0026106: BRepMesh - revision of data model Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements; Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability; Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model. The workflow of updated component can be divided on six parts: * Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities; * Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account; * Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved; * Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation; * Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face; * Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model. Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units. <!break> 1. Extend "tricheck" DRAW-command in order to find degenerated triangles. 2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated. 3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals. 4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection. 5. Correction of test scripts: 1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue) 2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant) Correction in upgrade guide.

0028599: Replacement of old Boolean operations with new ones in BRepProj_Projection algorithm The usage of *BRepAlgo_Section* has been replaced with the usage of *BRepAlgoAPI_Section* in *BRepProj_Projection* algorithm. The TODO statements have been removed from the failing test case in the "prj" grid as they are working correctly now. The following changes have been made to improve the performance *BRepAlgoAPI_Section*: 1. Revision of the *IntPolyh_Intersection* class to avoid repeated calculation of the deflection of the same triangulation. 2. Small revision of the Edge/Face intersection algorithm to perform Extrema computation on the whole intersection range of the edge instead of discrete ranges. 3. Implementation of the extrema computation for the Circle and Sphere. 4. Correct computation of the parameter of the point on the Circle.

0028222: Intersection of two cylinders fails 1. The reason of exception has been eliminated. 2. Algorithm in IntPatch_WLineTool::JoinWLines(...) method has been modified in order to forbid join curves in the point where more than two intersection lines meet. More over, joining is forbidden if local curvature in the connection point is too big (see function CheckArgumentsToJoin(...) in the file IntPatch_WLineTool.cxx). 3. Interface of IntPatch_WLineTool::JoinWLines(...) method has been modified in order to reduce number of arguments. 4. Small corrections in IsSeamOrBound(...) static function has been made. Namely, check has been added if two boundaries are in the same period region but are too far each to other (see IntPatch_WLineTool.cxx, IsSeamOrBound(...) function, line # 532). 5. "Reversed" flag has been made local. Now, it is pure local characteristic: the algorithm decides itself, shall we reverse the argument order. This correction makes the algorithm more commutative (see issue #25404). However, IntPatch_WLineTool::JoinWLines(...) method can return non-commutative result. 6. Algorithm of searching small intersection curves has been improved. 7. New methods have been added in Bnd_Range class. Some test cases have been adjusted according to their new behavior. 1. tests\bugs\modalg_6\bug26310_3 tests\bugs\modalg_6\bug26310_4 tests\bugs\moddata_2\bug235 tests\perf\modalg\bug26310_1 tests\bugs\modalg_5\bug24915 Logic of these cases has been changed. Mover over, additional check has been added in "bug26310_1" test case. Therefore, its performance will be slower than on the current MASTER. 2. tests\bugs\modalg_5\bug25292* Scripts have been rewritten in order to make it more readable. Logic of these cases has not been changed.

0026329: Restore floating point signals handling in DRAW Added DRAW command dsetsignal, resetting OSD signal handler with either armed or disabled FPE handler, according to an option. If called without arguments, it sets FPE handler only if environment variable OSD_FPE is defined (with value different from 0). On start, DRAW calls dsetsignal to set FPE signal if CSF_FPE is defined. Test bugs fclasses bug6143 uses dsetsignal to set FPE handler unconditionally before the test command, and resets it to default at the end. A number of changes in the code have been done in order to fix floating point exceptions that became generated after enabling signals: - Global functions Sinh() and Cosh() defined in Standard_Real.hxx are improved to raise Standard_NumericError exception if argument is too big (greater than 710.47586), instead of relying on system treatment of floating point overflow. These functions are used instead of sinh and cosh in ElCLib.cxx. - Maximal value of parameter on hyperbola is restricted by 23 (corresponding to ~1e10 in 3d) in order to avoid FP overflow in Extrema_GenExtCS.cxx, ShapeFix_EdgeProjAux.cxx. - Interface of the root curve adaptor class Adaptor3d_Curve has been updated to add new virtual methods BasisCurve and OffsetValue. They complement the adaptor for the case of offset curves. These methods are used in Extrema_GenExtCS.cxx to restrict domain search in the case of offset of hyperbola, in order to get rid of floating point overflow. All classes inheriting Adaptor3d_Curve have been changed to implement the new virtual methods. - Protection against division by zero has been implemented in ApproxInt_KnotTools.cxx, BRepClass3d_SClassifier.cxx, BRepGProp_Face.cxx, BRepMesh_FastDiscretFace.cxx, Geom2dGcc_Circ2d2TanOnIter.cxx, Geom2dInt_Geom2dCurveTool.cxx, IntPolyh_MaillageAffinage.cxx. - Protection against calling of math functions of infinite arguments has been added in BRepCheck_Edge.cxx, BRepLib.cxx, CSLib_NormalPolyDef.cxx, Extrema_FuncExtPC.gxx, Extrema_GExtPC.gxx, Extrema_GLocateExtPC.gxx, Intf_InterferencePolygonPolyhedron.gxx, ShapeAnalysis_Surface.cxx, ShapeAnalysis_TransferParametersProj.cxx, ShapeAnalysis_Wire.cxx, math_FunctionSetRoot.cxx. - Proper initialization of local variables is done in BOPAlgo_PaveFiller_6.cxx, XSDRAWSTLVRML.cxx. - Inconsistent usage of Standard_Boolean* to access integer data in HLR (caused by #27772) is corrected Some test cases have been updated to actual state.

0027302: Invalid curves number in intersection result 1. In frame of the fix for #27282 issue, we have obtained several prolonged curves, which have common point(s). Fix for this issue joins these curves if it is possible. 2. ElCLib::InPeriod(...) method has been improved. Now it has become more faster (in general cases) and more reliable (in frame of FLT_OVERFLOW and DIVISION_BY_ZERO cases processing). Creation of test case for issue #27302 Test case tests\bugs\modalg_6\bug27282_2 has been adjusted in accordance with its new behavior.

0024624: Lost word in license statement in source files License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.