2dCvOnSurf;
330 else EvalPtr = &EvalCvOnSurf;
331
332 // Initialization for 2d approximation
333 if(!only3d) {
334 Num1DSS = 2;
335 OneDTol = new TColStd_HArray1OfReal(1,Num1DSS);
336
337 Standard_Real TolU, TolV;
338
339 TolU = Surf->UResolution(Tol)/2;
340 TolV = Surf->VResolution(Tol)/2;
341
342 OneDTol->SetValue(1,TolU);
343 OneDTol->SetValue(2,TolV);
344 }
345
346 if(!only2d) {
347 Num3DSS=1;
348 ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
349 ThreeDTol->Init(Tol/2);
350 }
351
352 myError2dU = 0;
353 myError2dV = 0;
354 myError3d = 0;
355
356 Standard_Integer NbInterv_C2 = HCOnS->NbIntervals(GeomAbs_C2);
357 TColStd_Array1OfReal CutPnts_C2(1, NbInterv_C2 + 1);
358 HCOnS->Intervals(CutPnts_C2, GeomAbs_C2);
359 Standard_Integer NbInterv_C3 = HCOnS->NbIntervals(GeomAbs_C3);
360 TColStd_Array1OfReal CutPnts_C3(1, NbInterv_C3 + 1);
361 HCOnS->Intervals(CutPnts_C3, GeomAbs_C3);
362
363 AdvApprox_PrefAndRec CutTool(CutPnts_C2,CutPnts_C3);
364 AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
365 OneDTol, TwoDTolNul, ThreeDTol,
366 First, Last, Order,
367 MaxDegree, MaxSegments,
368 *EvalPtr, CutTool);
369
370 myIsDone = aApprox.IsDone();
371 myHasResult = aApprox.HasResult();
372
373 if (myHasResult) {
374 Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
375 Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
376 Standard_Integer Degree = aApprox.Degree();
377
378 if(!only2d)
379 {
380 TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
381 aApprox.Poles(1,Poles);
382 myCurve3d = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
383 myError3d = aApprox.MaxError(3, 1);
384 }
385 if(!only3d)
386 {
387 TColgp_Array1OfPnt2d Poles2d(1,aApprox.NbPoles());
388 TColStd_Array1OfReal Poles1dU(1,aApprox.NbPoles());
389 aApprox.Poles1d(1, Poles1dU);
390 TColStd_Array1OfReal Poles1dV(1,aApprox.NbPoles());
391 aApprox.Poles1d(2, Poles1dV);
392 for(Standard_Integer i = 1; i <= aApprox.NbPoles(); i++)
393 Poles2d.SetValue(i, gp_Pnt2d(Poles1dU.Value(i), Poles1dV.Value(i)));
394 myCurve2d = new Geom2d_BSplineCurve(Poles2d, Knots->Array1(), Mults->Array1(), Degree);
395
396 myError2dU = aApprox.MaxError(1, 1);
397 myError2dV = aApprox.MaxError(1, 2);
398 }
399 }
400
401// }
402
403}
404
405 Standard_Boolean Approx_CurveOnSurface::IsDone() const
406{
407 return myIsDone;
408}
409
410 Standard_Boolean Approx_CurveOnSurface::HasResult() const
411{
412 return myHasResult;
413}
414
415 Handle(Geom_BSplineCurve) Approx_CurveOnSurface::Curve3d() const
416{
417 return myCurve3d;
418}
419
420 Handle(Geom2d_BSplineCurve) Approx_CurveOnSurface::Curve2d() const
421{
422 return myCurve2d;
423}
424
425 Standard_Real Approx_CurveOnSurface::MaxError3d() const
426{
427 return myError3d;
428}
429
430 Standard_Real Approx_CurveOnSurface::MaxError2dU() const
431{
432 return myError2dU;
433}
434
435 Standard_Real Approx_CurveOnSurface::MaxError2dV() const
436{
437 return myError2dV;
438}
439